Sleep Sets Meet Duplicate Elimination

Yusra Alkhazraji
University of Freiburg, Germany
alkhazry@informatik.uni-freiburg.de

Martin Wehrle
University of Basel, Switzerland
martin.wehrle@unibas.ch

Abstract

The sleep sets technique is a path-dependent pruning method for state space search. In the past, the combination of sleep sets with graph search algorithms that perform duplicate elimination has often shown to be error-prone. In this paper, we provide the theoretical basis for the integration of sleep sets with common search algorithms in AI that perform duplicate elimination. Specifically, we investigate approaches to safely integrate sleep sets with optimal (best-first) search algorithms. Based on this theory, we provide an initial step towards integrating sleep sets within A* and additional state pruning techniques like strong stubborn sets. Our experiments show slight, yet consistent improvements on the number of generated search nodes across a large number of standard domains from the international planning competitions.

Introduction

State space search is a popular approach to solve search and planning tasks. To tackle the state explosion problem, techniques like move pruning (Burch and Holte 2012; Holte and Burch 2014) and sleep sets (Godefroid and Wolper 1992; Godefroid 1996; Wehrle and Helmert 2012; Holte, Alkhazraji, and Wehrle 2015) have been investigated. Both move pruning and sleep sets are path-dependent pruning techniques that preserve the reachability of all reachable states. Such techniques can be beneficial to reduce the number of repeated explorations of equal states in tree search algorithms like IDA*. In addition, previous work in computer aided verification (e.g., Godefroid 1996) showed that the combination with state reduction techniques can yield synergy effects when applied with search algorithms that perform duplicate elimination. Furthermore, for efficiency reasons, some form of duplicate elimination (like cycle detection) is often performed also for tree search algorithms. Overall, the question arises to which extent duplicate elimination and path-dependent pruning can safely be integrated.

Generally, integrating path-dependent techniques with graph search algorithms is non-trivial because subtle interactions may occur that can render search algorithms suboptimal or incomplete. For example, Holte (2013) has studied the interaction of duplicate elimination with move pruning, showing that rather strict requirements are needed for a safe integration. In contrast, in their original form, sleep sets have been proposed in several variants for depth-first search with duplicate elimination, which turned out to be incomplete later on, as shown by Koutny and Pietkiewicz-Koutny (1995) as well as by Bosnacki et al. (2009). However, although corrected versions have been proposed, sleep sets have hardly been investigated in combination with further search algorithms that perform duplicate elimination. In particular, the general question how they can be applied with optimal (best-first) graph search algorithms has not yet been answered so far. Although short counter-examples are usually preferred in the area of computer aided verification for the purpose of debugging faulty system models, approaches that guarantee optimality have mostly not been considered by the verification community. In contrast, optimal solutions are often desired for search and planning problems.

In this paper, we develop the theoretical basis for the integration of sleep sets with common search algorithms in AI that perform duplicate elimination. To prepare the ground for this integration, we provide a literature analysis of four main variants of sleep sets when combined with different forms of duplicate elimination and graph search algorithms. Based on this analysis, we provide the theoretical foundations on the combination of sleep sets with common best-first (optimal) search algorithms that perform duplicate elimination. Furthermore, as a first step towards the application of sleep sets for state pruning, we propose an integration of A* with sleep sets and strong stubborn sets for search and planning (e.g., Alkhazraji et al. 2012). Our implementation in the Fast Downward planning system (Helmert 2006) shows slight, yet consistent improvements regarding the size of the generated search space on a large class of domains from the international planning competitions.

Background

We consider search and planning problems formalized in the SAS* formalism (Bäckström and Nebel 1995), which is based on a finite set \mathcal{V} of finite-domain state variables. A partial state is defined as an assignment from a subset of \mathcal{V}, denoted with $\text{vars}(s)$, to the corresponding domain of the variables in $\text{vars}(s)$. For a partial state s and variable $v \in \text{vars}(s)$, the value of v in s is denoted with $s[v]$. A state s is a partial state with $\text{vars}(s) = \mathcal{V}$. We assume a given initial state s_0 and a partial goal state s_\star. We will denote
States can be transformed with operators \(o = \langle \text{pre}(o), \text{eff}(o) \rangle \), where both the precondition \(\text{pre}(o) \) and the effect \(\text{eff}(o) \) are partial states. The set of operators is denoted with \(\mathcal{O} \). An operator \(o \in \mathcal{O} \) is applicable in a state \(s \) if \(\pre(o)[v] = s[v] \) for all \(v \in \text{vars}(\pre(o)) \), and applying an applicable operator \(o \) in \(s \) yields the successor state \(s' = o[s] \) by changing the values in \(s \) of the variables in \(\text{eff}(o) \) accordingly. The set of all applicable operators in state \(s \) is denoted with \(\text{app}(s) \). Operators \(o \) have a non-negative cost \(\text{cost}(o) \). If all \(o \in \mathcal{O} \) have the same cost, the operators in \(\mathcal{O} \) are called unit-cost operators. Sequences of operators \(\sigma = o_1 \ldots o_n \) that are sequentially applicable in the initial state \(s_0 \), i.e., if the state \(\sigma(s_0) := o_n[\ldots o_1[s_0] \ldots] \) is defined, are called paths. The cost of \(\sigma \) is the sum of the costs of the operators in \(\sigma \). The length of \(\sigma \) is the number of operators in \(\sigma \), and denoted with \(|\sigma| \). Our objective is to find a path to a goal state, i.e., a state that complies with \(s_\text{g} \). Paths that lead to goal states are called solutions.

Furthermore, we need the notion of commutativity of operators. We say that \(o \) and \(o' \) are commutative if \(\text{vars}(\text{eff}(o)) \cap \text{vars}(\text{eff}(o')) = \emptyset \), \(\text{vars}(\text{eff}(o)) \cap \text{vars}(\text{eff}(o')) = \emptyset \), and there exists no \(v \in \text{vars}(\text{eff}(o)) \cap \text{vars}(\text{eff}(o')) \) such that \(\text{eff}(o)[v] \neq \text{eff}(o')[v] \). We denote commutative operators \(o \) and \(o' \) with \(o \cong o' \). To define sleep sets, we use the definition of Holte et al. (2015). Let \(\leqss \) be a total order on the set of operators \(\mathcal{O} \).

Definition 1. For a path \(\sigma = o_1 \ldots o_n \), the sleep set \(\text{ss}(\sigma) \) for \(\sigma \) is a set of operators that satisfies the following conditions: For \(n = 0 \), i.e., for the empty path \(\varepsilon \), \(\text{ss}(\varepsilon) := \emptyset \) (the empty set). For \(n > 0 \), \(\text{ss}(\sigma) := \{ o \text{ applicable in } \sigma(s_0) | (o \cong o) \text{ and } (o <ss o_n \text{ or } o \in ss(o_1 \ldots o_{n-1})) \} \).

Sleep sets can be used as an operator pruning technique: for a state \(s \) reached by path \(\sigma \), instead of applying all operators that are applicable in \(s \), only apply the applicable operators in \(s \) that are not contained in \(\text{ss}(\sigma) \).

Example 1. Consider a planning problem with variables \(\mathcal{V} = \{ a, b \} \) with \(\text{dom}(a) = \text{dom}(b) = \{ 0, 1 \} \), initial state \(s_0 = \{ a \mapsto 0, b \mapsto 0 \} \), and goal \(s_\text{g} = \{ a \mapsto 1, b \mapsto 1 \} \). The set of operators is given by \(\mathcal{O} = \{ o_1, o_2 \} \), where \(o_1 = \{ \{ a \mapsto 0 \}; \{ a \mapsto 1 \} \} \) and \(o_2 = \{ \{ b \mapsto 0 \}; \{ b \mapsto 1 \} \} \). The cost \(\text{cost}(o_1) = \text{cost}(o_2) = 1 \). There are two solutions, namely the operator sequences \(o_1 o_2 \) and vice versa, \(o_2 o_1 \). The state space of the problem is depicted in Fig. 1 on the left (where we shortly denote states \(\{ a \mapsto i, b \mapsto j \} \) as \(ij \)).

![Figure 1: State spaces without and with sleep sets pruning](image)

When sleep set pruning is applied with the operator or-

dering \(o_1 <ss o_2 \), we observe that the sleep set of the path \(\sigma = o_2 \) is \(\{ o_1 \} \), because \(o_1 \) is applicable in the state \(s := \{ a \mapsto 0, b \mapsto 1 \} \), \(o_1 \cong o_2 \), and \(o_1 <ss o_2 \). Hence sleep set pruning will not apply \(o_1 \) in \(s \), indicated with the dashed arrow in Fig. 1 on the right.

As the sleep sets pruning technique is path-dependent, it cannot be directly applied to algorithms that perform duplicate elimination, because different paths to a state \(s \) can cause different pruning decisions in \(s \). To be able to describe algorithms that apply sleep sets in combination with duplicate elimination, we will use the notion of sleep sets defined for several paths \(\sigma_1, \ldots, \sigma_n \) that all generate the same state \(s \). We will denote this set with \(ss(\sigma_1, \ldots, \sigma_n) \), which has the intended meaning to carry the information which operators to prune in \(s \) when \(s \) has been reached by \(\sigma_1, \ldots, \sigma_n \) in this particular order (i.e., \(\sigma_1 \) first, \(\sigma_n \) last). The formal definition of the semantics of \(ss(\sigma_1, \ldots, \sigma_n) \) will depend on the particular way sleep sets and duplicate elimination are integrated. We will come back to this point in the next section.

As a basis for our further investigations, we provide an analysis of several sleep set variants from the literature in combination with graph search algorithms.

A Literature Analysis on Sleep Sets

In the literature (Godefroid and Wolper 1992; Godefroid, Holzmann, and Pirotta 1993; 1995; Godefroid 1996; Holte, Alkhaazraji, and Wehrle 2015), four main variants of sleep sets with duplicate elimination have been considered.

(A) Full duplicate elimination: Let \(s \) be a state first generated by path \(\sigma \). If \(s \) is revisited by path \(\sigma' \), then \(s \) is immediately pruned as duplicate. Sleep sets are computed (only once per state) as in Def. 1, and \(ss(\sigma, \sigma') \) does not need to be computed because \(s \) is pruned as duplicate in this case. This variant has been applied in a first approach on sleep sets (Godefroid and Wolper 1992), used within depth-first search. However, as the sleep sets’ pruning decisions are path-dependent, reaching a state \(s \) via different paths can cause different operators to be pruned in \(s \) when \(s \) is revisited. As a consequence, the above variant is incomplete, as shown by counter-examples by Koutny and Pietkiewicz-Koutny (1995)\(^1\) and Bosnacki et al. (2009).

(B) States that are revisited are pruned as duplicates as in (A), but the definition of sleep sets is modified compared to Def. 1. In a nutshell, in contrast to (A), operators that close a cycle in the state space are treated in a special way for the sleep sets computation. To describe this modification in more detail, we must first provide some more technical details how sleep sets are typically incrementally computed. Firstly, (i) every time a successor path \(\sigma o \) is generated from path \(\sigma \), all operators from the sleep set \(ss(\sigma) \) of the parent path \(\sigma \) that are commutative with \(o \) are propagated to \(ss(\sigma o) \). Secondly, (ii) to accommodate for the ordering condition of sleep sets (i.e., for the “\(o <ss o_n \)” part in Def. 1), after having generated the

\(^1\)In the paper by Koutny and Pietkiewicz-Koutny (1995), a modified sleep set algorithm is considered, as discussed in (B). However, their counter-example applies to (A) as well.
successor path \(\sigma_0 \), \(o \) is (locally) included in \(ss(\sigma) \) to be propagated to the further successor paths \(\sigma o' \) of \(\sigma \) generated with operators \(o' \) with \(o <_{ss} o' \).

To avoid operators to be propagated in case a cycle is closed, the second step (ii) is restricted to be performed only if \(o \sigma \) does not yield a state that is already on the search stack (Godfried, Holzman, and Pirott 1993). In other words, for a state \(s \), assume that applying \(o \) in \(s \) closes a cycle, i.e., assume that the application of \(o \) in \(s \) yields a state that is on the search stack. Then \(o \) is excluded from the sleep sets of those successor states \(s' \) of \(s \) that are generated with operators \(o' \) with \(o <_{ss} o' \).

However, the resulting algorithm is still incomplete, as shown by the counter-example by Koutny and Pietkiewicz-Koutny (1995). In an additional refinement, the first step (i) is refined such that cycle-closing operators are ruled out of sleep sets at the time a state is taken from the stack, i.e., before the recursive depth-first search call for the successors. The final algorithm (Godfried, Holzman, and Pirott 1995) resolves the issue of incompleteness, by guaranteeing that every time \(o \) closes a cycle, \(o \) is not contained in the sleep set of the parent path.

(C) Let \(s \) be a state first reached by \(\sigma_1 \), and then revisited by paths \(\sigma_2, \ldots, \sigma_n \). The sleep set \(ss(\sigma_1, \ldots, \sigma_n) \) is inductively defined as \(ss(\sigma_1, \ldots, \sigma_{n-1}) \cap ss(\sigma_n) \). Informally, the sleep set after exploring \(\sigma_n \) is updated according to \(ss(\sigma_n) \) such that all operators are applied according to \(ss(\sigma_n) \) that have been pruned according to \(ss(\sigma_1, \ldots, \sigma_{n-1}) \) in the corresponding state before. States are pruned as duplicates if \(ss(\sigma_1, \ldots, \sigma_n) = \emptyset \).

Informally, the intersection of sleep sets is needed in this variant because the intersection ensures that the remaining operators in the updated sleep set can still be pruned (according to all the sleep sets computed for the state), corresponding to the pruning information obtained on all paths on which the state has been reached so far. This variant of updating sleep sets has been proposed by Godfried (1996) — we will come back to it in the next section.

(D) Let \(s \) be a state revisited on a cycle, i.e., let \(s \) first be generated by path \(\sigma = o_1 \ldots o_n \) and afterwards by path \(\sigma' = o_1 \ldots o_{n+k} \) for \(k \geq 1 \). Then \(s \) is pruned as duplicate, and as in case (A), \(ss(\sigma, \sigma') \) does not need to be computed. For all the remaining states reached by uncyclic paths \(\sigma_1, \ldots, \sigma_n \), an entirely new sleep set is computed according to Def. 1, i.e., \(ss(\sigma_1, \ldots, \sigma_n) := ss(\sigma_n) \).

This variant has been proposed for planning (Holte, Alkhazraj, and Wehrle 2015) within IDA* and cycle detection. Holte et al. provide a more general definition of sleep sets that allows for more pruning. However, they did not provide a proof that IDA* with sleep sets and cycle detection is completeness and optimality preserving. We will show that this is indeed the case.

In most of these related papers, there is no empirical experimental study of sleep sets in combination with duplicate elimination. As an exception, Holte et al. provide an experimental study, focusing on a comparison of the pruning power of sleep sets compared to their generalization.

Sleep Sets with Duplicate Elimination

We consider the combination of sleep sets with graph search algorithms, with a focus on optimal search algorithms. For our investigations, we need some more terminology. Following Holte et al. (2015), orderings \(<_O \) on the set \(O \) of operators induce a lexicographical ordering on the set of operator sequences: for operator sequences \(\sigma = o_1 \ldots o_n \) and \(\sigma' = o'_1 \ldots o'_{n'} \), if \(|\sigma| < |\sigma'| \), then \(\sigma <_O \sigma' \); if \(|\sigma| = |\sigma'| \), then \(\sigma <_O \sigma' \) iff \(o_i < o'_i \), where \(i \) is the index such that \(o_k = o'_k \) for all \(1 \leq k \leq i - 1 \), and \(o_i \neq o'_i \). For an ordering defined on \(O \), we will use the same symbol for the induced lexicographical ordering on operator sequences when the meaning is clear from the context.

For states \(s \) and \(s' \) such that \(s' \) is reachable from \(s \), and for the given sleep sets ordering \(<_{ss} \), let \(\min(s, s') \) denote the least-cost operator sequence (among all operator sequences) that is applicable in \(s \) and leads to \(s' \) and that is minimal according to \(<_{ss} \). Some of our investigations are based on the following theorem by Holte et al. (2015).

Theorem 1 (Holte et al., 2015). Let \(s, s' \) be states with \(s' \) reachable from \(s \). Let \(\min(s, s') := o_1 \ldots o_n \). Then \(o_k \notin ss(o_1 \ldots o_{k-1}) \) for all \(1 \leq k \leq n \).

In particular, the theorem states that for all states reachable from \(s_0 \), the path \(\min(s_0, s) \) is preserved by sleep sets. This result in turn provides us with a sufficient criterion for complete and optimal graph search algorithm applied with sleep sets: if \(\min(s_0, s) \) is preserved, then by Theorem 1 completeness and optimality are preserved as well.

For a search algorithm \(A \) that works on the operator set \(O \), we assume a total ordering \(<_A \) on \(O \) in which \(A \) generates its successor states. Furthermore, if \(A \) is applied with sleep sets, we assume that \(<_A \) and \(<_{ss} \) are identical.

Breadth-First Search

We consider the combination of breadth-first search with variant (A) discussed in the last section: for state \(s \) and path \(\sigma \) that generates \(s \) for the first time, operators are pruned in \(s \) according to \(ss(\sigma) \), and \(s \) is pruned when reached by other paths later on. We call this combination \(BFS^{ss} \). The following theorem shows that \(BFS^{ss} \) inherits completeness and optimality from standard breadth-first search.

Theorem 2. \(BFS^{ss} \) is complete. When applied with unit-cost operators, \(BFS^{ss} \) is optimal.

The proof of Theorem 2 will rely on showing that \(BFS^{ss} \) preserves \(\min(s_0, s) \) for all reachable states \(s \) when \(<_A \) is equal to \(<_{ss} \). For the proof, we first observe in the following lemma that prefixes of minimal paths are minimal as well.

Lemma 1. Let \(s \) be a reachable state, and let \(\min(s_0, s) = o_1 \ldots o_n \) be the minimal path from \(s_0 \) to \(s \). Then for all \(i \in \{1, \ldots, n - 1\} \) and \(s_i := o_1 \ldots o_i [s_0] \ldots \): \(\min(s_0, s_i) = o_1 \ldots o_i \) is the minimal path from \(s_0 \) to \(s_i \).

Proof. Observe that for paths \(\sigma \) and \(\sigma' \), if \(\sigma <_{ss} \sigma' \), then \(\sigma \sigma' X <_{ss} \sigma' \sigma X \sigma' \sigma X \) for all operator sequences \(\sigma X \). (*)

Consider \(\sigma_i := o_1 \ldots o_i \) and \(s_i := o_1 \ldots o_i [s_0] \ldots \) for some \(i \in \{1, \ldots, n - 1\} \). First, we observe that \(\text{cost}(\sigma_i) \) is minimal among all paths to \(s_i \) (otherwise, if there was a
cheaper path σ' to s_i, then $\sigma'o_{i+1} \ldots o_n$ would be cheaper than $\min(s_0, s)$. Second, consider a path σ' to s_i with $cost(\sigma') = cost(\sigma_i)$. If $\sigma' <_{ss} \sigma_i$, then by (*) for $X = o_{i+1} \ldots o_n$, $\sigma'X <_{ss} \sigma_iX = \min(s_0, s)$, which again would imply that $\min(s_0, s)$ is not the minimal path to s. □

Proof. (Theorem 2) Let s be a state reachable from s_0. Let $\min(s_0, s) = o_1 \ldots o_n$, and $\sigma = o'_1 \ldots o'_m$ be a path with $\sigma \neq \min(s_0, s)$ that reaches s. We show that standard breadth-first search using $<_A$ generates s with $\min(s_0, s)$ first, i.e., before it generates s with σ. To see this, consider the following cases:

1. $n < m$: $\min(s_0, s)$ is explored before σ because breadth-first search explores shorter paths before longer ones.

2. $n > m$ cannot occur because it would contradict the assumption that $\min(s_0, s)$ is minimal.

3. $n = m$: Let i be the left-most position where $\min(s_0, s)$ and σ differ, i.e., $o_i \neq o'_i$ and $o_j = o'_j$ for $j < i$. By assumption, $<_{ss}$ is equal to $<_A$, and $\min(s_0, s) <_{ss} \sigma$, hence $\min(s_0, s) <_A \sigma$ and $o_i <_A o'_i$. It follows that breadth-first search explores the path $o_1 \ldots o_i$ before $o'_1 \ldots o'_i$, and hence (by exploring states in a first-in-first-out manner) also their completion $\min(s_0, s)$ before σ.

By Lemma 1, the prefixes of $\min(s_0, s)$ are minimal as well, hence it follows that all states s_1, \ldots, s_n generated on the path from s_0 to s are generated on the path $\min(s_0, s)$ first. It follows that s_1, \ldots, s_n are not pruned by breadth-first search as duplicate states. By Theorem 1, it follows that additionally computing sleep sets for these prefix paths that generate s_1, \ldots, s_n, which yields BFS^{ss}, preserves $\min(s_0, s)$, showing the claim. □

As a general observation, to preserve optimality of graph search algorithms when applied with sleep sets, it is sufficient to guarantee that states on $\min(s_0, s)$ are not pruned as duplicates. The theorem shows that this is the case for breadth-first search even with full duplicate elimination according to variant (A), because the $\min(s_0, s)$ paths are generated first. In general, we do not have this property, e.g., with Dijkstra’s algorithm or more generally, with A^*. Therefore, sleep set updates will be needed.

A^* Search

A^* can be combined with sleep sets variant (C) described in the literature review section, by a reduction to the sleep set algorithm proposed by Godefroid (1996). In his monograph, Godefroid proposes this algorithm directly in combination with the persistent sets pruning technique. For ease of presentation, we will first discuss his algorithm and the adaptation to A^* for the special case without persistent sets, which amounts to the “pure” combination of A^* and sleep sets. We will come back to the combination with additional pruning techniques (based on strong stubborn sets, which is a variant of persistent sets) in the next section.

We do not give pseudo code of Godefroid’s algorithm, but only provide a short description of the main points (for more details, the reader is referred to his monograph, Section 5.2). Godefroid uses a stack as open list, and stores expanded states (together with their associated sleep set) in a hash table as closed list. States that are generated and recognized as duplicates are handled by updating the associated sleep set: Consider a state s that has been generated by paths $\sigma_1, \ldots, \sigma_n$, and is generated again by path σ. If s is contained in closed, then all operators in $ss(\sigma_1, \ldots, \sigma_n) \setminus ss(\sigma)$ are additionally applied in s. In particular, states are pruned as duplicates only in case the corresponding sleep set has become empty.

We adapt Godefroid’s algorithm to emulate A^* combined with sleep sets, called A^*_s in the following. For simplicity, we assume consistent heuristics (for inconsistent heuristics, some more cases on state reopening need to be distinguished). In a nutshell, compared to Godefroid’s algorithm, A^*_s differs in three main points: Firstly, although Godefroid’s algorithm uses a stack as open list, the completeness proof that all states of the state space can still be generated (Theorem 5.4 in the monograph) does not rely on the stack behavior. Applying the algorithm with a priority queue retains the completeness property (we will formalize this claim below). Secondly, like A^*, we additionally need to check in A^*_s for the goal condition when states are popped from open. These adaptations are trivial extensions. In addition, assume a state s that has been generated by paths $\sigma_1, \ldots, \sigma_n$, and assume s is generated again by path σ. If s is contained in open and not yet in closed, then the sleep set of s in open is updated according to σ, i.e., $ss(\sigma_1, \ldots, \sigma_n) := ss(\sigma_1, \ldots, \sigma_n) \cap ss(\sigma)$.

We will describe A^*_s in more detail in the following. To avoid confusion, we slightly extend the notation on sleep sets $ss(\sigma_1, \ldots, \sigma_n)$ for states s reached on several paths $\sigma_1, \ldots, \sigma_n$: To make clear which state we are talking about, we explicitly label the state s reached by path σ with σ^*. Accordingly, the sleep set of state s reached by paths $\sigma_1^*, \ldots, \sigma_n^*$ in this order is denoted with $ss(\sigma_1^*, \ldots, \sigma_n^*)$.

Computation of operators to be applied

Instead of considering all applicable operators in s (like A^*), the set of operators applied in s by A^*_s is defined as

$$app(s) \setminus ss(\sigma_1^*, \ldots, \sigma_n^*),$$

where $\sigma_1^*, \ldots, \sigma_n^*$ are the paths by which s has been generated at the time when s is expanded.

Operator application and sleep set updates

A^*_s applies the operators in $app(s) \setminus ss(\sigma_1^*, \ldots, \sigma_n^*)$ and computes (or updates, respectively) the corresponding sleep set of the successor states. The pseudo code of this expansion step, called $\text{EXPAND}(s, app(s), ss(\sigma_1^*, \ldots, \sigma_n^*))$ in the following, is given in Fig. 2.

Assuming that σ^* is the path on which s has been reached last, $\text{EXPAND}(s, app(s), ss(\sigma_1^*, \ldots, \sigma_n^*))$ computes the sleep set of the successor state s' reached on the path σ^*_o (Line 5–6). The sleep set of s' is updated according to variant (C) as described in the sleep sets literature analysis.
section (Line 7). If \(s' \) is closed, then \(s' \) is further expanded by generating all successors that are not pruned according to the most recently computed sleep set (Line 8–10). Recall that \(\sigma_1', \ldots, \sigma_m' \) are the paths by which \(s' \) has been reached before reaching \(s' \) on \(\sigma' \). At this point, we also observe that the particular function signature (which includes \(\text{app}(s) \)) and the sleep set of \(s \) is convenient for the recursive call in Line 10. Finally, in Line 11–13, we cover the case where \(s' \) is either generated for the first time, or previously generated but not expanded yet, i.e. \(s' \) is already open.

Theorem 3. For admissible and consistent heuristics, \(\Lambda_{ss}^* \) is complete and optimal.

Proof. The proof is a special case of the proof of Theorem 6, which shows the claim for \(\Lambda_{ss}^* \) with additional state pruning based on strong stubborn sets. \(\Box \)

IDA* With Cycle Detection

Sleep sets have already been applied with a limited form of duplicate elimination: Holte et al. (2015) combine IDA* with sleep sets and cycle detection as described in part (D) of the literature analysis section: States that are revisited on a cycle are pruned as duplicates, and for all other states of the literature analysis section: States that are revisited on duplicate elimination: Holte et al. (2015) combine IDA. Sleep sets have already been applied with a limited form of

The proof closely follows the structure of the proof by Holte and Burch (2014) that move pruning can safely be used with heuristic cutoffs, sleep sets can safely be applied with IDA* and heuristic cutoffs: For the cost \(C^* \) of a cheapest path to a goal state, heuristic cutoffs use a bound \(B \geq C^* \), and prune all paths with strictly larger costs than \(B \). Let \(IDA_{hc}^* \) denote IDA* with bound \(B \geq C^* \) combined with sleep sets.

Theorem 5. IDA_{hc}^* with admissible heuristics is complete and optimal.

Proof. Let \(h \) be an admissible heuristic, and let \(s \) be a state that is reachable from \(s_0 \). We show that heuristic cutoffs do not eliminate \(\min(s_0, s) \). Let operator sequence \(P \) be a prefix of \(\min(s_0, s) \). As \(h \) is admissible, we have \(\text{cost}(P) + h(P[s_0]) \leq \text{cost}(\min(s_0, s)) \) since \(P \) is a prefix of \(\min(s_0, s) \). As \(\text{cost}(\min(s_0, s)) = C^* \), we have \(\text{cost}(P) + h(P[s_0]) \leq C^* \). Heuristic cutoffs can only prune paths with costs strictly larger than \(C^* \), hence \(P \) is not pruned. Since \(P \) has been chosen as an arbitrary prefix of \(\min(s_0, s) \) (including \(\min(s_0, s) \) itself), this shows that heuristic cutoffs do not prune \(\min(s_0, s) \). \(\Box \)

Combining Sleep Sets With State Pruning

When applying sleep sets within a search algorithm, the set of generated states is equal to the set of generated states without sleep sets pruning. Hence, a natural question is whether sleep sets can be applied in graph search algorithms in combination with further pruning techniques that also prune states. Following Godefroid (1996), we provide an initial step of integrating sleep sets with strong stubborn sets, where we particularly investigate optimality of the remaining pruning technique.

Godefroid showed that sleep sets can safely be combined with persistent sets (1996), in the sense that the combined algorithm still preserves all deadlocks of the system. A persistent set in a state \(s \) is a subset of the applicable operators in \(s \), where the applicable operators that are not included in the persistent set are pruned. Strong stubborn sets are a variant of persistent sets, which have originally been proposed for model checking Petri nets (Valmari 1989), and recently been applied for domain-independent planning as search (Alkhaazraji et al. 2012; Wehrle et al. 2013; Wehrle and Helmert 2014). In contrast to sleep sets, strong stubborn sets take goal states into account for their pruning decision. In a nutshell, for a given state \(s \), a strong stubborn set \(T_\pi \) for \(s \) contains i) a disjunctive action landmark in \(s \), ii)
for all operators o in T_s that are applicable in s all interfering operators with o, and iii) for all operators o in T_s that are not applicable in s a set N of operators such that all plans starting in s that contain o also contain an operator $o' \in N$ before the first occurrence of o (such sets N are called necessary enabling sets). The set of applicable operators of T_s is a subset of the applicable operators in s. For the following investigations, it is not necessary to understand further details of strong stubborn sets and how they can be computed – the only important property that will be needed for our discussions and proofs is the following: When applying A^* with strong stubborn sets, then for every state s and for every solution π that starts in s, at least one permutation of π is preserved. In more detail, among all permutations of π's operators that lead from s to a goal state, there is at least one first operator of such a permutation that is not pruned in s.

Example 2. Consider again the problem in Fig. 1, consisting of two independent operators o_1 and o_2, initial state 00, and goal state 11. The original state space is depicted on the left in Fig. 3. In contrast to sleep sets, strong stubborn sets can recognize that among the two solutions, only one needs to be explored, and in particular, one of the “intermediate” states 10 and 01 does not need to be generated. The resulting reduced state space is depicted on the right. Among the solutions $\pi_1 = o_1 o_2$ and $\pi_2 = o_2 o_1$, the first operator of π_1 is preserved in this example.

![Figure 3: State spaces without and with strong stubborn sets](image)

Along the lines of Godefroid, we show that strong stubborn sets can be combined with sleep sets within A^*_sssss in a completeness and optimality preserving way. The resulting algorithm, called A^*_sssss, in the following, works exactly like A^*_ss, except that the set of operators applied in a state s is defined as the applicable operators from the set

$$T_s \setminus ss(\sigma^*_1, ..., \sigma^*_n)$$

instead of $\text{app}(s) \setminus ss(\sigma^*_1, ..., \sigma^*_n)$ (see Line 2 in Fig. 2), where T_s is a strong stubborn set, and $\sigma^*_1, ..., \sigma^*_n$ are the paths that have generated s.

The following notation and correctness proofs closely follow those given by Godefroid for deadlock detection in concurrent systems (1996). Let s_g be a goal state reachable from a state s, i.e., there is an operator sequence σ such that applying σ in s leads to s_g. The equivalence class of permutation equivalent paths, consisting of all paths σ that are permutations of the operators in σ such that σ still leads from s to s_g, is denoted with $[\sigma]^*$. Formally, $[\sigma]^* := \{\bar{\sigma} \mid \bar{\sigma}$ is a permutation of σ leading from s to a goal state $\}$.

For $[\sigma]^*$, we denote the set $\Sigma^s,\sigma := \{\sigma^* \mid \sigma \in [\sigma]^*, \sigma = o_1^* o_2^* ... o_n^*\}$ the set of initial operators of $[\sigma]^*$, i.e., the set that contains the first operators of all paths in $[\sigma]^*$.

Theorem 6. Let s be a state, and let s_g be a goal state reachable from s via operator sequence σ (i.e., $s(s_g) = s_g$). Let $\sigma_1, ..., \sigma_n$ be the paths explored by A^*_sssss that generated s in this particular order before termination (i.e., s is generated by σ_1 first, and by σ_n last).

If $\Sigma^s,\sigma \cap ss(\sigma_1, ..., \sigma_n) = \emptyset$, then there is a permutation $\bar{\sigma} \in [\sigma]^*$ that is preserved by A^*_sssss.

Before giving the proof, let us discuss the claim and its implications in some more detail. Theorem 6 states that if the (updated) sleep set of a state s eventually does not contain any first operator of the sequences in $[\sigma]^*$, then at least one of these sequences is preserved. As discussed by Godefroid, this particularly implies the completeness of A^*_sssss because the sleep set of the initial state is empty by definition. In addition, we observe that A^*_sssss remains optimal because for all solutions, at least one permutation is preserved.

Proof. (Theorem 6) Consider the permutation equivalent paths $[\sigma]^*$ of σ, and the set of initial operators Σ^s,σ of $[\sigma]^*$. We show by induction on the length of σ that at least one permutation sequence $\bar{\sigma} \in [\sigma]^*$ is preserved by A^*_sssss. If $|\sigma| = 0$, the result is immediate.

If $|\sigma| > 0$, then there is an operator sequence of length $|\sigma|$ from s to s_g in the state space induced by A^* and strong stubborn sets. The proof will show that such an operator sequence to reach s_g still exists in the state space induced by A^*_sssss.

First, we observe that there is $o \in \Sigma^s,\sigma$ that is applied by A^*_sssss in s: To see this, consider the first sequence σ^*_k ($1 \leq k \leq n$) by which state s is generated such that $\Sigma^s,\sigma \cap ss(\sigma^*_1, ..., \sigma^*_k) = \emptyset$ (i.e., $\Sigma^s,\sigma \cap ss(\sigma^*_1, ..., \sigma^*_k) \neq \emptyset$ for $1 \leq i \leq k - 1$). Such σ^*_k must exist because $\Sigma^s,\sigma \cap ss(\sigma^*_1, ..., \sigma^*_n) = \emptyset$ by assumption, and by definition, sleep sets can only reduce when a state is revisited.

Now consider the expansion process of s when s is reached by σ^*_k. Let o be the operator in Σ^s,σ that is applied in s and is smallest among the remaining operators in Σ^s,σ (according to $<ss$) that have not yet been applied in s. Such an operator must exist because $\Sigma^s,\sigma \cap ss(\sigma^*_1, ..., \sigma^*_k-1) \neq \emptyset$.

Let $s' := o[s]$. As $o \in \Sigma^s,\sigma$, the goal state s_g is reachable from s' with an operator sequence σ' with $|\sigma'| = |\sigma| - 1$.

Consider the paths $p_1, ..., p_t$ explored by A^*_sssss that generate s'. To conclude the inductive proof argument, we will show (by contradiction) that $\Sigma^s,\sigma' \cap ss(p_1^*, ..., p_t^*) = \emptyset$. Assume $\Sigma^s,\sigma' \cap ss(p_1^*, ..., p_t^*) \neq \emptyset$. Then there exists an operator $\bar{o} \in \Sigma^s,\sigma'$ with $\bar{o} \in ss(p_1^*, ..., p_m^*)$ for all $1 \leq m \leq t$. In particular, $\bar{o} \in ss(p_1^*, ..., (\sigma_k o)^{\star'})$, which implies that \bar{o} and σ_k are commutative. It follows that \bar{o} is applicable in s (because \bar{o} is applicable in s', and \bar{o} is not disabled by o), and furthermore, \bar{o} is an initial operator of a permutation of σ which leads to s_g, i.e., $\bar{o} \in \Sigma^s,\sigma$.

On the other hand, as $\bar{o} \in ss(p_1^*, ..., (\sigma_k o)^{\star'})$, it follows that $\bar{o} \in ss(\sigma^*_1, ..., \sigma^*_n)$ already (and \bar{o} is propagated to $ss(p_1^*, ..., (\sigma_k o)^{\star'})$ afterwards), or \bar{o} has been added to
applied before the same number of node generations by A
issues. Domains in which the same problems are solved with
ing the smallest operator according to
search time for all problems which at least one of A
left out. Figure 5 lists the generated search nodes as well as
sion A
(hence in particular for every optimal solution.
Proof. Completeness follows because the sleep set of the
initial state is empty by definition. Optimality follows be-
cause for every solution π, a permutation of π is preserved,
hence in particular for every optimal solution.

Experimental Evaluation
We have implemented the combined approach in the Fast
Downward planning system (Helmert 2006) in order to ex-
perimentally evaluate the impact of sleep sets combined with
strong stubborn sets on the size of the generated state space.
The experiments are performed on a cluster with Intel Xeon
E5-2650v2 2.6 GHz CPUs, with a timeout of 30 minutes
and a memory bound of 3 GB per run. We consider the
STRIPS planning domains of the deterministic, sequential
and a memory bound of 3 GB per run. We consider the
E5-2650v2 2.6 GHz CPUs, with a timeout of 30 minutes
strong stubborn sets on the size of the generated state space.
exploit experimentally evaluate the impact of sleep sets combined with
Studies on the properties of sleep sets...
sis, we have provided approaches to combine sleep sets with common optimal best-first graph search algorithms and with strong stubborn sets. For the future, the paper motivates the further investigation of sleep sets combined with state reduction techniques. As a proof of concept, the “direct” combination of sleep sets with strong stubborn sets has shown that it is possible to further reduce the number of node generations compared to strong stubborn sets. It will be interesting to investigate if sleep sets can be integrated more tightly with state pruning techniques, and if further (and stronger) synergy effects can be achieved.

Acknowledgments

We thank the anonymous reviewers for their comments, which helped improve the paper.

This work was partially supported by the Swiss National Science Foundation as part of the project “Automated Reformulation and Pruning in Factored State Spaces (ARAP).”

References

