
■ Efficient indexing schemes have influenced the
acceptance of production systems in the industri-
al world. However, in embedded-control systems,
production systems have not been applied inten-
sively because of their nondeterministic run-time
behavior. Thus, nonpredictability of response
times is a major obstacle to the widespread use of
expert systems in the real-time domain. The RETE

and TREAT algorithms and their offspring play a
major role in the implementation of efficient pat-
tern-matching systems. Therefore, it is worth-
while to investigate run-time predictability for
these match algorithms. This article presents
three different schemes for estimating the time
needed for operations in the production-system
execution model.

Engineers have recently been combining
control theory, real-time systems, and
AI. Such systems are considered intelli-

gent when they are able to perform complex
actions in response to the sensed environ-
ment. In intelligent real-time systems, there is
a trade-off between acting and reasoning.
Time is a valuable resource that is lost when
the system must reason about actions before
performing them. 

Reasoning and, thus, search can be per-
formed on two levels: the problem-space level
and the knowledge base level (Tambe and
Newell 1988). With the problem-space level,
the question is how to find a sequence of
operations that map an initial state to a goal
state. Usually, a sequence of steps is required
to find the goal state. If more than one opera-
tor is applicable to a state, search is required
to select the best one. This search can be
applied on the knowledge base level by, for
example, production systems that browse
through the available knowledge that is appli-

cable in a specific state. Because these produc-
tion systems constitute an integral part of an
intelligent real-time system, they must fulfill
stringent timing requirements. They are not
candidates for integration into real-time sys-
tems when run time cannot be predicted
(Stankovic and Ramamithram 1990).

In the real-time domain, we distinguish
between hard and soft real time. In a hard
real-time system, schedulers rely on determin-
istic tasks to guarantee results before specific
deadlines are encountered. Thus, run-time
prediction of tasks is necessary to match these
deadlines. In contrast, a soft real-time system is
designed so that a missed deadline can be
accepted.

The motivation for this research was driven
by the safety bag expert system (Klein 1990),
an embedded control system for railway
switching that is used in the railway stations
of three European countries. Parts of the con-
trol system are implemented in PAMELA (Bara-
chini 1991), an expert system shell providing
an optimized RETE (Forgy 1982) algorithm.
Years ago, a request came from the railway
authorities for a system that could guarantee
a reasonable worst-case match time for a
peripheral request. This requirement is under-
standable because in typical real-time sys-
tems, scheduling is mostly based on worst-
case execution times of the tasks involved.
Only the theoretical worst-case behavior of
the match could be presented as an answer to
the railway authorities. The fundamental
problem with production systems is that the
worst-case execution time is often orders of
magnitude larger than the average-case execu-
tion time. A proof also showed that the
match is NP-hard (Tambe, Kalp, and Rosen-
bloom 1991; Barachini 1990). Obviously, this
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Related Work
Besides the methods proposed, I can identify
three other possible methods of meeting cer-
tain deadlines. 

First, the tuning of applications is a com-
mon technique used by designers to meet
and verify timing constraints. Although it is
well known that high performance does not
mean real time, engineers tend to speed up
applications to meet certain deadlines. How-
ever, this method is promising only when a
complete simulation of the process periphery
is available. Speedups can be achieved by
optimizing the existing match algorithms
(Miranker et al. 1990; Schor et al. 1986)
according to the needs of the application;
using higher-performance chips; or applying
parallel, special-purpose hardware to increase
the performance of the match (Bahr et al.
1991; Gupta and Tambe 1988; Kelly and Sev-
iora 1987). However, speedup of the match is
limited to a magnitude of 40 (Gupta 1986).
The next step then would be to exploit paral-
lelism on the rule-and-task level (Ishida 1991;
Harvey et al. 1989). An alternative is to apply
totally new match algorithms, such as collec-
tion match (Acharya and Tambe 1993), which
shows large time improvements over classical
RETE implementations. Although in practice,
most of the performance problems can be
solved by engineers using one of these alter-
natives, these alternatives do not solve the
run-time prediction problem. 

Second, the approach by Ishida, Gasser,
and Makoto (1992) improves the ability to
build production systems that can adapt to
changing real-time constraints. The approach
extends parallel production systems, where
global control exists, into distributed produc-
tion systems, where problems are solved by a
society of agents using distributed control.
Adaptive work allocation is provided by
introducing special reorganization primitives
that control the size of the agent population
and the resource allocated to each agent. 

The third possibility is the idea to limit
match complexity as presented by Haley
(1987); Wang, Mok, and Cheng (1990);
Tambe and Newell (1988); Paul et al. (1991);
and Tambe, Kalp, and Rosenbloom (1991).
Haley and Wang try to put limits on the
amounts of data approaching the expert sys-
tem. Tambe’s UNI-RETE shifts match combina-
torics from knowledge search to problem-
space search. Paul et al. designed a real-time
architecture that is implemented on top of
CPARAOPS5. This architecture uses data parti-
tioning and redirection of token streams to
achieve small execution-time variances. 

answer was unsatisfactory to the railway
authorities. 

To have an indication of whether a dead-
line will be met, match-time predictability is
a necessity for real-time applications such as
the safety bag expert system. This necessity is
justified because most of the overall run time
of the safety bag system is used in the match
phase. However, the safety bag system is
designed so that it can be interrupted at any
time by the process periphery. These inter-
rupts are only scheduled at specific preemp-
tion points in the right-hand side of rules.
Therefore, a preemption point is the only
position where peripheral events are handled.
In PAMELA, a preemption point is set before
and after each basic action (make, change,
remove). Between preemption points, inter-
rupts are queued. Thus, for the electronic
interlocking system, it is important to know
how long the match will take and how much
time until the next preemption point is
encountered. Therefore, match-time predic-
tion with fine granularity is an issue for the
safety bag production system. The pre-
dictability of the points of preemption would
allow us to estimate a priori the time required
to react to peripheral events. When this time
exceeds certain deadlines, the entire match
can be postponed, or emergency strategies
can be executed. 

In this article, I investigate the predictabili-
ty of the time needed to perform a basic
action and the time needed to perform all
basic actions of a rule. Although the right-
hand side of a rule might include statements
other than basic actions, the presented meth-
ods (microlevel reasoner, upper bound, and
extended upper bound) deal with match-time
prediction only. 

The time for the execution of a basic action
determines the granularity at which inter-
rupts can actually be handled. This time is
known in the literature as the responsiveness
of a system. I show that realistic upper
bounds for basic actions can be calculated a
priori. This calculation is a prerequisite for
hard real-time systems. Additionally, I show
that reasonable approximations of run time
for complete right-hand sides can be predict-
ed by one of the methods. The prediction of
approximations is a prerequisite for soft real-
time systems, where no guaranteed answering
times for particular events are required but
where an estimation of the average time for a
typical request is required. Not restricted to
RETE, the presented methods can also be
applied to TREAT (Miranker 1990), although in
this article, I only discuss RETE networks. 
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Basics
A production system consists of a rule set,
called the production memory, and a database
of assertions, called the working memory. Each
rule consists of condition statements, the left-
hand side, and a set of actions, the right-
hand side.

The right-hand side specifies information
that is to be added to, or removed from, the
working memory. There are three possible
basic actions in the left-hand side. Make adds
a new working-memory element to the work-
ing memory. Remove deletes an existing work-
ing-memory element from the working mem-
ory. Modify modifies an already existing
working-memory element. Each working-
memory element corresponds to a certain
type of data, called its working-memory type.
Each right-hand side consists of one or sever-
al basic actions. 

The production system repeatedly performs
the so-called recognize-act cycle. During this
cycle, a right-hand side is executed, leading
to a match phase that determines a conflict
set of satisfied rule instantiations. The con-
flict set resolution procedure selects one rule
to be fired, and the act procedure executes
the right-hand side.

The RETE algorithm maps the left-hand
sides of rules to a discriminating data flow
network. The data elements flowing through
this network are called tokens. When a work-
ing-memory element is added to, or removed
from, the working memory, a positive-tagged
token (plus token) or a negative-tagged token
(minus token) representing this action is
passed to this data flow network. There are
different node types available in this net-
work. The constant condition tests are per-
formed at so-called one-input nodes, and
matched tokens are stored in alpha memo-
ries. Copies of matched tokens are sent to
successor nodes. Typically, the most run-
time–intensive node is a two-input node.
Tokens arriving at two-input nodes are com-
pared with the tokens stored in the opposite-
token memory. Successfully joined tokens are
then resent to a successor node. In this man-
ner, tokens flow through the network until
they arrive at the end node. If one token
arrives at the end node, an instantiation
enters the conflict set. For a more detailed
description of the RETE algorithm and pattern
matching, see the example in the sidebar.

Predictability Issues
In most production-system languages, basic
actions are indivisible subtasks. Whenever an

interrupt that is modifying working-memory
contents rises during the match phase, it can-
not be handled immediately (Barachini and
Theuretzbacher 1988). For the sake of consis-
tency, it must be postponed and can only be
executed after the completion of the current
action. In PAMELA, at the end of each basic
action, the system reaches a so-called preemp-
tion point. At this preemption point, any
interrupt is handled that might have arisen
since the previous preemption point. As
explained for the safety bag production sys-
tem, the time required for an action is partic-
ularly crucial because it represents the time
that the system needs to react to an external
interrupt. 

The run time for a rule’s right-hand side
represents the time for a complete rule firing.
Predictability at this level enables the system
to determine whether the rule can be execut-
ed within an allocated time frame.

The most general level is predictability at
the expert system level. This level is impossi-
ble for interrupt-driven expert systems that
are part of a process control system because
facts are created and modified dynamically by
peripheral events. The behavior of the
periphery can hardly be forecasted in any
industrial environment. Therefore, only lim-
ited assertions can be made about rule-firing
sequences. I show that run-time prediction of
embedded expert systems can be performed
with finer granularity, but I believe that it
will never be achieved on the expert system
level in a tractable manner. 

An obvious approach to run-time pre-
dictability is profiling the quantities that one
wants to predict. However, several tries with
different match algorithms showed (Barachi-
ni, Mistelberger, and Gupta 1992) that execu-
tion times of basic actions or complete right-
hand sides cannot be used as a basis for
run-time prediction. The first kind of mea-
surement my colleagues and I performed was
the investigation of run-time behavior used
by plus or minus tokens for specific working-
memory types over all fired rules. A huge
variance over these activations can be found.
This variance is also true with other expert
systems. Thus, we cannot rely on these mean-
ingless data for run-time prediction. To find
meaningful data, we restricted ourselves to
the study of run time required for a working-
memory–element action of a particular work-
ing-memory type but, in this case, only in
the scope of a specific rule’s right-hand side.
Unfortunately, the measurements showed
that this time was also rather irregular. It
highly depends on the number of actions
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VAHINE, a production system with 55 rules (by
Alcatel RC) that advises road maintenance in
winter for given weather conditions; and (4)
CARS, a production system with 62 rules (by
Alcatel RC) that dynamically maximizes traf-
fic throughput on a network of roads and
crossings. 

CARS is a typical real-time production sys-
tem in the sense that it continuously gathers
data from the periphery through interrupts
and polling mechanisms. It is especially time
critical because it has to react immediately to
traffic congestion. Although VAHINE and CARS

are only medium sized with respect to the
number of rules, they were selected because
they use vast amounts of data produced by
the process periphery. Thus, the size of their
working memory represents a fruitful play-
ground for the investigation.

The Microlevel 
Reasoner Method

The microlevel reasoner is a method that esti-
mates match time for individual basic actions
on the token level. The method relies on sta-
tistical data dynamically gathered at the node
level of the RETE network. 

At the beginning of its flow through the
RETE network, the token filters through one-
input nodes. Only a small fraction of run
time is spent during one-input–node treat-
ment (Gupta 1986), which is even true for
systems dealing with a large working memory
because optimized search techniques, such as
hashing, can be applied. Therefore, worst-case

performed in the network, that is, on the
number of matches and the number of inser-
tions and deletions. For example, in the RUBIK

benchmark, the rule Sequence_5 has a simple
right-hand side, consisting only of one make
statement for the working-memory type goal.
Figure 1 shows the evolution of the time
required for the right-hand–side firing of this
rule. It was fired seven times during the exe-
cution of a specific cube configuration. In all
cases, the execution-time variance was too
high to be useful. These discouraging results
are general in nature. They hold for OPS-based
(Cooper and Wogrin 1988), as well as PAMELA-
based, expert systems, irrespective of their
implementation method. Therefore, in con-
trast to classical approaches where pre-
dictability is verified with pre–run-time pro-
filing methods, such methods are not
promising for production systems reacting to
continuously changing environments.

Benchmarks
The three presented run-time prediction
methods were applied to different production
systems: a pool of toy problems and 7 indus-
trial systems, ranging from 29 to 250 rules.
All the methods showed similar behavior. I
present representative results of two toy and
two applied systems: (1) EMAB, the monkey
and bananas production system written by
the National Aeronautics and Space Adminis-
tration in an extended version with 29 rules;
(2) RUBIK, a production system with 71 rules
that solves the Rubik’s cube by J. Allen; (3)
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run time, which is linear in the number of
incoming tokens for the one-input–node net-
work, is small compared to overall match
time. This upper bound can easily be calculat-
ed with the assumption that no filtering takes
place in one-input nodes. I assume an imple-
mentation in which tokens of one working-
memory element of a right-hand side are
gathered at the end of one-input–node
chains. The one-input nodes are treated first,
and then the estimation task begins. Thus,
the exact number of tokens entering the two-
input–node network is known.

The token flow in the network is character-
ized by several elementary operations. In a
two-input node, each incoming token is com-
pared with every token from the opposite
memory. For each successful match, one new
token is created and stored in the input mem-
ory of the successor. To estimate the time
spent in a particular node during a token
treatment, the following amounts are impor-
tant: (1) the number of tokens entering the
node, (2) the time required for one token
insertion into a token memory, and (3) the
time required for a match.

All relevant token numbers for a specific
token (for example, the number of new
tokens produced by a two-input node) have
to be estimated before actual matching starts.
Because of the worst-case combinatorial
behavior of RETE and TREAT, it is not feasible to
estimate these numbers only by evaluating
the largest theoretical number of tokens that
could flow through the network. Most of the
time, this upper bound would be too large to
be of any significance.

For the two-input nodes, the estimation is
based on the implementation of a token flow
ratio pk in each two-input node (see figure 2).
The factor pk represents the probability for a
successful match at node k when a token is
compared with another. This probability fac-
tor pk is updated after each performed token
treatment.

For the estimation, the following numbers
are used: (1) Vk, the number of matches at
node k; (2) mk, the number of tokens in the
right memory of node k; (3) nk, the number
of tokens in the left memory of node k; (4)
δmk, the number of plus tokens entering the
right memory of node k; (5) δnk, the number
of plus tokens entering the left memory of
node k; and (6) pk, the probability for a suc-
cessful match at node k.

For tokens entering the right memory of
node k, we get

Vk = nk * δmk (1)
and

δnk+1 = pk * Vk (2)
for a two-input node and

Vk = nk * δmk (3)
and

δnk+1 = 0 (4)
for a not node. For tokens entering the left
memory of node k, we get

Vk = mk * δnk (5)
and

δnk+1 = pk * Vk (6)
for a two-input node and

Vk = mk * δnk (7)
and

δnk+1 = (1 – pk)mk * δnk (8)
for a not node.

Note that equation 4 does not mean that
no tokens are actually created in the RETE net-
work. It only means that those possibly creat-
ed tokens are negative tokens; therefore, I do
not take them into account because of
PAMELA’s special minus-token treatment (Bara-
chini 1991). Compared to the positive-token
treatment, the negative-token treatment is
cheap because no rematch is performed. Also,
note that for hash table–based memory
implementation, formulas 1 to 8 must be
implemented for each hash table bucket. The-
oretically, the estimation results would be
more precise. In contrast, the hash function
must be evaluated for each token to find the
correct buckets. The simulation of the execu-
tion time of the hash function puts too much
overhead into the estimation algorithm.
Thus, there is great evidence that the present-
ed methods are useful only for list-based
implementations.

Using formulas 1 to 8, one can estimate the
number of tokens that will be created in the
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action, a simulator was implemented, which
computes the time that it would take on a
T800 transputer. This method has the advan-
tage of being able to vary the values of the
match time and study their influence on the
quality of the prediction.

For reasons of statistical significance, I only
present the results for those of the working-
memory types appearing sufficiently often
during the expert system execution. Tables 1
through 4 display the averages and the vari-
ances of the ratio of real time to estimated
time for each of the applications. The results
in tables 1 through 4 show a fairly small vari-
ance, allowing us to expect in most cases an
error lower than a factor of 2. 

Figure 3 provides more relevant informa-
tion. It shows the distribution of the ratio of
real time to estimated time for a so-called
context switch. A context switch usually invali-
dates many already-performed matches and
initiates abnormal match activities in the net-
work. In this case, match-time prediction is
especially hard to perform. However, even in
such cases (see figure 3), the microlevel rea-
soner method evaluates meaningful results.

Figure 3 shows that about 50 percent of the
time, the ratio (real time to estimated time) is
between 0.9 and 1.1. It also shows that even
in the worst case, for 80 percent of the time,
the ratio is between 0.1 and 10.0, and 60 per-
cent of the time, it is between 0.5 and 2.0.
Even in the worst case, the result is still
acceptable for soft real-time systems. 

An interesting context switch occurs with
the goal working-memory element in RUBIK.
Although in this case, the variance was not
small (table 2), a match time with a precision
better than 10 percent is predicted by the
microlevel reasoner method more than 90
percent of the time. 

In all other cases where a basic action does
not correspond to a context switch, the run-
time prediction is even more accurate. This
accuracy is expressed by the small variances
of the corresponding working-memory types
in tables 1 through 4.

The microlevel reasoner method works for
complete rules in the same manner as for sin-
gle basic actions, except that the tokens of all
working-memory–element actions belonging
to one right-hand side are gathered at the end
of the one-input–node chains before the esti-
mation task starts. As a typical example, I
chose the right-hand side of RUBIK’s rule
minus_90. The right-hand side consists of 21
change statements.

Figure 4 shows the actual (simulated) run
time versus the estimated run time. Although

network. To estimate the time required for
the plus-token treatment, the time for an
insertion in a token memory and the time for
a match on a T800 transputer (Bahr et al.
1991), with a precision of 1 ms, were mea-
sured. The following measurements were per-
formed:

First was 5 µs for a match invoking a sim-
ple equality test, which is the most common
situation. However, because PAMELA offers the
ability to call a C function within the test, the
time for a single match can be significantly
longer. Thus, we also have to make our pre-
dictions with larger match times.

Second was 50 µs for an insertion in a right
token memory. This time does not depend on
the node or the token, whose length is always
one in a right memory.

Third was (50 + 6*L) µs for an insertion in a
left token memory, where L is the left token’s
length. (L actually means the number of
working-memory elements that L consists of.) 

The microlevel reasoner method estimates
the number of actions to be performed in the
network (matches and insertions). The esti-
mated number of actions is calculated by
assuming a hypothetical match. During this
action, the two-input–node checks are not
performed because the calculation is based on
equations 1 to 8, considering only statistical
token flow ratios. As a result, we get the num-
ber of estimated actions in the network
before a token starts traversing the network.
By multiplying the number of estimated
actions with the average run-time measure-
ments presented earlier, we get the estimated
match time for the whole next basic working-
memory–element action. Working-memory
element–type specific features are not taken
into consideration. 

Results of the Microlevel 
Reasoner Method

The run-time prediction adds some burden to
the whole execution time of the expert sys-
tem. However, compared to match time, this
additional time is small. On the transputer-
based system, 50-µs run-time overhead must
be taken into consideration for each affected
two-input node. This number represents the
overhead for calculating the time for the next
action, including the overhead for updating
the internal counters. The complexity of the
method is linearly dependent on the number
of affected nodes for each basic action. 

The measurements presented in this sec-
tion were performed in the following way: By
using the time required for each elementary
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the estimated run time deviates slightly from
the actual one, the estimation models the
run-time behavior well. For all rules of the
production systems tested, a notable corre-
spondence between real and estimated rule-
execution times was observed. In those cases
where the right-hand side contains a context
switch working-memory element, the accura-
cy of the prediction is severely reduced. This
accuracy is also reduced for systems using
deep networks because errors in the estima-
tion of successful matches are amplified as
one moves down the network. This reduction
in accuracy is another reason that the
method does not work well with RUBIK. The
microlevel reasoner method does not provide
either an upper or a lower bound on the
amount of time required because the input-
output ratios of tokens for two-input nodes
vary and represent estimations only. There-
fore, the method is not applicable to hard
real-time systems.

The Upper-Bound Method
For hard real-time systems, the upper-bound
method was designed. The idea behind this
method is to classify the tokens stored in beta
memories in a way that facilitates the predic-
tion of the number of matches. In contrast to
the microlevel reasoner method, the upper-
bound method always calculates an upper
bound of the number of matches.

The upper-bound method classifies inter-
esting attributes, that is, those that are tested

when a token arrives at the opposite memory
of a node. As shown in figure 5, we assume
that a two-input node receives tokens of
working-memory type <A> on the left and
tokens of working-memory type <B> on the
right. It is further assumed that the node
compares the attribute field_a1 of the left
incoming tokens with the attribute field_b1
of the right incoming tokens. The left memo-
ry contains n tokens of type <A>. When a
token of type <B> arrives, the value of its
attribute field_b1 is known. In the worst case,
the two-input–node condition would be test-
ed n times, comparing the complete left
memory with token <B>. This comparison
could theoretically yield n new tokens. How-
ever, if knowledge of the exact values of the
attribute field_a1 of the tokens stored in the
left memory would be available, a maximum
number of generated tokens much smaller
than n could be deduced. The upper-bound
method gains this information and partitions
node memories into intervals. In my exam-
ple, a token referencing a field_a1 value
would be assigned to a specific interval. Only
tokens belonging to this interval are subse-
quently compared with the corresponding
approaching token <B> from the opposite
memory. 

One can imagine that this partitioning is
performed recursively down the network for
each two-input node. When the prediction
starts, the upper-bound method knows which
tokens from which interval to compare with.
Theoretically, in RETE’s worst case, one would
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constant value. Nb-nodes represents the num-
ber of affected nodes for each recognize-act
cycle. This number depends on the nature of
the production system but usually is small.
Therefore, to perform a rapid prediction, the
number of intervals should also be small.
Having a lot of intervals allows the comput-
ing of a good upper bound but at the cost of
increased time. A compromise must be found
between the quality of the prediction and its
run-time complexity. 

Table 5 represents the averages and the vari-
ances of the ratio (numbers of comparisons
performed to numbers of comparisons pre-
dicted) for all basic actions of one application.
Note that the upper-bound method calculates
upper bounds; therefore, the averages are
smaller than 1. Compared to the microlevel
reasoner method, the quality of the prediction
is worse, but it is still better than the theoreti-
cal worst case would lead us to expect. 

The Extended–Upper-Bound
Method

With the upper-bound method, the classify-
ing intervals are defined at compile time. This
solution has some drawbacks. First, it is not

assume that every token stored in the oppo-
site memory is a candidate for the match.
The upper-bound method reduces the candi-
date set by taking only the tokens of the cor-
responding interval from the opposite memo-
ry into consideration. It is important to note
that the upper-bound method does not only
work for integer attributes but also for float
and character string attributes.

Results of the 
Upper-Bound Method

The following formula constitutes a metric
for the run-time complexity of the estimation
task itself:

run-time upper bound 
= (K1 * Nb-intervalsNb-nodes

+ Nb-nodes log Nb-intervals)  . (9)

The first term represents the complexity of
the algorithm performing the actual match
prediction. The second term represents the
complexity of the algorithm classifying each
token in its proper place. Nb-intervals is the
number of intervals used in the upper-bound
method to classify the tokens in one memory
according to one compared attribute. K1 is a
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WMT monkey goal object

µ 0.99 1.02 1.03

σ 0.14 0.69 0.19

WMT bot–cor cub–ord face fr–face face–rel goal sou task

µ 1.00 1.03 1.05 1.30 1.00 1.90 0.98 1.00

σ 0.98 0.89 0.88 1.78 0.00 8.82 0.37 0.00

WMT action alarm clock message sensor weather

µ 1.03 1.00 0.99 0.99 1.06 0.92

σ 0.04 0.00 0.00 0.00 0.03 0.03

WMT time car cross

µ 1.05 0.93 0.97

σ 0.03 0.01 0.01

Table 1. The Averages and the Variances of the Ratio of Real Time to Estimated Time for the EMAB Application

Table 2. The Averages and the Variances of the Ratio of Real Time to Estimated Time for the RUBIK Application 

Table 3. The Averages and the Variances of the Ratio of Real Time to Estimated Time for the VAHINE Application

Table 4. The Averages and the Variances of the Ratio of Real Time to Estimated Time for the CARS Application

(WMT = working-memory type, µ = average, σ = variance)



easy, even for the application programmer, to
find the right number of intervals and their
correct boundaries. Second, a static interval
definition is not sufficient to guarantee an
equal distribution of the tokens. 

In contrast to the upper-bound method,
the extended–upper-bound method takes
into consideration that intervals can be rear-
ranged dynamically during the run time of
the expert system. In the best case, intervals
can be rearranged in such a way that there is
exactly one token for each interval. This
arrangement corresponds to the unique-
attribute representation used for the UNI-RETE

(Tambe 1991) algorithm. In this sense, the
extended–upper-bound method is a general-
ization of the unique-attribute representa-
tion. However, in practice, more than one
token will correspond to one interval because
it is run time intensive to rearrange the inter-
vals after each basic action. Also, when work-
ing-memory elements hold exactly the same
value for join attributes, the tokens are kept
together. In general, there is a trade-off
between the numbers of intervals and the
quality of the prediction. 

In theory, we expect better results by classi-
fying intervals dynamically during run time.
The nonempty token memories have to be
reclassified after having computed the new
interval definitions. In practice, it is unwise
to recalculate new interval boundaries after
each basic action: This process is time con-
suming because tokens have to be reassigned
to intervals. The extended–upper-bound
method was tested after each basic action was

reclassified, after 10 basic actions, and after
50 basic actions.

The number of tokens in an interval could
either be constant or variable. Different
experiments were performed, such as storing
in one interval, at most, the square root of
the total number of tokens contained in the
token memory. Obviously, the best results
can be obtained by limiting the number of
tokens to one, as shown in table 8. This limi-
tation corresponds exactly to the unique-
attribute representation used in some SOAR

(Laird, Newell, and Rosenbloom 1987) appli-
cations.

Table 6 shows the quality of the prediction
when the intervals are updated after each
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dynamic behavior of the presented algo-
rithms. Figure 6 shows the quality of the pre-
diction in a certain time frame for the VAHINE

expert system. The dashed line represents the
actual performed comparisons in the net-
work. The solid line shows the number of
comparisons performed by the upper-bound
method. The dotted line represents the num-
ber of comparisons predicted by the extend-
ed–upper-bound method. For this example, it
can be observed that the extended–upper-
bound method calculates upper bounds that
are significantly better than those calculated
by the upper-bound method. However, in
general, the extended–upper-bound method
is not much better than the upper-bound
method and never justifies the run-time over-
head caused by dynamic boundary search
and the reclassification of intervals. The fol-
lowing formula constitutes a metric for the
complexity of the run-time estimation task
itself:

run-time extended upper bound 
= (K1 * Nb-intervalsNb-nodes

basic action and when, at most, the square
root of the total amount of tokens in the cor-
responding token memory is considered. The
same holds for table 7, but this table reveals
worse behavior because the reclassification is
performed regularly after 10 basic actions. 

For RUBIK, the prediction is not as good as it
is with the other expert systems. The average
is poor compared to the microlevel reasoner
method. Also, the extended–upper-bound
method performs worse than the upper-
bound method in this case. There is one com-
mon reason for this behavior. The previously
described strategy to split intervals into two
equally sized intervals is especially disadvan-
tageous for RUBIK because working-memory
data are clustered in certain intervals. Thus, it
costs many recognize-act cycles until the
method generates sufficiently small intervals.
In contrast, the user could determine optimal
static intervals when the semantics of the
application and the distribution of the work-
ing-memory elements are exactly known. 

The tables presented so far don’t show the
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Application EMAB CARS RUBIK VAHINE

µ 0.89 0.77 0.18 0.62

σ 0.30 0.30 0.20 0.50

Application EMAB CARS RUBIK VAHINE

µ 0.72 0.79 0.01 0.69

σ 0.41 0.28 0.26 0.50

Application EMAB CARS RUBIK VAHINE

µ 0.70 0.78 0.005 0.61

σ 0.41 0.28 0.38 0.50

Application EMAB CARS RUBIK VAHINE

µ 0.86 0.82 0.01 0.71

σ 0.08 0.27 0.22 0.47

Table 5. Quality of Run-Time Estimations for the Upper-Bound Method.

Table 6. Results of the Extended–Upper-Bound Method When Updating the Intervals after Each Basic Action.

Table 7. Results of the Extended–Upper-Bound Method When Updating the Intervals after 10 Basic Actions.

Table 8. Results of the Extended–Upper-Bound Method When Updating the Intervals after Each Basic Action, Limiting
the Content of Each Interval to One Token.

µ = average, σ = variance



+ Nb-node log Nb-intervals
+ Tcalc)  .  (10)

Note that the complexity is similar to the
upper-bound method but enhanced with
Tcalc. This factor represents the time that is
needed to find new meaningful boundaries
and reorganize all memories according to
these boundaries. It is exactly this action that
makes the extended–upper-bound method
run time intensive.

Discussion and Practical Impacts
I think that for researchers and practitioners,
it was important to discover the limits of
what is feasible in the area of run-time predic-
tion for production systems. I showed that in
principal, production systems can meet dead-
lines with fine granularity by using the upper-
bound or the extended–upper-bound method.
The time for the execution of a basic action
can be predicted with these two methods.
Hence, the granularity at which interrupts
can be handled can be determined, and thus,
predictability can be guaranteed. As a practi-
tioner, I advocate cautious use of the two
methods because it might happen that more
central processing unit time is used for the

estimation algorithms than for the match
itself. Indeed, both methods are exponential
in the number of affected nodes. Recent
experiments have shown that this danger can
be reduced for the upper-bound method by
selecting only a few intervals or knowing the
size and the distribution of working-memory
elements in the working memory. However, to
use these methods requires good knowledge of
the production-system application. Although
the upper-bound application is useful for
many applications, the extended– upper-
bound method cannot be applied frequently
because its run-time estimation algorithm con-
sumes more central processing unit time than
the match phase for systems where more than
10 nodes are affected in a match. This con-
sumption is because the boundary search and
the dynamic reclassification of intervals are
too costly. Nevertheless, for learning systems
such as SOAR, the extended–upper-bound
method could be used to search for boundaries
on newly added rules, provided that the cre-
ation of new identifier symbols could be han-
dled. Once these boundaries are established,
the system could continue with the upper-
bound method. The extended–upper-bound
method would then only be applied once after
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The basic principles of production
systems are shown. Based on one
rule from the railway-switching

domain, I describe the RETE implementa-
tion in its simplest form, with no opti-
mizations. 

Figure 1 shows the so-called recog-
nize-act cycle of a production system.
The boxes indicate actions, and the
ovals represent placeholders for struc-
tures in the memory. The left-hand sides
of rules are stored in the rule oval,
known in the literature as the production
memory. The production memory repre-
sents the long-term memory. Typically,
the production memory is not updated
often, except in systems where learning
of production is required. 

The facts are stored in the fact oval,
known in the literature as the working
memory. The working memory repre-
sents the short-term memory. It is
updated frequently during the execution
of a production system. Access to work-
ing memory is allowed by well-defined
functions only. There are three func-
tions, called the basic actions, defined
for working-memory access. The make
action adds a new working-memory ele-
ment to working memory. The remove
action deletes an existing working-mem-
ory element from working memory. The
modify action modifies an already-exist-
ing working-memory element. The
actions are typically defined in the right-
hand side of a rule. The make action can
also be written outside rule scopes. 

The working memory can also be
regarded as a database and the produc-
tion memory as a collection of queries
acting on this database. Hence, the rule
language actually can be regarded as a
database query language. Whenever the
working memory is modified, all the
rules that are affected by this modifica-
tion are searched. This search step is per-
formed in the pattern-matching phase.
More precisely, those patterns in the
left-hand side of rules that are affected
by the working-memory modification
are searched. As a result, the pattern-
matching phase produces a conflict set
that contains all rule instantiations that
are satisfied by a given working-memory
content. In the next step of the recog-
nize-act cycle, a rule instantiation from

the conflict set is selected to be execut-
ed. The most important rule instantia-
tion of the conflict set is selected so that
its right-hand side can be fired (execut-
ed). The importance of a rule instantia-
tion is determined by a conflict set pro-
cedure. Different conflict set procedures
and strategies exist for different rule lan-
guages. 

Once a rule instantiation is selected, it
is ready to fire, and it usually modifies
the working memory so that the recog-
nize-act cycle starts again from the
beginning. The recognize-act cycle stops
when the conflict set is empty; other-
wise, it cycles indefinitely. Thus, endless
loops can be programmed, as in other
conventional languages. The key point
in the recognize-act cycle is the imple-
mentation of the pattern-matching
phase because during this phase, all left-
hand sides of rules must be compared
with all facts in the working memory.
This task is typically run time intensive.
It is performed by the RETE algorithm,
which uses a special kind of discriminat-
ing data flow network. 

Figure 2 shows the left-hand side of a
simple rule. In the right-hand side, we
assume statements that are connecting
railroad cars to a specific locomotive.
The locomotive has specific properties.
Its weight must be greater than 100, and
it must be an electric locomotive that is
not in use. Moreover, the track width of
the locomotive corresponds to Western

European standards. All these properties
are formulated in the first pattern P1 of
Rule_1. Only those railroad cars having
smaller weight and height and sharing
equal track width can be attached to the
locomotive. These properties are formu-
lated in the second pattern P2 of the
rule. The corresponding data flow net-
work of the left-hand side is shown in
figure 3. 

Basically, the RETE network consists of
two types of nodes. The test nodes (rect-
angle in figure 3) indicate tests that
should be executed to determine
whether particular conditions are
matched by a set of working-memory
elements. The memory nodes (ovals) are
used to store information on partial pro-
duction matches.

I distinguish between two types of test
nodes: those having only one arc as
input, the so-called one-input nodes
that test intraelement conditions, and
those with two arcs as input, the so-
called two-input nodes that test interele-
ment conditions. I also distinguish
between two types of memory nodes.
The left memory of a two-input node
always contains information (tokens)
that match the first n conditions of a
rule, and the right memory contains
tokens matching the (n + 1) condition of
a rule. The left memory and the right
memory are attached to two-input
nodes and are called alpha memory when
they appear at the end of one-input

Explaining the RETE Network …

Figure 1. Classical Recognize-Act Cycle.
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nodes or beta memory when they appear
after two-input nodes. 

Whenever a fact (working-memory
element) is added or deleted from work-
ing memory, a token containing the
working-memory element is sent to the
root node. The root node sends the
token to all the successor nodes. It is
then tested if it fulfills the property
checked in the one-input nodes. In case
of a positive test, it is sent to the succes-
sor nodes; otherwise, it is discarded.
When a token enters a two-input node,
it is first stored in its corresponding left
or right memory. If a token from the left
memory and a token from the right
memory fulfill all two-input–node con-
ditions, the two tokens are joined to
form a new one. This new token is sent
to the next node. Any token that filters
down to an end node (rule_1) indicates
an instantiation of the production, which
means the rule will be taken into consid-
eration during the conflict-resolution
phase. In the presented example, rule
instantiations of type rule_1 are stored
in the conflict set. In case of a third pat-
tern, the conflict set would form a new
left memory.

Negated conditions, which are not
presented in the example, are handled
by not nodes. The not node maintains a
counter for each token that has entered
the left memory. This counter represents
the number of consistent tokens in the
right memory. If the token that has
entered the left memory ever becomes
consistent with one of the tokens in the
right memory, then this token can be
sent to the successor node. If the
counter of a token changes from zero to
nonzero, then this token no longer rep-
resents a match, and all previously
joined tokens must be removed.

Let us assume that somewhere outside
in the production-system program, a
working-memory element of type loco-
motive with the following properties is
created: thrust = 120, in_use = false, type

= electric, height = 4, and track_width =
WEU. As previously explained, this
action is performed with a make state-
ment. A token of type <+, locomotive> is
sent to the root node. The + tag indi-
cates that working-memory element
locomotive has been added to working
memory. The token is sent from the root
node to the two successor nodes. One
successor node (the railroad car node)
discards the token because the test in
the node does not correspond to the
content of the token. The other succes-
sor node accepts the token and sends it
on to the next one-input node. All the
subsequent one-input nodes accept the
token; therefore, it is stored at the end
of the one-input–node chain in the left
memory. After arriving at the left memo-
ry, the two-input node compares the
token with all tokens in the opposite
right memory and checks whether the
intraelement conditions are fulfilled. In
the example, there is no token in the
opposite right memory; therefore, there
is nothing to check. Thus, the algorithm
stops. 

Let us assume that during the execu-
tion of the production system, another
working-memory element of type rail-
road_car with the following properties is
created: weight = 20, height = 3,
track_width = WEU. A token of type <+,
railroad_car> is sent to the root node.
This time, the token runs down the
railroad car branch and is stored in the

right memory. After arriving at the right
memory, the two-input node compares
the token with all tokens in the opposite
left memory and checks whether the
intraelement conditions are fulfilled.
One token (the locomotive token) is
stored in the left memory. Because the
intraelement conditions are fulfilled,
both tokens are joined and sent to the
next node. In the example, the new
combined token is sent to an end node.
Thus, the new token is stored in the
conflict set, and the rule instantiation
rule_1 is ready to fire. Following the
described procedure, partial instantia-
tions of rule_1 have been remembered
in the left memory and the right memo-
ry. When a working-memory element is
deleted, a token with a minus tag is sent
to the root node and is subject to the
same tests as the token with the corre-
sponding plus tag. In case that a token
with a minus tag approaches the left
memory or the right memory, the token
is deleted. A modification of a working-
memory element is treated by sending
first a minus-tagged token followed by a
plus-tagged token. 

The RETE algorithm stores results from
previous recognize-act cycles in the left
memory and the right memory and uses
them in subsequent cycles. It also
exploits similarities between conditions
of rules, which is not shown in the
example. For more details, please read
Forgy (1982). 

Figure 2. Simple Left-Hand 
Side of a Rule.

Figure 3. RETE Network (LM = left memory; RM = right memory; CS = context set).

Rule_1 : RULE;
P1 (locomotive thrust > 100; in_use = false;

type = electric; track_w = WEU)
P2 (railroad_car weight < P1.thrust;

height < P1.height;
track_w = P1.track_w)

==>  /* attach action in right hand side */
END RULE_1;

Root

locomotive

thrust > 100

in_use = false

type = electric

track_w = WEU

railroad_car

LM RM

weight < P1.thrust
height <= P1.height
track_w = P1.track_w

CS

rule_1
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many thousand recognize-act cycles to estab-
lish the interval boundaries. The activation of
the extended– upper-bound method could be
performed when the expert system task is idle.
However, if the number of affected nodes
increases without bound, then the upper-
bound method would also not be applicable.

In contrast to the upper-bound and the
extended–upper-bound methods, the
microlevel reasoner method is linear in
nature and predicts match time of basic
actions, as well as complete rule-execution
times, with an error of less than a factor of
two for non–context switch actions. The
microlevel reasoner method cannot give a rig-
orous upper bound for run time. It is there-
fore well suited to systems that have soft time
constraints only. Such systems do not require
guaranteed answering times for particular
events but, rather, an estimation of the aver-
age time for a typical request. Based on these
estimations, exception handlers can be raised
that are able to deliver incomplete or subopti-
mal results to a high-level reasoning system
before a user-defined deadline is exceeded.
The microlevel reasoner unhesitatingly can
be applied to real-world production systems.

Unfortunately, I must relegate to future
research the challenging question of whether
complete production systems can meet dead-
lines. It is well known that the fundamental
question in its most general form cannot be
decided, but progress on the run-time predic-
tion of specific production-system classes can
still be made.
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