

Toward a New Language Engineering

Ismail Biskri1, Jean-Guy Meunier2, Adam Joly1 and Marc-André Rochette1

1 LAMIA, Département de Mathématiques et Informatique, Université du Québec à Trois-Rivières
C.P. 500, Trois-Rivières (QC) G9A 5H7, Canada

{ismail.biskri; adam.joly; marc-andre.rochette}@uqtr.ca
2 LANCI, Département de Philosophie, Université du Québec à Montréal

 C.P. 8888, Succ. Centre-Ville, Montréal (QC) H3C 3P8, Canada
meunier.jean-guy@uqam.ca

Abstract
In informational terms, a module dedicated to process
information always has specific inputs and outputs. It
describes a particular process constrained by specific rules.
A processing chain can be a serial combination or a parallel
combination of such modules. Thus, an architecture of
language engineering, each processing chain becomes a
particular instantiation of all possible paths. A processing
chain is built from a choice of tasks underlying modules that
an engineer wants to apply to the text. Therefore, in this
perspective, a fundamental question arises: given a set of
modules, what are the eligible chains of all combinations of
the given modules? This is what we will discuss about in
our paper.

1. Introduction
Language engineering is a young and interdisciplinary
science. This term that we could consider as a neologism
covers everything related today to the natural language
processing and more specifically to the knowledge
extraction. Besides, the main goal of language engineering
is to help humans to access to knowledge contained in
texts. If we were to define language engineering, we would
say that it corresponds to the study and the description of
the concepts, the approaches, the methods and the
techniques that allow data extraction and knowledge
modeling and acquisition. This definition, even though
closed to knowledge engineering (more focused on
researches in artificial intelligence (but not limited to it)),
is no less valid for language engineering which also
includes the linguistic due to the observed connections
between linguistic and knowledge engineering. It has been
observed that knowledge acquisition from text was due to
be assisted by analysis tools for corpus which can be
syntactic or semantic analyzers, marker tracking tools
supported by contextual exploration, statistical analyzers,
etc. The application fields for language engineering are

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

numerous and in constant evolution, more particularly
since the development of communication networks (Web)
and office tools that are able to support large quantity of
contextual data. Therefore, throughout its development up
to now, language engineering has gone through many steps
or generations of tools, each of these generations being the
consequence of a particular technical need. At the
beginning, about 40 years ago, applications were often
focusing on a single very specific functionality. Since the
90’s, in consequence of more complex approaches required
for text analysis and a will of technological transfer to the
industry, we have noticed an interest for functions and
operations assembling in complex processing chains. Most
of the tools proposed at that time have been offering
various functionalities. Despite some successes with
industries as well as with scientists, many important limits
has been identified: on the one hand the technologies offer
a closed and limited set of functionalities and on the other
they are designed as autonomous entities that are hardly
integrable into even more complex processing chains.
Moreover, a researcher having particular analysis
objectives will find himself in the impossibility to use this
type of technology, due to a lack of adaptability. Despite
the high level of computational modeling offered by
paradigms such as object-oriented programming, these
limits remain persistent.
 This kind of problems starts to find some echoes among
scientists. It is in this way that an inclusive vision is being
developed. Therefore we find in literature projects on the
creation of software platforms for language engineering
which integrate statistical analysis, such as Aladin (Seffah
& al, 1995), T2k and Knime (Warr, 2007), or linguistic
analysis, such as Context (Crispino & al, 1999) and Gate
(Cunningham et Al., 2002)). From these new platforms
emerge new interests on processing chains about their
coherence, their flexibility, their adaptability, etc.

144

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

2. General Framework
From a formal point of view, a processing chain is an
integrated sequence of computational modules dedicated to
specific processings, put together in a (pertinent) order
according to a process goal determined by the language
engineer (we call language engineer any researcher or
developer who has some interests into language
engineering. The former can be a computer scientist as
well as a linguist, a terminologist, a philosopher, etc.). A
module accomplishes an operation which applies to one or
many objectal entities from a given type and returns other
objectal entities from another type.
 Moreover, a processing chain made of modules will
have to allow their composition. Therefore, it is essential
to answer to two fundamental questions:
(1) Given a set of modules, what are the allowable

arrangements which lead to coherent processing
chains?

(2) Given a coherent processing chain, how can we
automate (as much as possible) its assessment (in the
sense of its calculability).

In order to do so, a formal system is needed. Such a
system will be at the center of our theoretical model.
 The chosen general theoretical framework is the
Applicative Grammars (Desclés, 1990; Shaumyan, 1998).
Applicative Grammars have won one’s spurs in the
syntactic, semantic and cognitive analysis of languages.
They have a dichotomous view on the language units.
Some of these linguistic units work as operators and other
as operands. This is translated by an assignment of
applicative categories to the linguistics units in a way to
reflect their nature. The admissible (syntactically correct)
sentences are those for which the combination of the
categorical types assigned to units can be simplified into a
base type. The same general model has been applied to
other data encoding types, particularly iconic forms
(Meunier, 1996). In addition, in our research, the
processing chains become applicative “combinations” of
typed functions. This vision is in sum natural for
computational modules given the fact that they are
functions (in its general meaning, not the computational
one) from the set of inputs to the set of outputs. Such
combinations will be interpreted, like in some works in
metaprogramming (Coquery, Fages, 2001), for the
functional semantic interpretation of textual sentences
(Steedman, 2000) or in artificial intelligence for scheduling
issues, with the help of lambda-calculus (and unification)
or using combinatory logic if we want to avoid a
telescoping of variables (Curry, Feys, 1958; Hindley,
Seldin, 2008). The interpretation of a processing chain
will then constitute the outcome of its underlying primitive
operations and the way that these operations are organized
accordingly to the principle of compositionality. The set of
composed processing chains becomes a set of theorems for
the proposed formal system. The system in itself is

inferential. It proceeds by successive reductions of
applicative categories assigned to operations concerned by
the composition.
 One of the principal advantages of this formalism is to
assure a firm compositionality of the different modules in
the different processing chains. Another but not least
advantage is the possibility to compose an infinity of
modules. We will not have the limits on the vocabulary
that, for example, a traditional context free grammar or a
regular grammar would impose.
 In our paper we will present our theoretical model of
logical representation of the processing chains, based on
combinatory logic, along with many cases of modules
configurations.

3. Combinatory Logic
The origins of the combinatory logic bring us back to the
works of Schönfinkel who defined the notion of
combinators in 1924, and also, sometime later, those of
Curry and Feys (1958). This notion was introduced with
the objective to bring a logical solution to some paradoxes,
like the Russell’s Paradox, but also to eliminate the need
for variables in mathematics. Combinators are abstract
operators that use other operators to build more complex
operators. They act as functions over arguments, within an
operator-operands structure. Each specific action is
represented by a unique rule that defines the equivalence
between a logical expression with a combinator versus one
without a combinator, which is called a �-reduction rule.
Although many more combinators exist, we present in the
table opposite the combinators we used in our works and
their corresponding �-reduction rule.

Combinator Role �-Reduction rule
B Composition B x y z � x (y z)
C Permutation C x z y � x y z
� Distribution � x y z u � x (y u) (z u)
W Duplication W x y � x y y

 The composition combinator B combines together two
operators x and y in order to form the complex operator B
x y that acts on an operand z according to the �-reduction
rule. The permutation combinator C uses an operator x in
order to build the complex operator C x such as if x acts on
the operands y and z, C x will act on those operands in the
reverse order, that is to say z and y. Given the three
operators x, y and z and the operand u, the distribution
combinator � distributes the operand with the two
precedent operators. Finally, given the binary operators x,
and the operand y, the combinator W duplicates y so that
the operator x will have its two arguments.
 We can also combine recursively many elementary
combinators together to form an infinitely range of
complex combinators. For example, we could have
combinatory expressions such as “B C x y z u” or “� B C
x y z u v”. Its global action is determined by the successive

145

application of its elementary combinators, from left to
right. If we have the combinatory expression “B B C x y z
u v”, the reduction order would be B, B, then C, such as:

(i) B B C x y z u v
(ii) B (C x) y z u v
(iii) C x (y z) u v
(iv) x u (y z) v

 The resulting expression without combinator is called a
normal form, which is, according to Church-rosser
theorem, unique.
 There exist two more cases of complex combinators:
combinators with “power combinators” and “distance
combinators”. In the first case, a power value of n
reiterates n times the action of the combinator �, such as �1
= � and �n = B � �n-1. Thereby, the action of the expression
“B2 a b c d e” would be “B B B a b c d e” � … � a (b c
d) e.
 In the last case, an index value of n postpones the action
of a combinator � of n steps, such as �0 = � and �n = Bn �.
If we consider the combinatory expression “C2 a b c d e”,
the action of the complex combinator would be given by
“B2 C a b c d e” � … � “a b c e d”.

4. Construction of a Processing Chain
The main goal behind modular approaches is to reuse one
or many already existing programs instead of having to
write them from scratch again, which is a time and money
saver, especially when the size of the programs are
substantial.
 The role of a metaprogram is then to act as a controller
over the programs, by specifying the interactions between
programs and their flow of execution.
 Our model refers programs as modules and concerns
systems for which the modules are processed serially only,
so-called processing chains. Like we said, we are
particularly interested into natural language processing
systems, for which it could be very useful to simply have
to switch a module by another one with compatible inputs
and outputs.
 A module acts like a mathematic function that takes
arguments, process one specific action and gives an output
as a result. Each module is independent and can be seen
like a black box: we are only interested to the general
function it accomplished and not how it is done internally.
 The modules must also have the capacity to
communicate together with the help of a protocol and a
controller must supervise the flow of communication. A
module must provide data about itself (its name, its
description and the list of its inputs and outputs) so the
communication can be effective (possible).
 A module can have none to many inputs, but can have
none or only one output. In order to establish the
communication between two modules, the controller must
verify that the domain of the output of the first module
must be the same that the one from the second module.
The grammar we use accept four primitive types

(character, string, integer and real number) and a list
structure, from which we can create an infinity array of
domains. A list can also be use to simulate many outputs
within a single one that can be distributed to many other
modules. For example, a valid domain could be Integer,
List(Integer) or Character, Integer, Real, List(List(Integer),
Real).
A processing chain is a layout of modules. It is governed
by two mains rules:

(i) The chain must contain at least one module;
(ii) The chain is syntactically correct.

 A single module is considered as a valid chain.
“Syntactically correct” means that every output is
connected to an input of the same domain. We do not take
into consideration the semantic aspects of the chain: this is
the responsibility of the language engineer to assure that
the chosen modules serve the goals of the processing chain.

Figure 1: An example of a processing chain

 A processing chain must be executed in a particular
order. This execution will be supervised by a modules
controller, which has the role to determine this order. This
is in fact the heart of our approach aspect of the system.
Only one module will be executed at a time and it must be
triggered by the controller. Each processing chain has its
own controller and a controller can act on other controllers.
It means that, using the principle of abstraction, a
processing chain can be considered as a (super or meta)
module by itself and be embedded as a module in a super
processing chain, for which the inputs will be those of the
sub-module(s) at the beginning of the chain and the outputs
those of the last one (see figure 2).

Figure 2: Processing chains and module controllers

 Of course, such schemes will influence the execution
order, as we will have to execute the entire sub chain when
we encounter one. In figure 2, for example, the module
controller of the base processing chain will first execute
module M1, then M2. This will produce the required inputs
for module M3, which hides itself a module controller C2

Processing chain 2

Processing chain 1
M1

M2

O1

O2

I1

I2 I4

I3
M3/C2 O3 M4 O4I5

Controller 1

M1 O1 M2/C3 O2I3
I2

I1

…

M1

M2

O1I1 I3

O2I2 I4
M3 O3 M4 I5 O4

146

on a second processing chain that will use the previous
outputs as inputs, etc.
 In order to assure the execution and determine the order,
the controller will need to have access to a formal
representation of the processing chain. In our model, this
representation will be a combinatory expression. It will be
built using some elements of the combinatory logic that we
have presented earlier.
 Combinatory logic fills two major goals: (i) it gives a
interoperable and formal representation of the solution and
(ii) it gives the direct execution order, as we will see later.
In order to build a processing chain, we need specific
datas: (i) the list of the modules and (ii) the list of their
inputs and outputs. Moreover, combinators of the
combinatory logic provide operators to support the
different types of interactions between modules:
• The combinator B is used to express the composition of

two modules that are connected together with an input
and an output of the same domain.

• The combinator C is used for ordering, that is to assure
that all combinators and modules of the expression
appear together to the left, then all inputs to the right.

• Finally, the combinator � is used to distribute the same
input to two or more different modules

 Let us now present many different cases of processing
chains and explain how we represent them in respect with
combinatory logic.
 Like we said it before, a basic processing chain is
constructed with only one module. In this case, the
combinatory expressions representing the chains are quite
simple and do not contain any combinator: they are
functional expressions.

Figure 3: Simple module case

 No combinator is needed and the output O1 is obtained
by the application of the module 1 to the input I1: “O1 =
M1 I1”. If there are many inputs, we simply add them at
the end of the expression.

Figure 4: Simple module with n inputs case

 The generalization of the base case is then “O1 = M1 I1
I2 … In”.

Serial processing chains. A serial processing chain is
composed of many modules connected together. These
relations of composition between the modules are
represented by the combinator B in the combinatory
expression.

 In the most general case, we consider two modules for
which each of them has one input and one output. The
output of the first module is connected to the input of the
second module and, of course, the connectors are domain-
compatibles.

Figure 5: Two connected modules case

 The logical representation is built from “right to left”,
that is to say that we must first consider the module the
furthest to the right, then the previous one, etc.
 In our case, this means the first module to be considered
is M2, then M1. Basically, we pose the hypothesis that “O2
= M2 I2” and “O1 = M1 I1”. We also know that I2 is
connected on O1, so we replace I2 by “M1 I1”, such as
“O2 = M2 (M1 I1)”. To combine the modules together in
combinatory logic, we use the composition combinatory B:
“O2 = B M2 M1 I1”. The processing chain obtained is then
(B M2 M1). This processing chain needs one input: I1.

 If we add one more module to the chain, the list of the
modules becomes “O1 = M1 I1”, “O2 = M2 I2” and “O3 =
M3 I3”, I2 being connected with O1 and I3 with O2.

Figure 6: Three connected modules case

 The output O3 gives the result of the processing chain.
The following steps are required in order to build the
representation:
 O3 = M3 I3
1.O3 = M3 (B M2 M1 I1) (I3 = O2)
2.O3 = B3 M3 B M2 M1 I1 (Introduction of B3)
3.O3 = C B3 B M3M2 M1 I1 (Introduction of C)

 At step 1 and 2, I3 is substituted by “B M2 M1 I1”
according to what we obtained with the previous case.
Then, we introduce the first combinator B3, using the rule
“B3 x y z u v � x (y z u v)”, for which x stands for M3, y
for B, z for M2, u for M1 and v for I1. For the last step,
another combinator, C, is introduced, because we need to
have all the combinators to the left, the modules in the
middle and the inputs at the end.
 If we have four serial modules with exactly one input
and one output each, the combinatory expression would be
“O4 = C B4 (C B3 B) M4 M3 M2 M1 I1.
 If we have five serial modules with exactly one input
and one output each, the combinatory expression would be
“O4 = C B5 (C B4 (C B3 B)) M4 M3 M2 M1 I1”, etc.
 Here we can observe a relation of recursion between the
modules and the combinators: the power of B is directly
induced by the number of modules in the processing chain.
We can express and eventually save any serial processing
chain with a combinatory expression.

M1 O1I1 M2 O2 I2 M3 O3I3

M1 I1 O1 M2 I2 O2

M1 O1
I2
I1

In
…

M1 I1 O1

147

Parallel processing chains. When a processing chain
contains at least one module with more than one input, we
call it a parallel processing chain.
 In the first example, a module with one input and one
output (“O1 = M1 I1”) is connected to a second module
with two inputs and one output (“O2 = M2 I2 I3”) via the
input I2.

Figure 7: Module connected on the first input

 To represent this chain, we only need to substitute “I2”
by “M1 I1”, then to compose both modules with the
combinator B like this: “O2 = B M2 M1 I1 I3”. Then the
processing chain is (B M2 M1). Of course, this processing
chain needs two inputs I1 and I3.

 Let us take another example where a module M3 has
two inputs and each of them is connected to a module, like
in figure 8.

Figure 8: Two modules connected to a third module

 By substituting “I3” by “M1 I1” and “I4” by “M2 I2” in
the expression “O3 = M3 I3 I4”, we obtain “O3 = M3 (M1
I1) (M2 I2)”, then by applying combinators B, we find “O3
= B M3 M1 I1 (M2 I2)”. Afterward, “I1” must be switched
with “M2 I1”, so we apply the combinator C at a distance
of 2. The combinatory expression is then “O3 = C2 B M3
M1 (M2 I2) I1”. Finally, we remove parentheses when we
apply the combinator B3. O3 is then expressed by the
processing chain is B3 C2 B M3 M1 M2 I2 I1.
 In case where three modules are connected to a fourth
one the processing chain applied to its inputs would be
expressed by this combinatory expression: B7 C6 C6 B3 C2
B M4 M1 M2 M3 I3 I2 I1.
 In case where four modules are connected to a fifth one:
B12 C11 C11 C11 B7 C6 C6 B3 C2 B M5 M1 M2 M3 M4 I4 I3
I2 I1, etc.
 Once again, it is possible to observe another relation of
recursion. The distance of B and C are induced by the
number of modules. There is a relationship established
between the value of the distance and the number of
modules.
 We will now present a special case of parallel
processing chain. This is the base case of a parallel
processing chain with only one input.

Figure 9: Two modules connected to a third module

 O3 in this case is equal to B3 C2 B M3 M1 M2 I1 I1. In
fact, we have the case of a processing chain where the two

parallel modules have the same input. However, the input
I1 in the combinatorial expression must not be repeated,
especially when I1 is the result of the application of a
certain module to its own input. This is why we introduce
the combinator W in the combinatory expression so we
obtain: B5 W B3 C2 B M3 M1 M2 I1. However, this
expression is equivalent to another simpler one: � M3 M1
M2 I1.

A complex processing chain. We tested many more
particular arrangements of serials, parallels and output-
distributed modules as well as very complex processing
chains that we cannot show due to space limitation.
However, we are willing to give the reader a glimpse of
what a combinatory expression of a somewhat complex
processing chain can look like.

Figure 10: A complex processing chain

The output O7 of the processing chain in figure 10 is equal
to “M7 I9 I8”. I9 is the first input of M7 but is also the
output of a subchain of two connected modules (figure 5).
I9 is the ouptput of the recursively constructed module to
“B M6 M4” whose input is I4. I8 is the output of a
subchain where two modules are connected to a third one
(figure 8), however I6, which is the second input of M5, is
the output of a subchain of two connected modules M3 and
M1. Thus we must recursively construct, first the subchain
with M3 and M1 (“B M3 M1” whose operand is I1) and
second the subchain with M5, M2 and “B M3 M1” (B3 C2
B M5 M2 (B M3 M1)) whose first operand is I2 and the
second is I1. At last the whole constructed chain is
represented by :
B3 C2 B M7 (B M6 M4) (B3 C2 B M5 M2 (B M3 M1))) I4
I2 I1

5. SATIM
Computationally, the chosen architecture postulates three
levels of interactions with a language engineer. The first
level is a workshop in which we find various modules,
procedures or functions, in the computational sense of the
term, to which applicative categories are assigned. It is
also possible to add or delete modules. The second level is
a laboratory in which the engineer builds his processing
chain as he adjusts it according to his objective with the
help of tests. A processing chain is thus a software
containing a coherent and well organized subset of
modules, procedures or functions. Once a processing chain
is approved, it is considered at a third level as an
autonomous application. SATIM comprises the following
points:

M3

M6

O3

O6I4 M4 O4

M5 O5

I9

I8
M7 O7M2 O2 I2

M1 O1I1 I3

I7

I6

I5

M1

M2

O1

O2

I1

I1 I4

I3
M3 O3

M1

M2

O1

O2

I1

I2 I4

I3
M3 O3

M1 I1 O1 M2 I2 O2 I3

148

(1) A set of primitive operations (base modules).
Since the beginning of the 90’s, the diversity of
research conducted on language engineering are
accompanied by a certain convergence of view (at
least for the numerical approaches) on some
fundamental points, as a matter of fact some
primitive functions like the construction of the
lexicon, the lemmatization, the segmentation, the
application of particular metrics to the lexicon,
etc.

(2) A set of applicative categories assigned to
primitive operations. These categories indicate the
type of the inputs and the outputs of a (primitive
or composed) operation. From a mathematical
perspective, the applicative categories connect
elements of a domain (the input) to elements of
another domain (the output).

(3) A set of rules to verify on the one hand the
coherence of the processing chains and on the
other to build their interpretation.

 Following the precedent principles, we have
implemented very recently SATIM (Système d’Analyse et
de Traitement de l’Information Multidimensionnelle, or
Multidimensional Data Analysis and Processing System), a
modular platform written in C++ used to build such
processing chains in a visual environment.

For now SATIM still at prototype stage that allows us,
in the first place, to assess the feasibility of the approach.
Secondly, this will become the full-size project within
which we aspire to design tools for language engineering
and other tools for natural language processing in general.

Moreover, the formalism and the principles at the heart
of SATIM are aimed to make the communication between
programs a lot easier.

6. Conclusion
The need for flexible, adaptable, consistent and easy-to-use
tools and platforms in a recent and active field such
language engineering is indisputable. Some projects with
this philosophy in mind have seen the light in the last
years. The model we propose has strong formal
foundations (Applicative Grammars and combinatory
logic) and uses metaprogramming so we can build systems
by simply adding (possibly interchangeable) modules to a
controlled processing chain. A module is represented by
an expression from the combinatory logic. Combinators
are used as operators to represent different types of
collaboration between the modules: combinators B and �
are used respectively for the composition of modules and
the distribution of inputs, while the purpose of combinator
C is to reorder, if necessary, the expression so that the
combinators and the modules and the inputs are sides apart.
We have presented many different cases and have shown
how to represent them.
 We implemented a prototype of this model named
SATIM that allows an engineer to build applications using
independent modules. Like we said, we are planning to

enrich the component base of NLP functionalities and use
them in our future researches. Our hope is that such a
platform can help research teams to collaborate together by
sharing components while guaranteeing the respect of their
copyright.

References
Coquery, E., Fages, F. 2001. “Programmes logiques avec
contraintes typés”, In proceedings of JFPLC 2001. Hermès.
pp 223-238.

Crispino G., Ben Hazez S., Minel J.L. 1999. "Architecture
logicielle de Context ; plate-forme d’ingénierie
linguistique", in proceedings of TALN 99.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.
2002. “GATE: A Framework and Graphical Development
Environment for Robust NLP Tools and Applications”.
Proceedings of the 40th Anniversary Meeting of the
Association for Computational Linguistics (ACL'02).
Philadelphia, July 2002.

Descles, J. P. 1990. Langages applicatifs, langues
naturelles et cognition, Hermes, Paris.

Curry, B. H., Feys, R. 1958. Combinatory logic , Vol. I,
North-Holland.

Hindley, J. R., Seldin, J. P. 2008. Lambda-calculus and
Combinators, an Introduction. Cambridge University
Press.

Meunier, J.G. 1996. "Théorie cognitive:son impact sur le
traitement de l'information textuelle". in V. Rialle et D.
Fisette Penser L'esprit ,Des sciences de la cognition a une
philosophie cognitive. Presses de Université de Grenoble.
1996 289-305

Seffah, A., Meunier, J.G. 1995. "ALADIN : Un atelier
orienté objet pour l'analyse et la lecture de Textes assistée
par ordinaleur". International Conferencence On Statistics
and Texts. Rome 1995.

Shaumyan, S. K. 1998. Two Paradigms Of Linguistics:
The Semiotic Versus Non-Semiotic Paradigm. In Web
Journal of Formal, Computational and Cognitive
Linguistics.

Steedman, M. 2000. The Syntactic Process, MIT
Press/Bradford Books.

Warr, A. W. 2007. Integration, analysis and
collaboration. An Update on Workflow and Pipelining in
cheminformatics. Strand Life Sciences.

149

