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Computers have promised us a fountain of
wisdom but delivered a flood of data.

—A frustrated MIS executive

It has been estimated that the amount of
information in the world doubles every 20
months. The size and number of databases
probably increases even faster. In 1989, the
total number of databases in the world was
estimated at five million, although most of
them are small DBASE II I databases. The
automation of business activities produces an
ever-increasing stream of data because even
simple transactions, such as a telephone call,
the use of a credit card, or a medical test, are
typically recorded in a computer.

Scientific and government databases are
also rapidly growing. The National Aeronau-
tics and Space Administration already has
much more data than it can analyze. Earth
observation satellites, planned for the 1990s,
are expected to generate one terabyte (1015

bytes) of data every day— more than all pre-
vious missions combined. At a rate of one
picture each second, it would take a person
several years (working nights and weekends)
just to look at the pictures generated in one
day. In biology, the federally funded Human
Genome project will store thousands of bytes
for each of the several billion genetic bases.
Closer to everyday lives, the 1990 U.S. census

data of a million million bytes encode pat-
terns that in hidden ways describe the
lifestyles and subcultures of today’s United
States.

What are we supposed to do with this
flood of raw data? Clearly, little of it will ever
be seen by human eyes. If it will be under-
stood at all, it will have to be analyzed by
computers. Although simple statistical tech-
niques for data analysis were developed long
ago, advanced techniques for intelligent data
analysis are not yet mature. As a result, there
is a growing gap between data generation
and data understanding. At the same time,
there is a growing realization and expectation
that data, intelligently analyzed and present-
ed, will be a valuable resource to be used for a
competitive advantage.

The computer science community is
responding to both the scientific and practi-
cal challenges presented by the need to find
the knowledge adrift in the flood of data. In
assessing the potential of AI technologies,
Michie (1990), a leading European expert on
machine learning, predicted that “the next
area that is going to explode is the use of
machine learning tools as a component of
large-scale data analysis.” A recent National
Science Foundation workshop on the future
of database research ranked data mining
among the most promising research topics
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for the 1990s (Silber-
schatz, Stonebraker,
and Ullman 1990).
Some research meth-
ods are already well
enough developed to
have been made part
of commercially
available software.
Several expert system
shells use variations
of ID3 for inducing
rules from examples.
Other systems use
inductive, neural
net, or genetic learn-
ing approaches to
discover patterns in
personal computer
databases. Many for-
ward-looking com-
panies are using
these and other tools
to analyze their
databases for inter-
esting and useful patterns. American Airlines
searches its frequent flyer database to find its
better customers, targeting them for specific
marketing promotions. Farm Journal analyzes
its subscriber database and uses advanced
printing technology to custom-build hun-
dreds of editions tailored to particular
groups. Several banks, using patterns discov-
ered in loan and credit histories, have derived
better loan approval and bankruptcy predic-
tion methods. General Motors is using a
database of automobile trouble reports to
derive diagnostic expert systems for various
models. Packaged-goods manufacturers are
searching the supermarket scanner data to
measure the effects of their promotions and
to look for shopping patterns.

A combination of business and research
interests has produced increasing demands
for, as well as increased activity to provide,
tools and techniques for discovery in
databases. This book is the first to bring
together leading-edge research from around
the world on this topic. It spans many differ-
ent approaches to discovery, including induc-
tive learning, Bayesian statistics, semantic
query optimization, knowledge acquisition
for expert systems, information theory, and
fuzzy sets. The book is aimed at those inter-
ested or involved in computer science and
the management of data, to both inform and
inspire further research and applications. It
will be of particular interest to professionals
working with databases and management

information systems
and to those apply-
ing machine learn-
ing to real-world
problems.

What Is
Knowledge
Discovery?

There is an immense
diversity of current
research on knowl-
edge discovery in
databases. To pro-
vide a point of refer-
ence for this
research, we begin
here by defining
and explaining rele-
vant terms.

Definition of
Knowledge 
Discovery

Knowledge discovery is the nontrivial extrac-
tion of implicit, previously unknown, and
potentially useful information from data.
Given a set of facts (data) F, a language L,
and some measure of certainty C, we define a
pattern as a statement S in L that describes
relationships among a subset FS of F with a
certainty c, such that S is simpler (in some
sense) than the enumeration of all facts in
FS. A pattern that is interesting (according to
a user-imposed interest measure) and certain
enough (again according to the user’s criteria)
is called knowledge. The output of a program
that monitors the set of facts in a database
and produces patterns in this sense is discov-
ered knowledge.

These definitions about the language, the
certainty, and the simplicity and interesting-
ness measures are intentionally vague to
cover a wide variety of approaches. Collec-
tively, these terms capture our view of the
fundamental characteristics of discovery in
databases. In the following paragraphs, we
summarize the connotations of these terms
and suggest their relevance to the problem of
knowledge discovery in databases.

Patterns and Languages: Although many
different types of information can be discov-
ered in data, this book focuses on patterns
that are expressed in a high-level language,
such as

If Age < 25 and Driver-Education-Course =
No 

This article presents an overview of the state
of the art in research on knowledge discovery
in databases. We analyze Knowledge Discovery
and define it as the nontrivial extraction of
implicit, previously unknown, and potential-
ly useful information from data. We then
compare and contrast database, machine
learning, and other approaches to discovery
in data. We present a framework for knowl-
edge discovery and examine problems in
dealing with large, noisy databases, the use
of domain knowledge, the role of the user in
the discovery process, discovery methods, and
the form and uses of discovered knowledge.

We also discuss application issues, includ-
ing the variety of existing applications and
propriety of discovery in social databases. We
present criteria for selecting an application
in a corporate environment. In conclusion,
we argue that discovery in databases is both
feasible and practical and outline directions
for future research, which include better use
of domain knowledge, efficient and incre-
mental algorithms, interactive systems, and
integration on multiple levels.



Then At-fault-accident = Yes
With Likelihood = 0.2 to 0.3. 

Such patterns can be understood and used
directly by people, or they can be the input to
another program, for example, an expert
system or a semantic query optimizer. We do
not consider low-level patterns, such as those
generated by neural networks.

Certainty: Seldom is a piece of discovered
knowledge true across all the data. Represent-
ing and conveying the degree of certainty is
essential to determining how much faith the
system or user should put into a discovery. As
we examine later, certainty involves several
factors, including the integrity of the data;
the size of the sample on which the discovery
was performed; and, possibly, the degree of
support from available domain knowledge.
Without sufficient certainty, patterns become
unjustified and, thus, fail to be knowledge.

Interesting: Although numerous patterns
can be extracted from any database, only
those deemed to be interesting in some way
are considered knowledge. Patterns are inter-
esting when they are novel, useful, and non-
trivial to compute. Whether a pattern is novel
depends on the assumed frame of reference,
which can be either the scope of the system’s
knowledge or the scope of the user’s knowl-
edge. For example, a system might discover
the following: If At-fault-accident = yes Then
Age > 16. To the system, this piece of knowl-
edge might be previously unknown and
potentially useful; to a user trying to analyze
insurance claims records, this pattern would
be tautological and uninteresting and would
not represent discovered knowledge. This
example also suggests the notion of utility.
Knowledge is useful when it can help achieve
a goal of the system or the user. Patterns com-
pletely unrelated to current goals are of little
use and do not constitute knowledge within
the given situation. For example, a pattern
relating at-fault-accident to a driver’s age, dis-
covered while the user’s intent was to analyze
sales figures, would not be useful to the user.

Novelty and utility alone, however, are not
enough to qualify a pattern as discovered
knowledge. Most databases contain numerous

novel and useful patterns, such as the total
sales for 1990, the average cost of an insur-
ance claim, and the maximum intensity of a
spectral line. These types of patterns would
not typically be considered knowledge
because they are trivial to compute. To be
nontrivial, a system must do more than
blindly compute statistics; the results of the
directed calculation of straightforward statis-
tics are, to our way of thinking, readily avail-
able to the database user. A discovery system
must be capable of deciding which calcula-
tions to perform and whether the results are
interesting enough to constitute knowledge
in the current context. Another way of view-
ing this notion of nontriviality is that a dis-
covery system must possess some degree of
autonomy in processing the data and evaluat-
ing its results.

Efficiency: Finally, we are interested in dis-
covery processes that can be efficiently imple-
mented on a computer. An algorithm is
considered efficient1 if the run time and space
used are a polynomial function of low degree
of the input length. The problem of discovery
of interesting sentences (concepts) that satisfy
given facts is inherently hard. Recent
advances in computational learning theory
(Valiant 1984; Haussler 1988) have shown
that it is not possible to efficiently learn an
arbitrary Boolean concept; the problem is NP-
hard. However, these results are generally
related to the worst-case performance of algo-
rithms and do not eliminate the possibility
that, on the average, we can find complex
concepts fast. Efficient algorithms do exist for
restricted concept classes, such as purely con-
junctive concepts (for example, A Ÿ B Ÿ C), or
the conjunction of clauses made up of dis-
junctions of no more than k literals (for
example, (A ⁄ B) Ÿ (C ⁄ D) Ÿ (E ⁄ F), for k = 2).
Another possibility for efficiently finding con-
cepts is to abandon the demand that the algo-
rithm learn a desired concept with some
guarantee and instead accept heuristic or
approximate algorithms.

To summarize, knowledge discovery in
databases exhibits four main characteristics:
• High-Level Language—Discovered knowl-
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edge is represented in a high-level language.
It need not be directly used by humans, but
its expression should be understandable by
human users.
• Accuracy—Discoveries accurately portray
the contents of the database. The extent to
which this portrayal is imperfect is expressed
by measures of certainty.
• Interesting Results—Discovered knowledge
is interesting according to user-defined biases.
In particular, being interesting implies that
patterns are novel and potentially useful, and

the discovery process is nontrivial.
• Efficiency—The discovery process is effi-
cient. Running times for large-sized databases
are predictable and acceptable.

The systems and techniques described in
Knowledge Discovery in Databases generally
strive to satisfy these characteristics. The
approaches taken, however, are quite diverse.
Most are based on machine learning methods
that have been enhanced to better deal with
issues particular to discovery in databases.
Next, we briefly define database concepts and
terminology and relate them to terms
common to machine learning.

Databases and Machine Learning
In database management, a database is a logi-
cally integrated collection of data maintained
in one or more files and organized to facili-
tate the efficient storage, modification, and
retrieval of related information. In a relation-
al database, for example, data are organized
into files or tables of fixed-length records.
Each record is an ordered list of values, one
value for each field. Information about each
field’s name and potential values is main-
tained in a separate file called a data dictio-
nary. A database management system is a
collection of procedures for retrieving, stor-
ing, and manipulating data within databases.

In machine learning, the term database
typically refers to a collection of instances or
examples maintained in a single file.2

Instances are usually fixed-length feature vec-
tors. Information is sometimes also provided
about the feature names and value ranges, as
in a data dictionary. A learning algorithm
takes the data set and its accompanying
information as input and returns a statement
(for example, a concept) representing the
results of the learning as output.

Table 1 informally compares the terminology
in database management with that of
machine learning. With the appropriate
translation of terms, it seems that machine
learning could readily be applied to databas-
es: Rather than learning on a set of instances,
learning is done on a file of records from a
database. Knowledge discovery in databases,
however, raises additional concerns that
extend beyond those typically encountered
in machine learning. In the real world,
databases are often dynamic, incomplete,
noisy, and much larger than typical machine
learning data sets (table 2). These factors
render most learning algorithms ineffective
in the general case. Not surprisingly, much of
the work on discovery in databases focuses
on overcoming these complications. 

Database Managment Machine Learning

database: a logically integrated a fixed set of examples
collection of dynamic files

file database, data set, set of instances

tuple, record instance, example, feature vector

field, attribute feature, attribute

field domain possible field values

data dictionary field type and domain information

relational data a set of instances

object-oriented, structured data relational data

logical condition concept description

Table 1. Translations between Database Management 
and Machine Learning Terms.

Database Management Machine Learning

Database is an active, evolving Database is just a static 
entity collection of data

Records may contain missing or Instances are usually complete 
erroneous information and noise-free

A typical field is numeric A typical feature is binary

A database typically contains Data sets typically contain
millions of records several hundred instances

AI should get down to reality “Databases” is a solved problem 
and is therefore uninteresting

Table 2. Conflicting Viewpoints between 
Database Management and Machine Learning. 



Related Approaches
Although machine learning is the foundation
for much of the work in this area, knowledge
discovery in databases deals with issues rele-
vant to several other fields, including
database management, expert systems, statis-
tical analysis, and scientific discovery.

Database Management: A database man-
agement system provides procedures for stor-
ing, accessing, and modifying the data.
Typical operations include retrieval, update,
or deletion of all tuples satisfying a specific
condition, and maintaining user-specified
integrity constraints. The ability to extract
tuples satisfying a common condition is like
discovery in its ability to produce interesting
and useful statements (for example, “Bob and
Dave sold fewer widgets this year than last”).
These techniques, however, cannot by them-
selves determine what computations are
worth trying, nor do they evaluate the quality
of the derived patterns. Interesting discoveries
uncovered by these data-manipulation tools
result from the guidance of the user. However,
the new generation of deductive and object-
oriented database systems (Kim, Nicolas, and
Nishio 1990) will provide improved capabili-
ties for intelligent data analysis and discovery.

Expert Systems: Expert systems attempt to
capture knowledge pertinent to a specific
problem. Techniques exist for helping to
extract knowledge from experts. One such
method is the induction of rules from expert-
generated examples of problem solutions.
This method differs from discovery in
databases in that the expert examples are usu-
ally of much higher quality than the data in
databases, and they usually cover only the
important cases (see also Gaines3, for a com-
parison between knowledge acquisition from
an expert and induction from data). Further-
more, experts are available to confirm the
validity and usefulness of the discovered pat-
terns. As with database management tools,
the autonomy of discovery is lacking in these
methods.

Statistics: Although statistics provide a
solid theoretical foundation for the problem
of data analysis, a purely statistical approach
is not enough. First, standard statistical meth-
ods are ill suited for the nominal and struc-
tured data types found in many databases
(figure 2). Second, statistics are totally data
driven, precluding the use of available
domain knowledge, an important issue that
we discuss later. Third, the results of statistical
analysis can be overwhelming and difficult to
interpret. Finally, statistical methods require
the guidance of the user to specify where and
how to analyze the data. However, some

recent statistics-based techniques such as pro-
jection pursuit (Huber 1985) and discovery of
causal structure from data (Glymour et al.
1987; Geiger, Paz, and Pearl 1990) address
some of these problems and are much closer
to intelligent data analysis. We expect that
methods using domain knowledge will be
developed by the statistical community. We
also believe that statistics should have a vital
role in all discovery systems dealing with
large amounts of data.

Scientific Discovery: Discovery in databas-
es is significantly different from scientific dis-
covery (see also Zytkow and Baker3,) in that
the former is less purposeful and less con-
trolled. Scientific data come from experi-
ments designed to eliminate the effects of all
but a few parameters and to emphasize the
variation of one or a few target parameters to
be explained. However, typical business
databases record a plethora of information
about their subjects to meet a number of
organizational goals. This richness (or confu-
sion) both captures and hides from view
underlying relationships in the data. More-
over, scientists can reformulate and rerun
their experiments should they find that the
initial design was inadequate. Database man-
agers rarely have the luxury of redesigning
their data fields and recollecting the data.

A Framework for Knowledge Discovery
We have referred to discovery systems several
times without specifying what a discovery
system is. Although discovery systems vary
considerably in their design, it is possible to
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Figure 1. A Framework for Knowledge Discovery in Databases.
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describe a prototypical discovery system.
Figure 1 depicts the basic components of our
prototypical system for knowledge discovery
in databases. At the core of the system is the
discovery method, which computes and eval-
uates patterns on their way to becoming
knowledge. The input to the discovery
method include raw data from the database,
information from the data dictionary, addi-
tional domain knowledge, and a set of user-
defined biases that provide high-level focus.
The output is discovered knowledge that can
be directed to the user or back into the
system as new domain knowledge. Because
this model represents a prototypical system, a
discovery system need not include all these
aspects. The feedback of discovered knowl-
edge into the store of domain knowledge, for
example, is present in few existing systems
(see Future Directions).

In the remainder of this article, we explore
each aspect of this framework in detail.
Specifically, we consider (1) the peculiarities
of databases, (2) the use of domain knowl-
edge, (3) the role of the user in the discovery
process, (4) methods of knowledge discovery,
and (5) the form and uses of discovered
knowledge.

Database Issues
The fundamental input to a discovery system
is the raw data present in a database. We pre-
viously mentioned that databases pose
unique problems to discovery not typically
confronted in machine learning. In particu-
lar, these problems arise from the fact that
real-world databases are dynamic, incom-
plete, noisy, and large. Other concerns
include whether the database contains ade-
quate information for interesting discovery
and how to deal with the overabundance of
irrelevant information.

Dynamic Data: A fundamental characteris-
tic of most databases is that their contents are
ever changing. Data can be time sensitive,
and discovery is affected by the timeliness of
data observations. Some data values, such as
a patient’s social security number, are con-
stant over time; some vary more or less grad-
ually over time (for example, weight and

height); and some are so situation dependent
that only a recently observed value will suf-
fice (for example, pulse rate).

Irrelevant Fields: Another key characteris-
tic is the relevance of data, that is, whether
an item of data is relevant to the current
focus of discovery. When a patient database is
being explored for interesting patterns of
symptoms and diagnoses, nonmedical data,
such as patient name or zip code, are irrele-
vant, and errors there are unimportant. On
the other hand, pulse rate, a simple and typi-
cally recorded medical observation, is rele-
vant, and errors here can affect what is
discovered. If, however, we are looking for a
geographic concentration of a particular dis-
ease, then a correct zip code becomes crucial.
If the zip code is thought to be faulty, it can
sometimes be inferred from related informa-
tion, such as the patient’s address.

An aspect somewhat related to relevance is
the applicability of an attribute to a subset of
the database; for example, a patient’s preg-
nant field is not applicable to men (the class
of patients with sex equal to male), but it is
essential to know for female patients of child-
bearing age.

Missing Values: The presence or absence of
values for relevant data attributes can affect
discovery. Whether a patient was comatose at
the time of diagnosis can be so important
that it does not allow the substitution of a
default value; less important missing data can
be defaulted. In an interactive system, the
absence of an important datum can spawn a
request for its value or a test to determine it.
Alternatively, the absence of data can be dealt
with as if it were a condition in itself, and the
missing attribute can be assigned a neutral
value, such as unknown. For example, the
absence of some patient measurements might
be found to imply that the patient was for-
merly in excellent health.

Noise and Uncertainty: For relevant
attributes, the severity of error can depend on
the data type of the allowed values. Values of
different attributes can be real numbers
(charge), integer numbers (age), or strings
(name) or can belong to a set of nominal
values (patient type). Nominal values can be
ordered partially or completely and can also

Domain knowledge assists discovery by focusing search.



fields, or more complex conditions such as a
department must always have exactly one
manager. In a sense, the data dictionary
defines the syntax of database use.

The database contains the raw data to be
processed by the discovery system. In prac-
tice, the discovery system must also use the
additional information about the form of
data and constraints on it. Some of this infor-
mation can be stored in the data dictionary,
but other information might exist in manuals
or experts’ heads. For example, a discovery
system for a hospital database needs to know
which diagnosis codes (DX) are grouped into
which diagnostic-related groups (DRG),
which, in turn, are grouped into major diag-
nostic categories (MDC) (figure 2). Then, if a
patient’s DX does not match his or her DRG,
an unusual side effect or an error in record
keeping is indicated.

Because discovery is computationally
expensive, additional knowledge regarding
the form and content of data, the domain(s)
described by the database, the context of a
particular discovery episode, and the purposes
being served by discovery are often used to
guide and constrain the search for interesting
knowledge. We refer to this form of informa-
tion as domain knowledge or background knowl-
edge. Domain knowledge assists discovery by
focusing search. However, its use is controver-
sial because by telling a system what to look
for and where to look for it, domain knowl-
edge restricts search and can deliberately rule
out valuable discovery. An example discussed
at the IJCAI-89 Knowledge Discovery Work-
shop illustrates the trade-off between quickly
finding conventional solutions and discard-
ing unusual ones. In logistics planning, the
search space is so large that it is impossible to
find solutions without using constraints such
as “trucks don’t drive over water.” This con-
straint, however, eliminates potentially inter-
esting solutions, such as those in which
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have a semantic structure (figure 2).
Another aspect of uncertainty is the inher-

ent or expected exactitude of data, that is, the
degree of noise in the data. Repeated mea-
surements cluster around an average; based
on a priori analysis or computations on the
measurements themselves, a statistical model
describing randomness is formulated and
used to define expected and tolerable devia-
tions in the data. Subjective input, such as
whether a patient’s condition is severe or
moderate, can vary considerably about one or
more cluster points. Often, statistical models
are applied in an ad hoc manner to subjec-
tively determined attributes to obtain gross
statistics and judge the acceptability of (com-
binations of) attribute values.

Especially with regard to numeric data
types, data precision can be a factor in discov-
ery. For example, it is regarded as adequate to
record body temperature to a precision of 0.1
degree. A sensitive trend analysis of body
temperature would require even greater preci-
sion in the data. To a discovery system able to
relate such trends to diagnosis, this impreci-
sion would appear to be noise in the input.

Missing Fields: An inadequate view of the
database can make valid data appear to be in
error. The database view is the totality of
usable attributes or accessors that the discov-
ery system can apply to a problem. It is
assumed that the attributes differentiate cases
of interest. When they don’t, there appears to
be some error. Suppose, for example, that a
system is tasked to learn to diagnose malaria
from a patient database that does not include
the red blood cell count. Patients whose
records are correct and who are medically
identical with respect to this given view
might have different diagnoses, which, in
turn, might incorrectly be blamed on data
error.

Databases and Knowledge
Ignorance is the curse of God, knowledge the
wing wherewith we fly to heaven.

—William Shakespeare

A database is a logically integrated collection
of files. Associated with a database is a data
dictionary, which defines field names, the
allowable data types for field values, various
constraints on field values, and other related
information. For example, the field age is a
positive integer and the field date-of-birth has
the form MMDDYY. Types of constraints
include ranges of possible values for numeric
fields, lists of possible values for nominal

MDC 22

DR

G

457 458-60 472

94890-9 9490-5DX

Major Diagnostic Category

																			 contains

Diagnostic Related Groups

			 	which contain

Diagnosis Codes

Figure 2. Data Dictionary: Relationships between Fields and Values. 



are up 20 percent over last year’s sales).
We can also categorize the form of a dis-

covery by its descriptive capacity. A quantita-
tive discovery relates numeric field values
using mathematical equations A qualitative
discovery finds a logical relationship among
fields. We distinguish these two forms
because different discovery techniques are
often used in each case. For example, linear
quantitative relationships are conveniently
found using linear regression methods that
are inappropriate for qualitative discoveries.

Qualitative and quantitative discoveries are
often expressed as simple rules, such as X > Y,
or A implies B. Discoveries, however, can take
on more complex forms. Putting several
simple implications together forms a causal
chain or network. The discovery of relation-
ships among simpler rules can lead to seman-
tic models or domain theories. Models and
theories of this sort imply complex relation-
ships that can require applying the discovery
process to previous, simpler discoveries. We
might refer to this discovery form as an inter-
discovery discovery (see Future Directions).

Representation
Discoveries must be represented in a form
appropriate for the intended user. For human
end users, appropriate representations
include natural language, formal logics, and
visual depictions of information. Discoveries
are sometimes intended for other computer
programs, such as expert system shells; in this
case, appropriate representations include pro-
gramming languages and declarative for-
malisms. A third case arises when the
intended user of the discovered knowledge is
the discovery system itself. In these situations
where discoveries are fed back into the
system as domain knowledge, domain knowl-
edge and discovered knowledge must share a
common representation.

Natural language is often desirable from a
human perspective, but it is not convenient
for manipulation by discovery algorithms.
Logical representations are more natural for
computation and, if necessary, can be trans-
lated into a natural language form. Common

trucks drive over frozen lakes in winter. Of
equal importance to this debate is the accura-
cy and timeliness of domain knowledge.

Background knowledge can take on a
number of different forms. Data dictionary
knowledge is the most basic and least contro-
versial form of domain knowledge. Interfield
knowledge, such as weight and height being
positively correlated, and interinstance
knowledge, such as knowing that federal reg-
ulation requires the largest charge for handi-
capped customers be no more than the
average charge for regular customers, are
closely related to the data but move toward
the semantics of the domain. According to
data dictionary knowledge, one shouldn’t
add age to hair-color, but it’s a matter of
domain knowledge that taking the sum of
age and seniority makes sense, but adding age
to weight does not.

Knowledge about the content of the
database can also help make the discovered
knowledge more meaningful to the end user.
Domain knowledge is usually provided by a
domain expert, although it is possible for
domain knowledge to be discovered, suggest-
ing a bootstrapping approach.

Discovered Knowledge
This section examines three important facets
of discovered knowledge: its form, its repre-
sentation, and its degree of certainty.

Form
The form of a discovered knowledge can be
categorized by the type of data pattern it
describes. Interfield patterns relate values of
fields in the same record (for example, proce-
dure = surgery implies days-in-hospital > 5).
Interrecord patterns relate values aggregated
over groups of records (for example, diabetic
patients have twice as many complications as
nondiabetics) or identify useful clusters, such
as the group of profit-making companies. Dis-
covery of interrecord patterns is a form of
data summarization In time-dependent data,
interrecord relationships can also identify
interesting trends (for example, produce-sales
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…interactive clustering algorithms…combine the computer’s
computational powers with the human user’s knowledge and
visual skills.



logic representations include formalisms such
as production rules (for example, if X, then
Y), relational patterns (X > Y), decision trees
(equivalent to ordered lists of rules), and
semantic or causal networks. These represen-
tational forms offer different advantages and
limitations. An appropriate choice for a dis-
covery system depends on the expected
knowledge complexity and the need for
human comprehension.

For humans, some information is best pre-
sented visually (Tufte 1990). The relationships
among the branches of a decision tree, for
example, are more evident in a graphic pre-
sentation than as a logical representation of
nested conditional statements. The same is
usually true for semantic and causal networks
in which the global structure of the network
relationships is more clearly depicted in a dia-
gram. Information about the shape and densi-
ty of clusters of records is another type of
knowledge that is best presented visually. In
this case, two- or three-dimensional plots can
convey certain information more concisely
and clearly than any logical representation.

Uncertainty
Patterns in data are often probabilistic rather
than certain. This situation can result from
missing or erroneous data, or it can reflect the
inherent indeterminism of the underlying
real-world causes. Capturing this sort of prob-
abilistic information requires a method for
representing uncertainty. One common tech-
nique is to augment logical representations
with probabilistic weights that indicate prob-
abilities of success, belief measures, or stan-
dard deviations. Alternatively, linguistic
uncertainty measures, such as fuzzy sets, are
sometimes used (Yager3,). In visual presenta-
tions, probabilistic information can readily be
conveyed by size, density, and shading.

The easiest way to deal with error and
uncertainty is not to have any. For example,
the occurrence of noisy, missing, and inappli-
cable data can be minimized by rigidly apply-
ing standardized protocols in data entry.
Another approach is to assume that the data
are absolutely correct and terminate any cal-
culation that encounters error (see Ziarko3,).
Presuming that erroneous data cannot lead to
a valid result, the remaining discoveries are
regarded as highly reliable. Of course, this
presumption eliminates the possibility of 
discovering nearly certain or probable 
knowledge.

Uncertainty cannot be ignored when the
patterns of interest are inherently probabilis-
tic; for example, “there’s a 50 percent chance
of rain tomorrow.” Fortunately, databases are

typically large enough for statistical analysis
to determine these probabilities. In some situ-
ations, data values can be modeled as repre-
senting true information corrupted by
random noise. The uncertainty in discovered
knowledge can then be represented in terms
of a derived probability distribution. For
example, for a discovered rule, a product dis-
tribution is derived from the conjuncts
making up its left-hand side and the correla-
tion to the success of the right-hand side.
More simply, a discovered rule can be
matched against all entries in the database to
accrue an overall success rate. The same
approach applies to more complex structures,
such as decision trees or classification hierar-
chies: Match each entry to the ordered nodes,
and count the successes and failures.

When databases are very large, with records
in the millions, complete analysis of all the
data is infeasible. Discovery algorithms must
then rely on some form of sampling, whereby
only a portion of the data is considered. The
resulting discoveries in these cases are neces-
sarily uncertain. Statistical techniques, how-
ever, can measure the degree of uncertainty
(see Piatetsky-Shapiro for one approach
toward estimating the accuracy of rules dis-
covered from a sample3,). They can also be
used to determine how much additional sam-
pling would be required to achieve a desired
level of confidence in the results.

Discovery Algorithms
Discovery algorithms are procedures designed
to extract knowledge from data. This activity
involves two processes: identifying interesting
patterns and describing them in a concise and
meaningful manner. The identification pro-
cess categorizes or clusters records into sub-
classes that reflect patterns inherent in the
data. The descriptive process, in turn, summa-
rizes relevant qualities of the identified class-
es. In machine learning, these two processes
are sometimes referred to as unsupervised and
supervised learning, respectively. In discovery
systems, user supervision can occur in either
process or, in the ideal case, can be completely
absent.

Pattern Identification
One way to look at a pattern is as a collection
or class of records sharing something in
common: customers with incomes over
$25,000, patients between 20 and 30 years
old, or questionable insurance claims. Discov-
ering pattern classes is a problem of pattern
identification or clustering. There are two
basic approaches to this problem: traditional
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and Kedar-Cabelli 1986), require a set of
domain knowledge (called a domain theory)
for use in explaining why an object falls into
a particular class. Other approaches combine
empirical and knowledge-based methods.
Discovery in large, complex databases clearly
requires both empirical methods to detect the
statistical regularity of patterns and knowl-
edge-based approaches to incorporate avail-
able domain knowledge.

Discovery Tasks
Discovery is performed for various reasons.
The appropriateness of a specific discovery
algorithm depends on the discovery task.
One task we’ve already mentioned is class
identification or clustering. For the process of
concept description, we can identify at least
three additional tasks: 
• Summarization: Summarize class records
by describing their common or characteristic
features. Example: A summary of sales repre-
sentatives with increased earnings last quarter
might include that they are all from the Mid-
west and drive blue cars. 
• Discrimination: Describe qualities suffi-
cient to discriminate records of one class
from another. Example: To determine
whether a salesperson is from the Midwest, it
might be sufficient to look at the color of his
or her car: If the color is blue, the salesperson
is from the Midwest; otherwise the salesper-
son is from the East or West Coast. 
• Comparison: Describe the class in a way
that facilitates comparison and analysis with
other records. Example: A prototypical Mid-
west salesperson might own a blue car, have
increased sales, and average 100 phone calls a
week. This description might serve as the
basis against which individual salespeople are
judged. 

Because these different tasks require differ-
ent forms and amounts of information, they
often influence discovery algorithm selection
or design. For example, a decision tree algo-
rithm produces a description intended for
discriminating between class instances that
might exclude characteristic class qualities.

Complexity
Discovery algorithms for large databases must
deal with the issue of computational com-
plexity. Algorithms with computational
requirements that grow faster than a small
polynomial in the number of records and
fields are too inefficient for large databases.
Empirical methods are often overwhelmed by
large quantities of data and potential pat-
terns. The incorporation of domain knowl-
edge can improve efficiency by narrowing the

numeric methods and conceptual clustering.
Traditional methods of clustering come

from cluster analysis and mathematical tax-
onomy (Dunn and Everitt 1982). These algo-
rithms produce classes that maximize
similarity within classes but minimize simi-
larity between classes. Various measures of
similarity have been proposed, most based on
Euclidean measures of distance between
numeric attributes. Consequently, these algo-
rithms only work well on numeric data. An
additional drawback is their inability to use
background information, such as knowledge
about likely cluster shapes.

Conceptual clustering attempts to over-
come these problems. These methods work
with nominal and structured data and deter-
mine clusters not only by attribute similarity
but also by conceptual cohesiveness, as
defined by background information. Recent
examples of this approach include AUTO CLASS

(Cheeseman et al. 1988), the Bayesian Cate-
gorizer (Anderson and Matessa 1990), CLUSTER,
and COBWEB (Fisher 1987).

Although useful under the right condi-
tions, these methods do not always equal the
human ability to identify useful clusters,
especially when dimensionality is low and
visualization is possible. This situation has
prompted the development of interactive clus-
tering algorithms that combine the computer’s
computational powers with the human user’s
knowledge and visual skills.

Concept Description
Once identified, useful pattern classes usually
need to be described rather than simply enu-
merated. In machine learning, this process is
known as supervised concept learning from
examples: Given a set of objects labeled by
class, derive an intensional description of the
classes. Empirical learning algorithms, the
most common approach to this problem,
work by identifying commonalities or differ-
ences among class members. Well-known
examples of this approach include decision
tree inducers (Quinlan 1986), neural net-
works (Rummelhart and McClelland 1986),
and genetic algorithms (Holland et al. 1986).

The main drawback to empirical methods
is their inability to use available domain
knowledge. This failing can result in descrip-
tions that encode obvious or trivial relation-
ships among class members. For example, a
description of the class of pregnant patients
that includes the term sex = female would be
empirically accurate but would not provide
any new information to a hospital adminis-
trator. Some learning approaches, such as
explanation-based learning (Mitchell, Keller,
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focus of the discovery process but at the risk
of precluding unexpected but useful discov-
ery. Data sampling is another way of attack-
ing the problem of scale; it trades a degree of
certainty for greater efficiency by limiting dis-
covery to a subset of the database (see previ-
ous section on uncertainty).

Application Issues
This section starts by listing areas where dis-
covery in databases has been applied, then
discusses the key features that characterize a
suitable application in a corporate environ-
ment, and ends with a cautionary note
regarding the ethics of uncovering hidden
knowledge in data about people.

Applications of Discovery in Databases
A decade ago, there were only a few examples
of discovery in real data. The notable ones
include discovery of mass spectrometry rules
by METADENDRAL (Buchanan and Mitchell
1978), new diagnostic rules for soybean dis-
ease (Michalski and Chilausky 1980), and
drug side effects in a rheumatism patient
database (Blum 1982).

Since this time, the discovery approach has
been tried in many more domains, including
those given in the following list. This list is by
no means exhaustive and is meant to give
representative examples for the kinds of
applications where discovery in databases is
possible. The largest databases used for dis-
covery had several millions of records, and
larger ones are being considered.
• Medicine: biomedicine, drug side effects,
hospital cost containment, genetic sequence
analysis, and prediction 
• Finance: credit approval, bankruptcy pre-
diction, stock market prediction, securities
fraud detection, detection of unauthorized
access to credit data, mutual fund selection 
• Agriculture: soybean and tomato disease
classification 
• Social: demographic data, voting trends,
election results 
• Marketing and Sales: identification of socioe-
conomic subgroups showing unusual behav-
ior, retail shopping patterns, product analysis,
frequent flying patterns, sales prediction 
• Insurance: detection of fraudulent and
excessive claims, claims “unbundling.” Of
course, all insurance data analysis can be con-
sidered a form of knowledge discovery in
databases.
• Engineering: automotive diagnostic expert
systems, Hubble space telescope, computer-
aided design (CAD) databases, job estimates 
• Physics and Chemistry: electrochemistry,

superconductivity research 
• Military: intelligence analysis, data fusion,
and . . . (the rest is classified) 
• Law Enforcement: tax and welfare fraud,
fingerprint matching, recovery of stolen cars 
• Space Science: astronomy, search for
extraterrestrial intelligence, space data analy-
sis (this will become more important as huge
amounts of data are gathered in future space
missions) 
• Publishing: custom editions of journals.

Selecting an Application in a 
Corporate Environment
As with any emerging technology, it is impor-
tant to carefully select the initial applications
for discovery in databases. We developed a list
of criteria for selecting an application in a
corporate environment. The criteria will be
different for a university or a government
project, but many important considerations
will be the same. The knowledge tree in figure
3 illustrates our criteria.

The fruits of knowledge growing on the
tree of data are not easy to pick. To get there,
we need to climb a multistep ladder. The first
step is the business need for discovery. The
discovered knowledge should have the poten-
tial for significant and measurable financial
benefit. There should be many unknown 
patterns in data that cannot be found easily
by conventional statistical methods. It is
helpful if the problem is typical, but the need
to solve unique problems with high payoff
also exists (for example, location of human
gene activators).
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A pattern that involves racial or ethnic
characteristics is likely to be controversial.
The plans to market the Uptown cigarette, a
campaign that was directed at young, black
males (devised, possibly, after market research
identified this group as smoking more than
average) was shelved after many protests
(Wildavsky 1990). Another example is the
Food and Drug Administration ban on blood
donations by people from Haiti and Sub-
Saharan Africa. The discovered pattern of the
high incidence of AIDS in these groups was
protested as being racially motivated because
there was also a high incidence of AIDS in
another geographically defined group, that is,
men from New York and San Francisco,
whose members were not forbidden to
donate blood. However, reports on this con-
troversy did not make clear what the strength
or coverage of these patterns was and what
additional factors were considered. In such
cases, it is desirable to give more detailed
information, such as “Based on a sample of
size S, people in group Z have 33 to 41 per-
cent likelihood of developing the disease X.
The nationwide risk of developing X is 10 to
12 percent.” The public then has a clearer
notion of the nature of discovered assertions
and is better able to make an informed deci-
sion about them, even if they still remain
controversial.

Future Directions
Although some aspects of discovery in
databases, such as finding simple formulas to
fit scientific data or inducing decision trees
for classification, are relatively well under-
stood, many more aspects are in need of
research. This research will not only be driven
by academic considerations but also by the
practical need to analyze more data that are
more complex than ever before, including
object-oriented, CAD-CAM, textual, and mul-
timedia databases. Data complexity will make
it necessary to use more domain knowledge.
Much larger databases will require more effi-
cient algorithms. Dealing with a fast-chang-
ing environment will demand much more
incremental methods. Complex problems
such as network control might require the
integration of multiple approaches to discov-
ery. The results should be presented to users
in more understandable ways, using interac-
tive approaches. Finally, discovery in social,
business, and demographic databases requires
caution about findings that may be illegal or
unethical. The following paragraphs examine
these directions in detail.

Domain knowledge can be used in all

The second step is having sufficient and
reliable data. Having at least 1,000 examples
is desirable. The portion of the data that is
incomplete or noisy should be relatively
small. Most fields relevant to the discovery
focus should be stored in the database. For
example, it is hard to find likely potential
customers for a mobile phone without infor-
mation about a customer’s car.

The next step is having the organizational
support for the project. There should be an
enthusiastic and influential supporter in the
organization and the commitment for
(potentially) long-term research.

The final step is to have significant but
incomplete domain knowledge. The best
chance for discovery is with things we almost
but not quite know already. It is desirable to
have user-specified hierarchies of field-value
codes and rules relating possible field values.
Domain knowledge should be codified and
computer readable.

After climbing these steps, we can discover
some useful knowledge (possibly, including
something controversial) and receive the
desired business payoff. We might also reach
the research value cloud. The research value
is high for complex applications where exist-
ing methods are insufficient. Such applica-
tions are characterized by a variety of data
types, including numeric, nominal, and
structured fields; a very large database (mil-
lions of records); noisy, incomplete, and con-
tradictory data; and complex domain
knowledge. Research value is high for diffi-
cult problems and, thus, is frequently in con-
flict with the business need to have quick
results.

Will Discovery Open a Pandora’s Box?
An important issue to consider in analyzing
social or demographic databases is the appro-
priateness of discovery. A careless approach to
discovery can open a Pandora’s box of
unpleasant surprises. Some kinds of discovery
are actually illegal: Federal and state privacy
laws limit what can be discovered about indi-
viduals. The use of drug traffickers’ profiles by
law enforcement agencies has been contro-
versial, and the use of some parts of the pro-
file, such as race, has been ruled illegal.
Political, ethical, and moral considerations
can affect other discoveries. A Federal Bureau
of Investigation proposal to establish a
nationwide database of criminal suspects was
dropped after congressional objections about
possible invasion of privacy. Advanced algo-
rithms for discovery in databases might also
become a threat to database security (see
O’Leary3,).
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aspects of automated discovery, from data
representation to the selection of interesting
features to the making of discovered results
more understandable. Using domain knowl-
edge constraints to reduce search, however, is
controversial, as illustrated by the “trucks
don’t drive over water” example mentioned
earlier. The challenge is to use domain knowl-
edge in such a way that we don’t block the
discovery of unexpected solutions. The use of
domain knowledge taken to the extreme will
produce a specialized learning algorithm that
will outperform any general method in its
domain but will not be useful outside it. A
desirable compromise is to develop a frame-
work for augmenting the general method
with the specific domain knowledge. Some
recent attempts are described in Quinlan
(1990).

Efficient algorithms will be crucial. Expo-
nential and even high-order polynomial algo-
rithms will not scale up for dealing with large
volumes of data. Although the efficient dis-
covery of arbitrary rules is not possible in
general (assuming P ≠ NP), this problem can
be sidestepped by using restricted rule types,
heuristic and approximate algorithms, and
careful use of sampling. Discovery algorithms
should also use the latest advances in hard-
ware and software. Parallel computers, large
memories, and object-oriented and deductive
databases not only can speed up existing
methods but also present opportunities for
new, faster algorithms.

Incremental methods are needed to effi-
ciently keep pace with changes in data. More
importantly, incremental discovery systems
that can reuse their discoveries can bootstrap
themselves and make more complex discover-
ies possible.

Interactive systems will provide, perhaps,
the best opportunity for discovery in the near
term. In such systems, a knowledge analyst is
included in the discovery loop. This approach
combines the best features of human and
machine: Use human judgment but rely on
the machine to do search and to crunch num-
bers. The interactive approach requires the
discovered knowledge to be presented in a
human-oriented form, whether as written
reports (Schmitz, Armstrong, and Little 1990)
or visual and sound patterns (Smith, Berg-
eron, and Grinstein 1990). Such novel output
presentations might allow the use of the phe-
nomenal perceptual capabilities of humans.
Tools need to be built to support effective
interaction between the user and the discov-
ery system. Also, algorithms need to be reex-
amined from the viewpoint of human-
oriented presentation. A neural network, for

example, might have to generate explana-
tions from its weights (Gallant 1988).

Integration on many levels will be
required for future systems. Accessing exist-
ing databases and data dictionaries, these sys-
tems will combine different types of learning
and discovery. The results of discovery will
not stand alone but feed back for more dis-
coveries or feed forward to other systems.
Recent examples of integrated learning sys-
tems are Silver et al. (1990) and Part 6, Inte-
grated and Multiparadigm Systems in
Knowledge Discovery in Databases. The incre-
mental, knowledge-based, and interactive dis-
covery methods may transform the static
databases of today into evolving information
systems of tomorrow.

Notes
1. One of the earliest discovery processes was
encountered by Jonathan Swift’s Gulliver in his
visit to the Academy of Labado. The “Project for
improving speculative Knowledge by practical and
mechanical operations” was generating sequences
of words by random permutations and “where they
found three or four Words that might make Part of
a Sentence, they dictated them to . . . Scribes.” This
process, although promising to produce many
interesting sentences in the (very) long run, is
rather inefficient and was recently proved to be
NP-hard.

2. We are assuming a rather narrow view of
machine learning—that is, supervised and unsuper-
vised inductive learning from examples. See Car-
bonell, Michalski, and Mitchell (1983) for a
broader and more detailed view. 

3. Published as a chapter in Knowledge Discovery in
Databases, edited by Gregory Piatetsky-Shapiro and
William J. Frawley. Menlo Park, Calif.: AAAI Press,
1991.
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