

Snackbot: Vision and Perception with Video and

Audio Captures Using GStreamer

Hasani Burns and Chutima Boonthum-Denecke

Department of Computer Science
Hampton University
Hampton, VA 23668

hasani.burns@gmail.com, chutima.boonthum@hamptonu.edu

Abstract
The Snackbot, is a robot designed in collaboration between
the Robotics Institute, and the Human Computer Interaction
Institute of Carnegie Mellon University. The Snackbot was
created to traverse the halls of Carnegie Mellon University,
and deliver food items ordered by occupants of the offices.
The goal of this development project for the Snackbot, was
to refine the audio/video synchronization, and to also create
a simple way to log, and stream that data over a network.
Such a task requires that one not only carefully consider
different pieces of software to use, but also that they can
apply it across the necessary platform. For the Snackbot, the
sight, and sound are important qualities, especially when
testing out in the field using an operator. That ability is
crucial when preparing an interactive robot to autonomously
carry out its task efficiently.

 Introduction

The Snackbot (Lee et al. 2009) needed to be refined from a
software, backend side more so than on the physical,
hardware side. The GUI needed to be revamped, as the
Snackbot for the time being was a remote-controlled,
remote-operated machine. Both the movement, as well as
the dialogue were controlled through a user interface. Prior
to my arrival for research, the team working on the
Snackbot had some issues with the audio/video of the
robot. The radio cameras, as well as audio receiver were
out of synchronization which was an issue, as well as the
fact that they were unable to securely and efficiently
stream what was being captured from the Snackbot’s eyes
back to the operator. The only way to see how things
turned out fully, was to record with the radio cameras the
Snackbot used, and then play it back at the end. My job, as
well as my partner’s was to create a working, and easy to

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

use set of code commands for capturing, and streaming
audio and video feedback from the Snackbot during its trial
runs. This would be not only to look through the robot’s
eyes when testing, but also to save that test as a form of
video logging.

The Hypothesis
For a robot such as this to perform efficiently, as well as
stream data over a network to an operator, the ability for
the robot to “see” and “hear” is absolutely necessary.
 There were many ways we could have gone about
finding the software to use for this. At the time, we were
working with Ubuntu Linux 10.04, while the other
developers were using an older version, in 8.10. That being
said, we not only had to find a piece of software that was
easy to use, but one that was compatible with different
versions of Ubuntu Linux, or could be easily converted or
modified to work with them. The robot though, would need
to be able to stream synchronized audio and video data in
real 1 to 1 time, and as clearly as possible. This would be
necessary in order to send the robot into the field, run tests,
and see exactly what’s going on through the eyes of the
robot. With this, the operator would be able to monitor any
and all interaction and responses recorded by the Snackbot.

The Task
Early on, we come across GStreamer, a pipeline-based
multimedia framework written in the C programming
language. GStreamer basically opens the doors for a
programmer to create a variety of media handling and
manipulating components including what we needed
audio/video playback, recording, streaming, and editing.
When we first discovered this, we searched and found
variations, augmentations of this software using Python
programming. For a time, we did have working code that
could separately record, send data, receive data, and log.

597

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

When telling our supervisor about our progress, he advised
us that we should convert that code to C++ code.
 Gstreamer processes media through a pipeline system,
connecting a number of processing elements, each
provided by an appropriate plug-in. Many of these plug-ins
can be easily installed via the Ubuntu Linux Synaptic
Package Manager.
 This is an example of a filter model, which displays data
as it is encoded, then decoded, then finally sent to ALSA
drivers that in our case, were used to synchronize the data
and feed it to whatever form of output necessary.

In order to start building our necessary pipeline, we used a
simple workflow in which we defined the source, and then
specifying a sink at the end. A sink can be anything from a
file, to your own laptop or desktop monitor screen, to a
network and use your computer as a streaming server.

$ gst-launch v4l2src device=/dev/video0 ! \

'video/x-raw-

yuv,width=640,height=480,framerate=30/1' ! \

xvimagesink

The above code, gst-launch represents the initiation of the
GStreamer software, and it’s using v4l2src, or
video4linux2 as a stream source. The next command
specifies the device, here it corresponds to one’s laptop
webcam, though they do vary. In the commands, it’s also
specified that video is wanted, and the height and width of
the display is put in, as well as the frame rate. At the very
end, everything is linked to xvimagesink. This sink
displays the stream on your current screen. The above
commands, instead of placing them in the terminal, can be
placed in scripts, and executed from the terminal. This is
the foundation for using GStreamer on linux to capture and
manipulate audio and video.

$ gst-launch v4l2src ! ‘video/x-raw-

yuv,width=640,height=480,framerate=30/1' ! \

queue ! videorate ! 'video/x-raw-

yuv,framerate=30/1' ! theoraenc ! \ queue !

oggmux ! filesink

location=my_first_video.ogg

In order to not only access the video, but also record, and
be able to play it back, there needs to be another element
added to the pipeline. That next element is videorate,
which will take each frame of the input and feed it to the
next element at the frame rate that’s requested. The data is

then linked to theoraenc, which incodes the raw video into
a theora stream.
 Theoraenc can be translated to theora encoding. From
there, the link is made to oggmux, which takes the stream,
and places it into an ogg container. Gstreamer is also
capable of containing the audio and video data in other
formats, such as avi, mp4, and flv. This is necessary
because GStreamer can very easily and smoothly create
ogg files. Finally, the data is all linked to a filesink, which
will write all of the data to a file that can be opened and
played back.
 This proved to be a difficult task, but along the way, we
discovered something else. GStreamer itself, had launch
commands built into it. These commands could activate the
video from our webcams straight from the command
terminal. We simply placed these commands into shell
scripts, made them executable, and executed them from the
command line. The major problem though, was putting
together one script for displaying, one for recording, one
for saving, and one for sending and receiving the
synchronized audio and video feedback.
 Currently, we have uncovered much of GStreamer, and
have put together multiple shell scripts working with
Linux, to display video, as well as stream with a simple
running of our “send” and “receive” files. We’re also able
to, while receiving the stream, save the data to an .ogg file,
for a virtual video log. There are still improvements that
needs to be done.
 Aside from this, we hope to refine the concept of the
Snackbot even further by making its social, more
interactive side, even that much more smooth and human
like. This includes things such as facial recognition, and
more in depth dialogue. The Snackbot though, has the
potentiality of not only becoming much more than a robot
that delivers snacks, but also being a beacon of innovation
for robotics in general. A robot that can traverse,
recognize, interact, and respond to humans, and real life
situations, is where the future of robotics lies.
 In this poster, we will present the work that was
accomplished in developing the vision and perception
using GStreamer.

Acknowledgments. This research was supported in part by
the National Science Foundation (IIS-0624275, CNS
709077, CNS-0742252). Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the NSF or corporate partners. A special thanks to
Dr. Sara Kiesler, Dr. Paul Rybski, and SnackBot team at
Carnegie Mellon University for their ARTSI REU support.

References

Lee, M.K., Forlizzi, J., Rybski, P.E., Crabbe, F., Chung,
W., Finkle, J., Glaser, E., and Kiesler, S. (2009) The
Snackbot: Documenting the design of a robot for long-term
human-robot interaction. In Proceedings of HRI 2009, 7-
14.

598

