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Abstract 
In informational terms, a module dedicated to process 
information always has specific inputs and outputs. It 
describes a particular process constrained by specific rules. 
A processing chain can be a serial combination or a parallel 
combination of such modules. Thus, an architecture of 
language engineering, each processing chain becomes a 
particular instantiation of all possible paths. A processing 
chain is built from a choice of tasks underlying modules that 
an engineer wants to apply to the text. Therefore, in this 
perspective, a fundamental question arises: given a set of 
modules, what are the eligible chains of all combinations of 
the given modules? This is what we will discuss about in 
our paper. 

1. Introduction
Language engineering is a young and interdisciplinary 
science. This term that we could consider as a neologism 
covers everything related today to the natural language 
processing and more specifically to the knowledge 
extraction. Besides, the main goal of language engineering 
is to help humans to access to knowledge contained in 
texts. If we were to define language engineering, we would 
say that it corresponds to the study and the description of 
the concepts, the approaches, the methods and the 
techniques that allow data extraction  and knowledge 
modeling and acquisition. This definition, even though 
closed to knowledge engineering (more focused on 
researches in artificial intelligence (but not limited to it)), 
is no less valid for language engineering which also 
includes the linguistic due to the observed connections 
between linguistic and knowledge engineering. It has been 
observed that knowledge acquisition from text was due to 
be assisted by analysis tools for corpus which can be 
syntactic or semantic analyzers, marker tracking tools 
supported by contextual exploration, statistical analyzers, 
etc. The application fields for language engineering are 
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numerous and in constant evolution, more particularly 
since the development of communication networks (Web) 
and office tools that are able to support large quantity of 
contextual data. Therefore, throughout its development up 
to now, language engineering has gone through many steps 
or generations of tools, each of these generations being the 
consequence of a particular technical need. At the 
beginning, about 40 years ago, applications were often 
focusing on a single very specific functionality.  Since the 
90’s, in consequence of more complex approaches required 
for text analysis and a will of technological transfer to the 
industry, we have noticed an interest for functions and 
operations assembling in complex processing chains. Most 
of the tools proposed at that time have been offering 
various functionalities. Despite some successes with 
industries as well as with scientists, many important limits 
has been identified: on the one hand the technologies offer 
a closed and limited set of functionalities and on the other 
they are designed as autonomous entities that are hardly 
integrable into even more complex processing chains. 
Moreover, a researcher having particular analysis 
objectives will find himself in the impossibility to use this 
type of technology, due to a lack of adaptability. Despite 
the high level of computational modeling offered by 
paradigms such as object-oriented programming, these 
limits remain persistent. 
 This kind of problems starts to find some echoes among 
scientists. It is in this way that an inclusive vision is being 
developed. Therefore we find in literature projects on the 
creation of software platforms for language engineering 
which integrate statistical analysis, such as Aladin (Seffah 
& al, 1995), T2k and Knime (Warr, 2007), or linguistic 
analysis, such as Context (Crispino & al, 1999) and Gate 
(Cunningham et Al., 2002)). From these new platforms 
emerge new interests on processing chains about their 
coherence, their flexibility, their adaptability, etc.  
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2. General Framework 
From a formal point of view, a processing chain is an 
integrated sequence of computational modules dedicated to 
specific processings, put together in a (pertinent) order 
according to a process goal determined by the language 
engineer (we call language engineer any researcher or 
developer who has some interests into language 
engineering. The former can be a computer scientist as 
well as a linguist, a terminologist, a philosopher, etc.).  A 
module accomplishes an operation which applies to one or 
many objectal entities from a given type and returns other 
objectal entities from another type. 
 Moreover, a processing chain made of modules will 
have to allow their composition.  Therefore, it is essential 
to answer to two fundamental questions: 
(1) Given a set of modules, what are the allowable 

arrangements which lead to coherent processing 
chains? 

(2) Given a coherent processing chain, how can we 
automate (as much as possible) its assessment (in the 
sense of its calculability). 

In order to do so, a formal system is needed. Such a 
system will be at the center of our theoretical model.  
 The chosen general theoretical framework is the 
Applicative Grammars (Desclés, 1990; Shaumyan, 1998). 
Applicative Grammars have won one’s spurs in the 
syntactic, semantic and cognitive analysis of languages.  
They have a dichotomous view on the language units. 
Some of these linguistic units work as operators and other 
as operands.  This is translated by an assignment of 
applicative categories to the linguistics units in a way to 
reflect their nature.  The admissible (syntactically correct) 
sentences are those for which the combination of the 
categorical types assigned to units can be simplified into a 
base type. The same general model has been applied to 
other data encoding types, particularly iconic forms 
(Meunier, 1996). In addition, in our research, the 
processing chains become applicative “combinations” of 
typed functions. This vision is in sum natural for 
computational modules given the fact that they are 
functions (in its general meaning, not the computational 
one) from the set of inputs to the set of outputs.  Such 
combinations will be interpreted, like in some works in 
metaprogramming (Coquery, Fages, 2001), for the 
functional semantic interpretation of textual sentences 
(Steedman, 2000) or in artificial intelligence for scheduling 
issues, with the help of lambda-calculus (and unification) 
or using combinatory logic if we want to avoid a 
telescoping of variables (Curry, Feys, 1958; Hindley, 
Seldin, 2008).  The interpretation of a processing chain 
will then constitute the outcome of its underlying primitive 
operations and the way that these operations are organized 
accordingly to the principle of compositionality.  The set of 
composed processing chains becomes a set of theorems for 
the proposed formal system. The system in itself is 

inferential. It proceeds by successive reductions of 
applicative categories assigned to operations concerned by 
the composition.  
 One of the principal advantages of this formalism is to 
assure a firm compositionality of the different modules in 
the different processing chains. Another but not least 
advantage is the possibility to compose an infinity of 
modules. We will not have the limits on the vocabulary 
that, for example, a traditional context free grammar or a 
regular grammar would impose. 
 In our paper we will present our theoretical model of 
logical representation of the processing chains, based on 
combinatory logic, along with many cases of modules 
configurations. 

3. Combinatory Logic 
The origins of the combinatory logic bring us back to the 
works of Schönfinkel who defined the notion of 
combinators in 1924, and also, sometime later, those of 
Curry and Feys (1958).  This notion was introduced with 
the objective to bring a logical solution to some paradoxes, 
like the Russell’s Paradox, but also to eliminate the need 
for variables in mathematics.  Combinators are abstract 
operators that use other operators to build more complex 
operators.  They act as functions over arguments, within an 
operator-operands structure. Each specific action is 
represented by a unique rule that defines the equivalence 
between a logical expression with a combinator versus one 
without a combinator, which is called a �-reduction rule.  
Although many more combinators exist, we present in the 
table opposite the combinators we used in our works and 
their corresponding �-reduction rule. 
 

Combinator Role �-Reduction rule
B Composition B x y z � x (y z)
C Permutation C x z y � x y z
� Distribution � x y z u � x (y u) (z u)
W Duplication W x y � x y y

  
 The composition combinator B combines together two 
operators x and y in order to form the complex operator B 
x y that acts on an operand z according to the �-reduction 
rule.  The permutation combinator C uses an operator x in 
order to build the complex operator C x such as if x acts on 
the operands y and z, C x will act on those operands in the 
reverse order, that is to say z and y. Given the three 
operators x, y and z and the operand u, the distribution 
combinator � distributes the operand with the two 
precedent operators. Finally, given the binary operators x, 
and the operand y, the combinator W duplicates y so that 
the operator x will have its two arguments.  
 We can also combine recursively many elementary 
combinators together to form an infinitely range of 
complex combinators. For example, we could have 
combinatory expressions such as “B C x y z u” or “� B C 
x y z u v”. Its global action is determined by the successive 
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application of its elementary combinators, from left to 
right. If we have the combinatory expression “B B C x y z 
u v”, the reduction order would be B, B, then C, such as: 

(i) B B C x y z u v 
(ii) B (C x) y z u v 
(iii) C x (y z) u v 
(iv) x u (y z) v 

 
 The resulting expression without combinator is called a 
normal form, which is, according to Church-rosser 
theorem, unique. 
 There exist two more cases of complex combinators: 
combinators with “power combinators” and “distance 
combinators”. In the first case, a power value of n 
reiterates n times the action of the combinator �, such as �1 
= � and �n =  B � �n-1. Thereby, the action of the expression 
“B2 a b c d e” would be “B B B a b c d e” � … � a (b c 
d) e.  
 In the last case, an index value of n postpones the action 
of a combinator � of n steps, such as �0 = � and �n = Bn �.  
If we consider the combinatory expression “C2 a b c d e”, 
the action of the complex combinator would be given by  
“B2 C a b c d e” � …  � “a b c e d”.  

4. Construction of a Processing Chain
The main goal behind modular approaches is to reuse one 
or many already existing programs instead of having to 
write them from scratch again, which is a time and money 
saver, especially when the size of the programs are 
substantial. 
 The role of a metaprogram is then to act as a controller 
over the programs, by specifying the interactions between 
programs and their flow of execution. 
 Our model refers programs as modules and concerns 
systems for which the modules are processed serially only, 
so-called processing chains. Like we said, we are 
particularly interested into natural language processing 
systems, for which it could be very useful to simply have 
to switch a module by another one with compatible inputs 
and outputs. 
 A module acts like a mathematic function that takes 
arguments, process one specific action and gives an output 
as a result. Each module is independent and can be seen 
like a black box: we are only interested to the general 
function it accomplished and not how it is done internally.   
 The modules must also have the capacity to 
communicate together with the help of a protocol and a 
controller must supervise the flow of communication.  A 
module must provide data about itself (its name, its 
description and the list of its inputs and outputs) so the 
communication can be effective (possible). 
 A module can have none to many inputs, but can have 
none or only one output. In order to establish the 
communication between two modules, the controller must 
verify that the domain of the output of the first module 
must be the same that the one from the second module.  
The grammar we use accept four primitive types 

(character, string, integer and real number) and a list 
structure, from which we can create an infinity array of 
domains.  A list can also be use to simulate many outputs 
within a single one that can be distributed to many other 
modules.  For example, a valid domain could be Integer, 
List(Integer) or Character, Integer, Real, List(List(Integer), 
Real). 
A processing chain is a layout of modules. It is governed 
by two mains rules: 

(i) The chain must contain at least one module; 
(ii) The chain is syntactically correct. 

  A single module is considered as a valid chain. 
“Syntactically correct” means that every output is 
connected to an input of the same domain. We do not take 
into consideration the semantic aspects of the chain: this is 
the responsibility of the language engineer to assure that 
the chosen modules serve the goals of the processing chain. 
 
 

 
 

Figure 1: An example of a processing chain 
 

 A processing chain must be executed in a particular 
order. This execution will be supervised by a modules 
controller, which has the role to determine this order. This 
is in fact the heart of our approach aspect of the system. 
Only one module will be executed at a time and it must be 
triggered by the controller. Each processing chain has its 
own controller and a controller can act on other controllers. 
It means that, using the principle of abstraction, a 
processing chain can be considered as a (super or meta) 
module by itself and be embedded as a module in a super 
processing chain, for which the inputs will be those of the 
sub-module(s) at the beginning of the chain and the outputs 
those of the last one (see figure 2).  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Processing chains and module controllers 
 
 Of course, such schemes will influence the execution 
order, as we will have to execute the entire sub chain when 
we encounter one. In figure 2, for example, the module 
controller of the base processing chain will first execute 
module M1, then M2. This will produce the required inputs 
for module M3, which hides itself a module controller C2 

Processing chain 2 

Processing chain 1 
M1 

M2 

O1

O2

I1 

I2 I4 

I3 
M3/C2 O3 M4 O4I5  

Controller 1 

M1 O1 M2/C3 O2I3  
I2 

I1 

… 

M1 

M2 

O1I1 I3 

O2I2 I4 
M3 O3 M4 I5 O4
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on a second processing chain that will use the previous 
outputs as inputs, etc. 
 In order to assure the execution and determine the order, 
the controller will need to have access to a formal 
representation of the processing chain. In our model, this 
representation will be a combinatory expression. It will be 
built using some elements of the combinatory logic that we 
have presented earlier. 
 Combinatory logic fills two major goals: (i) it gives a 
interoperable and formal representation of the solution and 
(ii) it gives the direct execution order, as we will see later.  
In order to build a processing chain, we need specific 
datas: (i) the list of the modules and (ii) the list of their 
inputs and outputs.  Moreover, combinators of the 
combinatory logic provide operators to support the 
different types of interactions between modules: 
•  The combinator B is used to express the composition of 

two  modules that are connected together with an input 
and an output of the same domain. 

•  The combinator C is used for ordering, that is to assure 
that all combinators and modules of the expression 
appear together to the left, then all inputs to the right.  

•  Finally, the combinator � is used to distribute the same 
input to two or more different modules 

 
 Let us now present many different cases of processing 
chains and explain how we represent them in respect with 
combinatory logic. 
 Like we said it before, a basic processing chain is 
constructed with only one module. In this case, the 
combinatory expressions representing the chains are quite 
simple and do not contain any combinator: they are 
functional expressions. 
  

 
Figure 3: Simple module case 

 
 No combinator is needed and the output O1 is obtained 
by the application of the module 1 to the input I1: “O1 = 
M1 I1”.  If there are many inputs, we simply add them at 
the end of the expression.  
 
 
 
 

 
Figure 4: Simple module with n inputs case 

 
 The generalization of the base case is then “O1 = M1 I1 
I2 … In”. 
 
Serial processing chains. A serial processing chain is 
composed of many modules connected together. These 
relations of composition between the modules are 
represented by the combinator B in the combinatory 
expression.  

 In the most general case, we consider two modules for 
which each of them has one input and one output. The 
output of the first module is connected to the input of the 
second module and, of course, the connectors are domain-
compatibles. 
 

 
Figure 5: Two connected modules case 

  
 The logical representation is built from “right to left”, 
that is to say that we must first consider the module the 
furthest to the right, then the previous one, etc. 
 In our case, this means the first module to be considered 
is M2, then M1. Basically, we pose the hypothesis that “O2 
= M2 I2” and “O1 = M1 I1”. We also know that I2 is 
connected on O1, so we replace I2 by “M1 I1”, such as 
“O2 = M2 (M1 I1)”. To combine the modules together in 
combinatory logic, we use the composition combinatory B: 
“O2 = B M2 M1 I1”. The processing chain obtained is then 
(B M2 M1). This processing chain needs one input: I1. 
  
 If we add one more module to the chain, the list of the 
modules becomes “O1 = M1 I1”, “O2 = M2 I2” and “O3 = 
M3 I3”, I2 being connected with O1 and I3 with O2. 
 

 
Figure 6: Three connected modules case 

 
 The output O3 gives the result of the processing chain.  
The following steps are required in order to build the 
representation: 
 O3 = M3 I3        
1.O3 = M3 (B M2 M1 I1)    (I3 = O2) 
2.O3 = B3 M3 B M2 M1 I1   (Introduction of B3) 
3.O3 = C B3 B M3M2 M1 I1   (Introduction of C) 
 
 At step 1 and 2, I3 is substituted by “B M2 M1 I1” 
according to what we obtained with the previous case.  
Then, we introduce the first combinator B3, using the rule 
“B3 x y z u v � x (y z u v)”, for which x stands for M3, y 
for B, z for M2, u for M1 and v for I1. For the last step, 
another combinator, C, is introduced, because we need to 
have all the combinators to the left, the modules in the 
middle and the inputs at the end.  
 If we have four serial modules with exactly one input 
and one output each, the combinatory expression would be 
“O4 = C B4 (C B3 B) M4 M3 M2 M1 I1. 
 If we have five serial modules with exactly one input 
and one output each, the combinatory expression would be 
“O4 = C B5 (C B4 (C B3 B)) M4 M3 M2 M1 I1”, etc. 
 Here we can observe a relation of recursion between the 
modules and the combinators: the power of B is directly 
induced by the number of modules in the processing chain. 
We can express and eventually save any serial processing 
chain with a combinatory expression. 
 

M1 O1I1 M2 O2 I2 M3 O3I3 

M1 I1 O1 M2 I2 O2

M1 O1 
I2 
I1 

In 
… 

M1 I1 O1 
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Parallel processing chains. When a processing chain 
contains at least one module with more than one input, we 
call it a parallel processing chain. 
 In the first example, a module with one input and one 
output (“O1 = M1 I1”) is connected to a second module 
with two inputs and one output (“O2 = M2 I2 I3”) via the 
input I2.  
 
 

 
Figure 7: Module connected on the first input 

 
 To represent this chain, we only need to substitute “I2” 
by “M1 I1”, then to compose both modules with the 
combinator B like this: “O2 = B M2 M1 I1 I3”. Then the 
processing chain is (B M2 M1). Of course, this processing 
chain needs two inputs I1 and I3. 
 
 Let us take another example where a module M3 has 
two inputs and each of them is connected to a module, like 
in figure 8. 

 
 

 
Figure 8: Two modules connected to a third module 

 
 By substituting “I3” by “M1 I1” and “I4” by “M2 I2” in 
the expression  “O3 = M3 I3 I4”, we obtain “O3 = M3 (M1 
I1) (M2 I2)”, then by applying combinators B, we find “O3 
= B M3 M1 I1 (M2 I2)”. Afterward, “I1” must be switched 
with “M2 I1”, so we apply the combinator C at a distance 
of 2. The combinatory expression is then “O3 = C2 B M3 
M1 (M2 I2) I1”. Finally, we remove parentheses when we 
apply the combinator B3. O3 is then expressed by the 
processing chain is B3 C2 B M3 M1 M2 I2 I1.  
 In case where three modules are connected to a fourth 
one the processing chain applied to its inputs would be 
expressed by this combinatory expression: B7 C6 C6 B3 C2 
B M4 M1 M2 M3 I3 I2 I1. 
 In case where four modules are connected to a fifth one:  
B12 C11 C11 C11 B7 C6 C6 B3 C2 B M5 M1 M2 M3 M4 I4 I3 
I2 I1, etc. 
 Once again, it is possible to observe another relation of 
recursion. The distance of B and C are induced by the 
number of modules. There is a relationship established 
between the value of the distance and the number of 
modules. 
 We will now present a special case of parallel 
processing chain. This is the base case of a parallel 
processing chain with only one input. 
 
 
 

 
Figure 9: Two modules connected to a third module 

 
 O3 in this case is equal to B3 C2 B M3 M1 M2 I1 I1. In 
fact, we have the case of a processing chain where the two 

parallel modules have the same input. However, the input 
I1 in the combinatorial expression must not be repeated, 
especially when I1 is the result of the application of a 
certain module to its own input. This is why we introduce 
the combinator W in the combinatory expression so we 
obtain: B5 W B3 C2 B M3 M1 M2 I1. However, this 
expression is equivalent to another simpler one: � M3 M1 
M2 I1.  
 
A complex processing chain. We tested many more 
particular arrangements of serials, parallels and output-
distributed modules as well as very complex processing 
chains that we cannot show due to space limitation. 
However, we are willing to give the reader a glimpse of 
what a combinatory expression of a somewhat complex 
processing chain can look like. 
 
 
 
 
 

 
Figure 10: A complex processing chain 

 
The output O7 of the processing chain in figure 10 is equal 
to “M7 I9 I8”. I9 is the first input of M7 but is also the 
output of a subchain of two connected modules (figure 5). 
I9 is the ouptput of the recursively constructed module to 
“B M6 M4” whose input is I4. I8 is the output of a 
subchain where two modules are connected to a third one 
(figure 8), however I6, which is the second input of M5, is 
the output of a subchain of two connected modules M3 and 
M1. Thus we must recursively construct, first the subchain 
with M3 and M1 (“B M3 M1” whose operand is I1) and 
second the subchain with M5, M2 and “B M3 M1” (B3 C2 
B M5 M2 (B M3 M1)) whose first operand is I2 and the 
second is I1. At last the whole constructed chain is 
represented by : 
B3 C2 B M7 (B M6 M4) (B3 C2 B M5 M2 (B M3 M1))) I4 
I2 I1 

5. SATIM
Computationally, the chosen architecture postulates three 
levels of interactions with a language engineer.  The first 
level is a workshop in which we find various modules, 
procedures or functions, in the computational sense of the 
term, to which applicative categories are assigned.  It is 
also possible to add or delete modules. The second level is 
a laboratory in which the engineer builds his processing 
chain as he adjusts it according to his objective with the 
help of tests. A processing chain is thus a software 
containing a coherent and well organized subset of 
modules, procedures or functions.  Once a processing chain 
is approved, it is considered at a third level as an 
autonomous application. SATIM comprises the following 
points: 

M3 

M6 

O3 

O6I4 M4 O4 

M5 O5

I9 

I8 
M7 O7M2 O2 I2 

M1 O1I1 I3 

I7 

I6 

I5 

M1 

M2 

O1 

O2 

I1 

I1 I4 

I3 
M3 O3 

M1 

M2 

O1 

O2 

I1 

I2 I4 

I3 
M3 O3 

M1 I1 O1 M2 I2 O2 I3 
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(1) A set of primitive operations (base modules).  
Since the beginning of the 90’s, the diversity of 
research conducted on language engineering are 
accompanied by a certain convergence of view (at 
least for the numerical approaches) on some 
fundamental points, as a matter of fact some 
primitive functions like the construction of the 
lexicon, the lemmatization, the segmentation,  the 
application of particular metrics to the lexicon, 
etc. 

(2) A set of applicative categories assigned to 
primitive operations. These categories indicate the 
type of the inputs and the outputs of a (primitive 
or composed) operation. From a mathematical 
perspective, the applicative categories connect 
elements of a domain (the input) to elements of 
another domain (the output). 

(3) A set of rules to verify on the one hand the 
coherence of the processing chains and on the 
other to build their interpretation. 

 Following the precedent principles, we have 
implemented very recently SATIM (Système d’Analyse et 
de Traitement de l’Information Multidimensionnelle, or 
Multidimensional Data Analysis and Processing System), a 
modular platform written in C++ used to build such 
processing chains in a visual environment.  

For now SATIM still at prototype stage that allows us, 
in the first place, to assess the feasibility of the approach. 
Secondly, this will become the full-size project within 
which we aspire to design tools for language engineering 
and other tools for natural language processing in general. 

Moreover, the formalism and the principles at the heart 
of SATIM are aimed to make the communication between 
programs a lot easier. 

6. Conclusion
The need for flexible, adaptable, consistent and easy-to-use 
tools and platforms in a recent and active field such 
language engineering is indisputable.  Some projects with 
this philosophy in mind have seen the light in the last 
years. The model we propose has strong formal 
foundations (Applicative Grammars and combinatory 
logic) and uses metaprogramming so we can build systems 
by simply adding (possibly interchangeable) modules to a 
controlled processing chain.  A module is represented by 
an expression from the combinatory logic.  Combinators 
are used as operators to represent different types of 
collaboration between the modules: combinators B and � 
are used respectively for the composition of modules and 
the distribution of inputs, while the purpose of combinator 
C is to reorder, if necessary, the expression so that the 
combinators and the modules and the inputs are sides apart.  
We have presented many different cases and have shown 
how to represent them. 
 We implemented a prototype of this model named 
SATIM that allows an engineer to build applications using 
independent modules. Like we said, we are planning to 

enrich the component base of NLP functionalities and use 
them in our future researches. Our hope is that such a 
platform can help research teams to collaborate together by 
sharing components while guaranteeing the respect of their 
copyright. 

References 
Coquery, E., Fages, F. 2001. “Programmes logiques avec 
contraintes typés”, In proceedings of JFPLC 2001. Hermès. 
pp 223-238. 

Crispino G., Ben Hazez S., Minel J.L. 1999. "Architecture 
logicielle de Context ; plate-forme d’ingénierie 
linguistique", in proceedings of TALN 99.  

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V. 
2002. “GATE: A Framework and Graphical Development 
Environment for Robust NLP Tools and Applications”. 
Proceedings of the 40th Anniversary Meeting of the 
Association for Computational Linguistics (ACL'02). 
Philadelphia, July 2002. 

Descles, J. P. 1990. Langages applicatifs, langues 
naturelles et cognition, Hermes, Paris. 

Curry, B. H., Feys, R. 1958. Combinatory logic , Vol. I, 
North-Holland. 

Hindley, J. R., Seldin, J. P. 2008. Lambda-calculus and 
Combinators, an Introduction. Cambridge University 
Press.  

Meunier, J.G. 1996. "Théorie cognitive:son impact sur le 
traitement de l'information textuelle". in V. Rialle et D. 
Fisette  Penser L'esprit ,Des sciences de la cognition a une 
philosophie cognitive. Presses de Université de Grenoble. 
1996 289-305  

Seffah, A., Meunier, J.G. 1995. "ALADIN : Un atelier 
orienté objet pour l'analyse et la lecture de Textes assistée 
par ordinaleur". International Conferencence On Statistics 
and Texts. Rome 1995.  

Shaumyan, S. K. 1998. Two Paradigms Of Linguistics: 
The Semiotic Versus Non-Semiotic Paradigm. In Web 
Journal of Formal, Computational and Cognitive 
Linguistics. 

Steedman, M. 2000. The Syntactic Process, MIT 
Press/Bradford Books. 

Warr, A. W. 2007.  Integration, analysis and 
collaboration. An Update on Workflow and Pipelining in 
cheminformatics. Strand Life Sciences. 

149




