
■ This article describes a milestone in our research
efforts toward the real robot competition in
RoboCup. We participated in the middle-size
league at RoboCup-97, held in conjunction with
the Fifteenth International Joint Conference on
Artificial Intelligence in Nagoya, Japan. The most
significant features of our team, TRACKIES, are the
application of a reinforcement learning method
enhanced for real robot applications and the use of
an omnidirectional vision system for our goalie
that can capture a 360-degree view at any instant
in time. The method and the system used are
shown with competition results.

Building robots that learn to perform a
task in a real world has been acknowl-
edged as one of the major challenges fac-

ing AI and robotics. Reinforcement learning
has recently been receiving increased attention
as a method for robot learning with little or no
a priori knowledge and a higher capability for
reactive and adaptive behaviors (Connel and
Mahadevan 1993). In the reinforcement learn-
ing scheme, a robot and an environment are
modeled by two synchronized finite-state
automatons interacting in discrete-time cycli-
cal processes. The robot senses the current state
of the environment and selects an action.
Based on the state and the action, the environ-
ment makes a transition to a new state and
generates a reward that is passed back to the
robot. Through these interactions, the robot
learns a purposive behavior to achieve a given
goal.

As a test bed for real robot applications of
the reinforcement learning method, we select-
ed soccer-playing robots. We started with sim-
ple tasks such as avoiding an opponent and
shooting a ball into a goal (Asada et al. 1996),
then shifted to more complicated tasks such as

shooting while avoiding an opponent (Uchibe,
Asada, and Hosoda 1996). The behavior of the
opponent is scheduled for the learner to effi-
ciently obtain the desired behavior. Currently,
we are focusing on a problem of state-space
construction through the robot experiences
(Takahashi et al. 1996).

We participated in the middle-size robot
league of RoboCup-97, held as part of the Fif-
teenth International Joint Conference on Arti-
ficial Intelligence. Our team consisted of four
attackers, each of which has a normal vision
system and one goalie with an omnidirectional
vision system. In this article, we describe the
milestone of our research efforts in our work
for the RoboCup middle-size league competi-
tion. First, we give a brief overview of the rein-
forcement learning method and the problems
in applying it to real robot applications; we
then give our method of coping with these
issues in the context of RoboCup. Finally, we
show our system and the experimental results
of RoboCup-97.

Applying Q-Learning 
to a Real Robot

First, we follow the explanation of Q-learning
by Kaelbling (1993). For a more thorough treat-
ment, see Watkins and Dayan (1992). Then, we
show some problems of applying Q-learning to
real robot tasks.

Basics of Q-Learning
We assume that the robot can discriminate the
set S of distinct world states and can take the
set A of actions on the world. The world is
modeled as a Markov process, making stochas-
tic transitions based on its current state and the
action taken by the robot. Let T(s, a, s′) be the
probability of transition to the state s′ from the
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and action spaces: The state (action) space
should reflect the corresponding physical
space in which a state (an action) can be per-
ceived (taken).

Second is the real-time vision system: Phys-
ical phenomena happen continuously in the
real world; therefore, the sensor system should
monitor the changes of the environment in
real time, which means that the visual infor-
mation should be processed in video frame
rate (33 microseconds [ms]).

The state and action spaces are not discrete
but continuous in the real world; therefore, it
is difficult to construct the state and action
spaces in which one action always corresponds
to one state transition. We call this the state-
action deviation problem as one of the so-called
perceptual aliasing problems (Whitehead and
Ballard 1990) (that is, a problem caused by
multiple projections of different actual situa-
tions into one observed state). The perceptual
aliasing problem makes it difficult for a robot
to take an optimal action. In the following, we
first show how to construct the state and
action spaces and then how to cope with the
state-action deviation problem.

Learning Time
The long learning time is the famous delayed
reinforcement problem because no explicit
teacher signal indicates the correct output at
each time step. To avoid this difficulty, we con-
struct the learning schedule such that the
robot can learn in easy situations at the early
stages and later on learn in more difficult situ-
ations. We call this learning from easy missions
(or LEMs).

Shooting Behavior Acquisition
The task for a mobile robot is to shoot a ball
into a goal, as shown in figure 1 (Asada et al.
1996). We assume that the environment con-
sists of a ball and a goal.

We define substates and action space for the
robot to learn. Substates are defined according
to the position and the size of the ball or goal,
which are naturally and coarsely classified
images (figure 2). The action space is defined to
resolve the state-action– deviation problem, as
follows: Each action executed during a fixed-
time interval (usually short, say, 33 ms in our
case) is regarded as an action primitive. The
robot continues to take one action primitive at
a time until the current state changes. This
sequence of the action primitives is called an
action.

We assign the reward value of 1 when the
ball is kicked into the goal; otherwise, it is 0.

current state-action pair (s, a). For each state-
action pair (s, a), the reward r(s, a) is defined.

The general reinforcement learning problem
is typically stated as finding a policy that max-
imizes the discounted sum of rewards received
over time.1 This sum is called the return and is
defined as 

where rt is the reward received at step t given
that the agent started in state s and executed
policy f. γ is the discounting factor; it controls
to what degree rewards in the distant future
affect the total value of a policy. The value of γ
is usually slightly less than 1.

Given definitions of the transition probabil-
ities and the reward distribution, we can solve
for the optimal policy, using methods from
dynamic programming (Bellman 1957). A
more interesting case occurs when we want to
simultaneously learn the dynamics of the
world and construct the policy. Watkin’s Q-
learning algorithm gives us an elegant method
for learning the dynamics of the world and
constructing the policy.

Let Q*(s, a) be the expected return, or action-
value function, for taking action a in a situation
s and continuing thereafter with the optimal
policy. It can recursively be defined as

Because we do not know T and r initially, we
construct incremental estimates of the Q-val-
ues online. With Q(s, a) equal to an arbitrary
value (usually 0), every time an action is taken,
the Q-value is updated as follows: 

where r is the actual reward value received for
taking action a in a situation s, s′ is the next
state, and α is a learning rate (between 0 and
1).

Problems of Applying 
Q-Learning to Robot
Traditional notions of state in the existing
applications of the reinforcement learning
algorithms fit nicely into deterministic state-
transition models (for example, one action is
forward, backward, left, or right, and the states
are encoded by the locations of the agent).
However, this is not always the case in the real
world, where everything changes asynchro-
nously (Mataric 1994). That is, one action does
not always correspond to one state transition,
and vice versa. Thus, we need to have the fol-
lowing principles for the construction of state
and action spaces.

First is natural segmentation of the state

Q s a Q s a r s a Q s a
a A

( , ) ( ) ( , ) ( ( , ) max ( ' , ' )),
'

⇐ − + +
∈

1 α α γ

Q s a r s a T s a s Q s a
s S a A

*( , ) ( , ) ( , , ' )max *( ' , ' ).
' '

= + ∑
∈ ∈

γ

n

n

t nr
=

∞

+∑
0
γ ,

Articles

72 AI MAGAZINE



This makes the learning time consuming
because it takes the robot a large number of tri-
als to reach the goal state. Although adopting
a reward function in terms of distance to the
goal state makes the learning time much short-
er in this case, it seems difficult to avoid the
local maxima of the action-value function Q.

A discounting factor γ is used to control to
what degree rewards in the distant future affect
the total value of a policy. In our case, we set
the value at slightly less than 1 (γ = 0.8).

Shooting a Ball 
While Avoiding an Opponent

In the second stage, we set up an opponent just
before the goal, that is, a goalie, and make the
robot learn to shoot a ball into a goal while it
avoids the goal keeper (figure 3). The basic idea
is, first, to obtain the desired behavior for each
subtask and then to coordinate two learned
behaviors. For the first subtask (shooting behav-
ior), we have already obtained the learned poli-
cy by using the state space shown in figure 2.
For the second subtask (avoiding behavior), we
add the substates for the opponent that consist
of the size and its position in the image.

The time needed to acquire an optimal pol-
icy mainly depends on the size of the state

space. If we apply the monolithic Q-learning
to multiple goal tasks, the expected learning
time is exponential in the size of the state
space (Whitehead 1991). Therefore, a number
of methods have been utilized to speed up
learning in multiple tasks. One technique is to
divide a multiple task into some subtasks and
coordinate behaviors that are independently
acquired. We have proposed a method that
obtains a coordinated behavior consisting of
different behaviors previously learned (Asada
et al. 1994). The difficulty of the problem is to
coordinate different behaviors that are concur-
rent and interfere with each other; therefore,
action selection might be in conflict with the
dynamic and complicated situations.

We consider three kinds of coordination: (1)
simple summing of different action-value
functions, (2) switching of action-value func-
tions according to situations, and (3) learning
of a new behavior given the previously learned
policies. In the first two methods, the previ-
ously learned action-value functions are sim-
ply summed or switched. Therefore, these
methods cannot cope with local maxima or
hidden states caused by a combination of state
spaces. Consequently, an action suitable for
these situations has never been learned. To
cope with these new situations, the robot
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Figure 1. The Task Is to Shoot a Ball into a Goal.
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Figure 2. The Ball Substates and the Goal Substates.



needs to learn a new behavior by using the pre-
viously learned behaviors (see Asada et al.
[1994] for more details).

Real Robot System
In the competition, we applied our methods to
our five robots: Four of them are attackers with
a normal vision system (figure 4), and the last
one is a goalie with an omnidirectional vision
system (figure 5) to look at the goal and ball
coming from any direction at the same time.
Every robot has a power-wheeled steering loco-
motion system, a single-color charge-coupled
device camera, and a video transmitter using
an ultrahigh-frequency band.

Figure 6 shows the configuration of the
robot system. Each robot is controlled by a
remote PC computer. The image taken by a
CCD camera on the robot is transmitted to a
UHF receiver and processed on the host com-
puter. According to the learning results, action
selection is done by the host computer, and a
radio-controlled interface generates a control
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Figure 3. The Task Is to Shoot a Ball into the Goal Avoiding an Opponent.

Figure 4. Attacker Robot.
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signal to move the robot. Fujitsu color-tracking
vision is used for image processing. It is used to
detect a colored region in the image, which,
according to RoboCup regulations, is defined
as the ball; the goal; or the opponent in red,
blue, and yellow, respectively.

Results of RoboCup-97
For the competition, we embedded the learned
behaviors of shooting a red ball into a blue
goal while avoiding yellow opponents into
four attackers and goalkeeping into one goalie.
The learning scheme for the goalie is simple.
The reward is when the goalie locates itself
between the ball and the goal and keeps the
goal. The state and action spaces are similarly
defined as the learning scheme for the shoot-
ing behavior.

We had two games in the preliminary round
with the Royal Melbourne Institute of Tech-
nology RAIDERS and the University of Southern
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Figure 5. Keeper Robot.
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California DREAMTEAM. RAIDERS has four omnidi-
rectional moving robots controlled by one
remote brain based on the global vision system
set on the ceiling. During the game, the RAIDERS

control system did not work well, and the
robot motions seemed random. Fortunately,
TRACKIES got a goal in the first period, and the
final score was 1–0. Figure 7 shows a scene
from this game. 

The robot bodies used by DREAMTEAM were
completely the same as TRACKIES, although the
control methods of the two teams were differ-
ent from each other. TRACKIES is based on the
remote brain system, but DREAMTEAM is based
on the self-contained autonomous system. The
game score with DREAMTEAM was 2–2; all goals
were made by DREAMTEAM (two goals and two
own goals); TRACKIES could not get any goal. 

TRACKIES and DREAMTEAM made it to the final
game, which was also a draw (0–0). DREAMTEAM

seemed to change its program approach from
offensive to defensive because it had two own
goals in the preliminary. Figure 8 shows robot
views of four TRACKIES, including a goalie (top
left), keeping the goal by blocking the red ball
in front of the yellow goal. As we can see from
the image, the omnidirectional view seems
suitable for the goalie task. 

During all the games, the radio situation in
the competition site was bad, and TRACKIES

could not work the remote brain system in
both ways. Often, transmitted images were
noisy, and sometimes there was no signal. In
addition, the motor commands sent from the
host computer could not correctly reach the
robot body. Therefore, the robot motions
sometimes seemed random and meaningless.

Conclusions
At RoboCup-97, we did not implement any
cooperated behaviors such as passing and
shooting because of the lack of time. However,
we have proposed a method (Uchibe, Asada,
and Hosoda 1998). Also, the avoiding behavior
only worked for RAIDERS because they wore yel-
low uniforms during the game. No other teams
wore uniforms to be discriminated, including
TRACKIES. The uniform should solve this dis-
crimination problem in a clever way that is
low cost and efficient.

Note
1. A policy f is a mapping from S to A.
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Figure 7. Osaka University Versus Royal Melbourne Institute of Technology.

Figure 8. Four Robot Views from the TRACKIES Side.
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