Proceedings:
Proceedings of the International AAAI Conference on Web and Social Media, 9
Volume
Issue:
Vol. 9 No. 1 (2015): Ninth International AAAI Conference on Web and Social Media
Track:
Poster Papers
Downloads:
Abstract:
Sarcasm requires some shared knowledge between speaker and audience; it is a profoundly contextual phenomenon. Most computational approaches to sarcasm detection, however, treat it as a purely linguistic matter, using information such as lexical cues and their corresponding sentiment as predictive features. We show that by including extra-linguistic information from the context of an utterance on Twitter — such as properties of the author, the audience and the immediate communicative environment — we are able to achieve gains in accuracy compared to purely linguistic features in the detection of this complex phenomenon, while also shedding light on features of interpersonal interaction that enable sarcasm in conversation.
DOI:
10.1609/icwsm.v9i1.14655
ICWSM
Vol. 9 No. 1 (2015): Ninth International AAAI Conference on Web and Social Media