
Most practicing AI researchers
take certain things for grant-
ed as part of the background

assumptions of their craft. That intel-
ligence is a form of information pro-
cessing and that the framework of
modern digital computers provides
pretty much all that is needed for
representing and processing informa-
tion for doing AI are two of the most
foundational of such assumptions.
Turing (1950) explicitly articulated
this idea in the late 1940s, and later
Newell and Simon (1976) proposed
the physical symbol system hypothe-
sis (PSSH) as a newer form of the
same set of intuitions about the rela-
tion between computation and
thinking. In this tradition, the com-
putational approach is not just one
way of making intelligent systems,
but representing and processing in-
formation within the computational
framework is necessary for intelli-
gence as a process, wherever it is im-
plemented. Philosophy of mind, lin-
guistics, and cognitive science all take
the computation-over-representation
hypothesis as central to understand-
ing human cognitive phenomena as
well. The language of thought (LOT)
hypothesis, of which Fodor (1975)
has given the most well-known expo-
sition, is a variant of the computa-
tional hypothesis in AI. LOT holds
that underlying thinking is a medium
that has the properties of formal sym-
bolic languages that we are familiar
with in computer science. There is
such a close connection between our
current notions of thinking, cogni-
tion, intelligence, and so on, on the
one hand, and computation and rep-
resentation, on the other, that for
most AI practitioners, it is hard to
imagine that this basic hypothesis
could be questioned.

However, this hypothesis has in-
creasingly been under attack from
various sources in the last decade.
First came connectionism with its
challenge to what has come to be
known as symbolic representation, that
is, representation using one form or
other of digital computer languages.
Connectionism was followed in quick
succession by proposals for other
nonsymbolic representations, such as
dynamical systems (see Port and van
Gelder [1995] for a recent collection
of articles). Within AI, Brooks (1986)
claimed to be producing intelligent
behavior without any representation
at all. There has also been a debate
within cognitive science and AI about
exactly what the implications of the
situated cognition ideas were for the

source. This was the idea that a good
part of intelligent behavior was actu-
ally based on iconic or pictorial repre-
sentations inside the head, which, in
some tellings, were incompatible with
the traditional symbolic approach but
in others were quite compatible. For
AI, this debate opened up the issue of
exactly what is meant by pictorial rep-
resentations and when they were use-
ful (see Glasgow, Narayanan, and
Chandrasekaran [1995] for a recent
collection of articles). 

Most AI researchers ignore all this
turbulence regarding the foundation-
al hypothesis of computation over
representations—they go on formu-
lating technical problems that are
amenable to progress using the tradi-
tional hypotheses. However, many in
the field see these issues as impor-
tant, not only for abstract philosoph-
ical reasons but for quite pragmatic
reasons—perhaps there are better
ways to build effective artifacts. 

What becomes clear to anyone who
wants to make sense of the issues is
how confusing and confused the
foundational ideas are. Ideas that
seem reasonably straightforward at
first blush—representation, for exam-
ple—turn out to be quite elusive once
one tries to pin them down. To illus-
trate, the difference between so-called
propositional and pictorial represen-
tations, an idea that appears to be
simple intuition at first, gets mired in
complexities when one begins to for-
malize these representations.

This is where Vinod Goel’s book,
Sketches of Thought, comes in. Goel’s
main goal is to propose and defend
the hypothesis that the ideas about
representation that underlie much
current research in AI and cognitive
science do not do justice to the full
range of representational powers that
the human cognitive system displays.
I think that the foundational issues
that the book deals with are impor-
tant for AI researchers. I try in this re-
view not to engage the book at the
level of its detailed arguments because
that would call for a much longer re-
view. I attempt to give an outline of
its arguments and positions in its own
terms, so that the reader gets a gener-
al idea of why I think the book is an
important and useful contribution. 
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representation hypothesis. Several re-
searchers from this movement
claimed that representations are not
really processed to produce intelli-
gent behavior as much as representa-
tions are constructed as part of intel-
ligent behavior, and that much of AI,
including the PSSH, had miscon-
strued the nature of cognition (Cog-
nitive Science 1993). Simon himself
(Cognitive Science 1993) claimed
that, Brooks’s own claims notwith-
standing, his robots were actually
having and using representations
and that his work fully satisfied the
requirements of the PSSH.

There was also trouble for the sym-
bolic hypothesis from another
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Goel devotes the first part of the
book to an excellent discussion of the
idea of representation in models of
thought. He starts with cognitive sci-
ence’s commitment to explaining
thinking as symbol manipulation,
specifically, symbol processing by
computation. He describes the subtle
distinctions between different ver-
sions of computational theories in AI
and cognitive science, in particular
between the PSSH in AI and the LOT
hypothesis in cognitive science. 

He identifies a set of properties—
the so-called CTM properties—that
the computational theory of mind, as
used in cognitive science and AI, is
necessarily committed to. Among
them are syntactic and semantic dif-
ferentiation, causally efficacious syn-
tax, right causal connections of the
underlying physical states, and unam-
biguity. These properties need a little
explanation. Consider the simple ex-
ample of marks on paper representing
symbols in some symbol system. Dif-
ferent marks on paper might all be
versions of the letter A. The marks are
tokens, and the type they denote is
the symbol A. A computer reading a
mark is in some physical state. There
is an equivalence class of physical
states (corresponding to all the possi-
ble marks for this symbol) that corre-
spond to this symbol. This equiva-
lence class of physical states, when
the device is a computer and viewed
as one, is also a computational state. 

The syntactic constraints in the list
of CTM properties refer to the marks
side. Causally efficacious syntax means
that the operation of the computa-
tional system is causally dependent
on the marks—different marks, po-
tentially different state transitions.
The syntactic disjointness criterion stip-
ulates that the equivalence class of
physical states–computational states
for each type of marks must be dis-
joint. Syntactic differentiation essen-
tially means we have distinct, not
continuous, physical-state equiva-
lence classes. Unambiguity means that
each equivalence class of physical
states–computational states always
denotes the same symbol whenever it
occurs during the process. Semantic
differentiation appears to be really as
much a constraint on the world to

which the computations actually re-
fer as it is a constraint on the compu-
tational system. Suppose computa-
tional state cs refers to apple, and cs’
refers to orange. Given an apple, we
should be able to say about it that it
is not an orange, and vice versa. This
is a constraint on the world because
it says something about how differen-
tiable the semantic categories in the
world are (with respect to some per-
ceptual repertoire). It is also a con-
straint on the computational frame-
work because we want to make sure
that the organization of computa-
tional states makes use of the differ-
entiability available in the world. 

As mentioned, computational
models of the sort AI pursues satisfy
these requirements. Goel argues that
systems with CTM properties are ap-
propriate for well-structured prob-
lems but fall short for some ill-struc-
tured problem spaces. For these kind
of problems, the disjointness and un-
ambiguity properties of CTM systems
actually stand in the way. He makes
his case for this claim by describing a
set of experiments that he ran on
designers and the representations
they used. First, a good deal of their
representations are pictorial in na-
ture, but he doesn’t make the com-
monly made claim that CTM systems
are good for propositional (or lin-
guistic) representations and poor for
pictorial ones. Instead, he makes a
subtler distinction between sketches,
which have quite a bit of vagueness,
ambiguity, and nondisjointness
about them, and representations,
pictorial or otherwise, which, in fact,
satisfy the CTM requirements. He
concludes from his experiments that
designers use sketches in an earlier,
more conceptual stage of the repre-
sentations, but their representations
tend to get closer and closer to CTM
properties as the design document
gets closer to delivery to the cus-
tomer. The diagrams and descrip-
tions in the delivered design docu-
ment have to be unambiguous and
disjoint syntactically and semantical-
ly disjoint as well. 

Before he gets to the description of
his experiments with designers, he
takes an interesting detour in which
he presents his version of Nelson

Goodman’s (1976) analysis of symbol
systems. This detour is motivated by
a need to understand the distinction
between so-called pictorial and pro-
positional representations. He finds
most of the previous writing on this
subject unsatisfactory. For Goel,
Goodman’s symbol system frame-
work offers an analytic framework for
rethinking the entire issue. The most
important aspect of Goodman’s sys-
tem is its identification of three
modes of reference, reference being
the issue of how a symbol refers to
objects or phenomena in the world.
The usual mode of reference is deno-
tation; a symbol denotes an object in
the world. Nelson adds two: (1) ex-
emplification and (2) expression. A
tailor’s swatch exemplifies certain
properties of the fabric—for example,
color and texture—by actually having
these properties. However, the manu-
facturer’s name printed on the swatch
refers to the manufacturer by denot-
ing. A swatch might represent
wealth: Someone who wears a suit
made of this fabric might be taken to
be rich by someone who looks at the
wearer. However, the “expensive-
lookingness” of the swatch is a meta-
phorical form of exemplification.
Goodman names this kind of refer-
ence “referring by expressing.” Good-
man felt, and Goel agrees, that we
would never be able to make cogni-
tive science give useful accounts of
cognitive activity such as painting
and music without the richer vocabu-
lary of reference available from the
Goodman system. Goel also suggests
that exemplification is an especially
important form of reference for un-
derstanding diagrammatic representa-
tions. CTM systems seem to be re-
stricted to denotation as the main
basis of reference, with some hope
that exemplification might eventual-
ly be included. 

Goodman uses five criteria to cate-
gorize symbol systems: Four of the
criteria are somewhat modified ver-
sions of the syntactic and semantic
disjointness and finite-differentiation
criteria that we considered earlier,
with a new one, semantic unambigui-
ty, constituting the fifth criterion.
Goel singles out 3 of the 32 categories
that result from these criteria: (1) no-
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tational systems, examples of which
are artificial languages such as a zip
code and a musical score; (2) discur-
sive languages, with natural lan-
guages and predicate calculus as ex-
amples; and, (3) nonnotational
systems, such as painter’s sketches,
paintings, and sculptures. Notational
systems meet all five criteria. A dis-
cursive language only meets the syn-
tactic disjointness and finite-differen-
tiation criteria but fail all the
semantic ones. Nonnotational sys-
tems meet none of the criteria. Al-
though the relationship of CTM crite-
ria to the Goodman criteria are clear,
from Goel’s discussion, it is not clear
where CTM systems fit into the clas-
sification. He seems, however, to
want to focus mainly on nonnota-
tional systems because he wants to
show that some of the external-repre-
sentation systems used by designers
are of this type. 

Goel makes what appears to me
unsatisfactory distinctions between
design and nondesign problems. Any
categorization in which a host of
problem types are herded under the
category non-X should be suspicious
as a way of carving up the world in
an illuminating way. Even though he
spends a lot of time on this issue, I
don’t think it is central to his basic
argument. All he needs to show is the
existence of one class of problems
where humans use representations
that don’t have CTM properties. In
any case, his experiments demon-
strate to him that designers’ sketches,
especially in the conceptual design
stage, are nonnotational, that is, non-
CTM. This aspect is not a bug but a
feature: The non-CTM properties play
a helpful role in the early stages of
design. For example, Goel notes,
“The failure of the symbol system to
be syntactically disjoint gives the
marks a degree of coarseness by al-
lowing marks to belong to many dif-
ferent characters. This is a necessary
condition for remaining noncommit-
tal about the character.…[Not being
syntactically finitely differentiable]
gives the marks a degree of fine-
grainedness by making every distinc-
tion count as a different character.
This reduction in distance between
characters is necessary to help trans-

form one character into another (p.
191),” and so on.  His characteriza-
tion of sketches suggests that sketch-
es need not be restricted to the picto-
rial domain. Any representation that
has inherent vagueness, ambiguity,
and nondisjointness but that is nev-
ertheless useful in some modeling
and thinking tasks is a sketch. 

Having argued that non-CTM sym-
bol systems are needed as external
symbol systems at least for some
problems, he claims, as a final move,
that the internal symbol systems
can’t all be CTM-like either. Simply,
there is no mapping that would go
from a CTM-like internal representa-
tion to non-CTM external representa-
tions, and vice versa. This argument
is somewhat complicated, but in
essence, it is as follows: Interpreting
syntactically undifferentiated or se-
mantically ambiguous marks as equi-
valence classes requires information
that is not present in the marks alone
but in the symbol system as a whole;
that is, just the mapping alone calls
for some sort of a cognitive agent,
begging the question of explaining
cognition. Lest connectionists think
that somehow their proposals for in-
ternal representation can then take
center stage, Goel argues that con-
nectionism is even less capable in
this respect than CTM representa-
tions. 

Where does all this leave the cog-
nitive scientist and the AI researcher?
Goel himself only addresses the cog-
nitive scientist in this book. He says
that his arguments speak not against
computationalism as such but against
the adequacy of a specific type of it,
namely, the CTM models. Perhaps
there is an account of computation
that will enable us to give a compu-
tational account of cognition inde-
pendent of the CTM properties. He
suggests that Smith (1996) in his re-
cent book is attempting something
of this sort. 

What about AI? Well, there are two
kinds of AI: There is the AI that
thinks that current ideas of computa-
tion and computational models are
basically all that is needed to enable
us to build machines that have cogni-
tive and robotic behaviors essentially
coextensive with those of humans.

This wing of AI will not take kindly
to the conclusions in this book, al-
though even they can learn quite a
bit about the foundational issues in
representation. The AI that wants to
keep on building smarter and smarter
artifacts using current ideas while
seeking ways to extend them—that
is, the wing of AI that regards itself as
having a commitment to the prob-
lem rather than to a particular meth-
od of solution—will be less likely to
object to the book’s conclusions.
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