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Abstract

Given the diversity and spatio-temporal scales of dynamic
coastal processes, sampling is a challenging task for oceanog-
raphers. To meet this challenge new robotic platforms such as
Autonomous Underwater Vehicle (AUV) are being increas-
ingly used. For effective water sampling during a mission an
AUV should be adaptive to its environment, which requires it
to be able to identify these dynamic and episodic ocean fea-
tures in-situ. We describe the use of Hidden Markov Models
(HMM) as a feature detection model used onboard an AUV,
an autonomous untethered robot. We show how to build an
identification model from data collected during past missions.
Then we show how the parameters of the HMM can be op-
timized using a Genetic Algorithm approach, from models
trained with the Baum-Welch algorithm in the initial popula-
tion.

Introduction
The coastal ocean offers a range of biogeochemical phe-
nomenon of interest to oceanographers. Often these phe-
nomenon occur over unpredictable spacial and temporal ex-
tents and are difficult to observe using traditional ship-based
oceanographic methods. To meet this challenge robotic plat-
forms such as Autonomous Underwater Vehicles (AUVs),
an untethered robotic platform, are being increasingly used
as a cost effective way for sampling and observation.
Robotic platforms such as AUVs are cost-effective, can be
targeted towards specific features of scientific interest and
are increasingly persistent in the water-column. Their ef-
fectiveness however, is often limited by their adaptability
since the features in question are often dynamic and episodic
and unpredictable in their spatial and temporal extents. To
achieve its goals, the AUV must be able to identify whether
or not it is within a feature of interest as detected by its
sensors. Such identification allows the platform to use the
paradigm of sense-plan-act to adapt its navigation and en-
able targeted water sampling for shore side analysis (Mc-
Gann et al. 2008b; Py, Rajan, and McGann 2010).

One example of an AUV is Monterey Bay Aquarium Re-
search Institute’s (MBARI) Dorado platform. Fig. 1 shows
an image of the AUV with its Gulper water sampling sys-
tem (Bird, Sherman, and Ryan 2007). Based on sensed data
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Figure 1: MBARI’s Dorado AUV with a water sampler

the AUV can decide in-situ whether to trigger a sampler
for water acquisition (McGann et al. 2008a). As the AUV
is equipped with a small number of samplers (10 in our
case) which can be actuated only once per mission sam-
pling comes at a cost. To make an accurate decision the AUV
should have precise information about the state of the feature
of interest.

The in-situ identification of a given feature is defined as
a classification task. Given an observation from the sensors,
the aim is to determine the state of the feature of interest.
One implication is to detect whether the vehicle is outside,
on the boundary or inside some feature such as an INL (In-
termediate Nepheloid Layer1) or an algal bloom. To detect
the state of a feature of interest for the AUV, we first need
to build an identification model. Initial work in this area ad-
dressed the problem of in-situ identification of water-column
features by standard classification (Fox et al. 2007). Such
reactive models rely on immediate sensor reading, ignoring
the past. More recent efforts in this direction involve gen-
erating a systematic identification model based on Hidden
Markov Models (HMMs) (Rabiner 1989) for estimating the
environments’ state (Py, Celorrio, and Rajan 2010). HMMs
exploit the sequential information of the sensor readings and
thus provide more robust identification than standard classi-
fication.

In this paper we discuss the ocean feature-identification
model for AUVs based on HMMs. This model is built using
a two step machine learning process. First, semi-supervised
clustering is done on the raw sensor data. The clusters thus
identified are used, in the second step, as observations for

1INLs are fluid sheets of suspended particulate matter that orig-
inate from the sea floor
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building an HMM which serves as the identification model.
The focus of our research here is to come up with the best
possible parameter estimation scheme for the HMM. Tradi-
tional methods like the Baum-Welch (BW) algorithm (Baum
et al. 1970) are unsupervised and offer locally optimal solu-
tions. Furthermore they do not allow us to systematically
bias the model easily.

We introduce labeled data and use Genetic Algorithms
(GA) to further optimize the HMMs learned by the BW al-
gorithm, aiming to produce models that better fit the data.
GA also offers the flexibility to bias the model parameters
allowing us to prevent false positive predictions for certain
states.

This paper is organized as follows. A brief background
on HMMs, their exploitation in-situ and the construction of
the feature model is provided. We then discuss parameter
optimization using GAs, the core of the paper. Experimental
evaluation is followed by related work. The conclusion ends
the paper.

Hidden Markov Model
A Hidden Markov Model is a state automaton in which the
states are not directly visible. Instead we can access a set
of observations which are probabilistically dependent on the
current state of the system. For a HMM we need to define a
discrete set of states S = [s1, s2...sN ] and a discrete set of
observations O = [o1, o2, ....oM ].

A state at time t is denoted by qt. A HMM uses the
Markov assumption that the current state is only dependent
on the previous state. Between each pair of states i ∈ S and
j ∈ S a transition probability is defined as aij = P (qt+1 =
j|qt = i)

The transition probabilities among all the states are rep-
resented by the square matrix A whose each element is aij .
Therefore we have the transition matrix:

AN,N =

⎛
⎜⎜⎝

a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N

...
...

. . .
...

aN,1 aN,2 · · · aN,N

⎞
⎟⎟⎠

Any transition which does not exist in the model has a
zero entry in the transition matrix. Every row of the transi-
tion matrix is subject to the constraint:

N∑
j=1

aij = 1 (1)

Each state also has a probability distribution over the pos-
sible observations that can be emitted. An observation at
time t is denoted by ot. Therefore, for each state j ∈ S ,
observation k ∈ O pair, we have bj(k) = P (ot = k|qt = j)
which gives the probability of observing the symbol k when
in state j at time t. Hence we define the emission matrix B
as follows:

BN,M =

⎛
⎜⎜⎝

b1(1) b1(2) · · · b1(M)
b2(1) b2(2) · · · b2(M)

...
...

. . .
...

bN (1) bN (2) · · · bN (M)

⎞
⎟⎟⎠

Figure 2: The HMM structure used in the identification model

where every row of the emission matrix is subject to the
constraint:

M∑
k=1

bj(k) = 1 (2)

The initial state probability vector which gives us the
probability of starting in a particular state is defined as
Π = [π1, π2, ...πN ] where each πi gives the probability of
starting in the state i ∈ S. Hence a complete HMM can now
be defined by the parameter set:

λ = (A,B,Π)

Exploiting HMM for Feature Identification
HMMs are useful for classifying data which does not appear
in isolation but are part of a time series. We use a HMM
as an identification model for in-situ identification of ocean
features during an AUV mission. The identification is based
on the HMM and observed sensor values. More specifically
we are interested in the probability of the feature being in
a state j (for the purpose of robotic actuation) at the cur-
rent time step t given an observation k and a model λ, i.e.,
fwd(1 : t, j). This probability is recursively computed, tak-
ing into account historical observations as:

fwd(1 : t, j) = αtbj(k)
∑
i

aijfwd(1 : t− 1, i)

where αt is a normalization factor such that
∑

j fwd(1 :

t, j) = 1. The initial state of the HMM is Outside, therefore
for the base case of t = 1, we have Π = [Outside = 1,
Inside = 0, Boundary = 0 and Centroid = 0].

Building the Feature Identification Model
A two-step machine learning process is defined to automat-
ically build the feature identification model for the AUV.
The process takes as input the raw sensor data and gives as
output a Hidden Markov Model. The output HMM serves
as the identification model for the feature of interest. For
example the HMM shown in Fig. 2 can identify four dif-
ferent states within the feature of interest. In this case the
states outside the feature, at its boundary, inside or at the
centroid are based on studies of INLs and their science re-
quirements (McPhee-Shaw 2006; Ryan et al. 2010).

An overview of the process is shown in Fig 3. The sen-
sor data available is partially labeled with the feature state
it belongs to. Complete labeling of sensor data is usually
not viable given the size of the datasets. For instance, a one
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Figure 3: An overview of the process for building the identifica-
tion model

hour AUV water-column survey with sensors sampling at
5 Hz generates approximately 15000 samples of raw sen-
sor data. In the first phase semi-supervised clustering, us-
ing Self-Organizing Maps (SOM) (Kohonen 2001) is done
on the raw sensor data which generates a set of clusters C∗
that summarize the sensor readings. The clustering step al-
lows the data vectors to be transformed into a discrete set of
observations. Subsequently sensor data can be represented
with the cluster id of the cluster it falls into. This gives us a
dataset of discrete observations which are then used to build
the HMM.

The second phase of building the feature identification
model is started with the label propagation where unlabeled
observations are labeled according to a prior probability dis-
tribution of clusters over feature states. Now with the fully
labeled database and following frequency counting, a seed
HMM is built. While building this seed model assumptions
based on scientific knowledge of the features are made. For
example as shown in Fig. 2 it is assumed that the first state
will always be outside given that an AUV mission will often
start well outside the boundaries of a feature.

In the next step the seed model is trained using the Baum-
Welch (BW) algorithm (Baum et al. 1970; Rabiner 1989). It
is a specific case of the Expectation-Maximization (EM) al-
gorithm. Baum-Welch is an unsupervised training algorithm
and takes unlabeled observations as input. Given a sequence
of observations it finds the locally optimal set of parame-
ters which maximize the probability of observing these se-
quences. As our optimization criteria is different and there is
no guarantee of global optimal by Baum-Welch, we further
optimize the learned model by using a Genetic Algorithm.

Parameter Optimization for HMM using GA
Genetic Algorithms (GA) (Srinivas and Patnaik 1994) are
optimization algorithms that use biology-inspired mecha-
nisms like mutation, crossover, natural selection, and sur-
vival of the fittest in order to refine a set of candidate solu-
tions iteratively. Genetic Algorithms can be used to optimize

Initialize Population
Evaluate Population
repeat

Select solutions for Next Population
Perform Crossover and Mutation
Evaluate Population

until Termination criterion reached

Figure 4: A simple Genetic Algorithm

for a wide variety of problems.
A genetic algorithm is usually given as shown in Fig. 4;

we note that to use a GA we need an initial population of so-
lutions, an evaluation or fitness function, a selection mecha-
nism for selecting solutions for crossover, a crossover func-
tion which keeps the solutions consistent and a way of mu-
tating the solutions. For optimizing the HMM parameters we
encode them as follows:

Initial Population
We initialize the population with the seed HMMs and the
HMMs learned using Baum-Welch. Each HMM is repre-
sented in terms of its parameter set λ = (A,B,Π). In our
case the starting state is always outside, hence Π does not
have any significance. Thus we are left with the matrices A
and B. Transition Matrix A is of size 4× 4 as we have four
states in our HMM. The emission Matrix B is of size 4× 87
as the number of found clusters (observations) is 87. These
clusters are found using semi-supervised SOM clustering.

Evaluation and Selection
Most of other algorithms for training HMMs like the Baum-
Welch, are designed specifically to maximize the log proba-
bility of observing the training observation sequence, while
GAs offer the flexibility to define an arbitrary evaluation
function for which the HMM can be optimized. This is use-
ful to systematically bias the HMM for preventing false posi-
tive predictions for certain states. Our AUV takes water sam-
ples at the boundary and centroid states, hence we want to
prevent false predictions for these states which are tempo-
rally transitory.

Performance evaluation of a model is done using a con-
fusion matrix (Provost, Fawcett, and Kohavi 1998) which
allows us to see if the model is confusing between two states
and hence giving us a quantitative measure of error. Each
row in this matrix indicates actual state instances and each
column represents the state predicted by the identification
model. For all the identification models the predicted state
is the one with the highest probability of occurrence with
a good margin. The additional state unknown is predicted
otherwise when states cannot be easily disambiguated. Each
row of the confusion matrix is first normalized such that it
sums up to 100. As a large percentage of our data belongs to
the outside state, this avoids any bias towards a state which
may contain more data points, by giving each state an equal
weight.

To compute the final evaluation of a model we initially
take the sum of the diagonal values of the confusion matrix.
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Figure 5: Crossover between two models

Values in the diagonal of the matrix indicate the proportion
of predictions that were correct. From this we subtract the
entries corresponding to false positives for boundary and
centroid states. For a model λ with N states we have a N ×
N confusion matrix C with elements cij . The fitness of the
model is calculated as follows:

Fitness(λ) =
N∑
i

cλii −
N∑

i �=k1

cλik1
−

N∑
i �=k2

cλik2

where k1 and k2 are columns of C corresponding to the
boundary and centroid states respectively.

Two models from the population are randomly selected
for crossover at every cycle of the GA since the models with
best fitness tend to have similar parameters.

Crossover
We are working with a non-random population of solutions
(HMM parameters) which are subject to constraints in Eqns.
1 and 2. Therefore we only interchange the corresponding
rows of the parameter matrices in a crossover. This helps
in maintaining the consistency of solutions. For two models
λ1 and λ2 we define a Transition Crossover i w.r.t. to the
Transition Matrix A as follows:

aλ1
ij ←→ aλ2

ij , ∀j : 1 ≤ j ≤ N (3)

Each aλ1
ij ←→ aλ2

ij symbolizes the swap of the correspond-
ing entries of matrices Aλ1and Aλ2 . A transition crossover
shown in Eqn. 3 is a complete exchange of row i among the
transition matrices of models λ1 and λ2. There are N such
transition crossovers possible. They are numbered from 1
to N , corresponding to each row i of transition matrix, for
1 ≤ i ≤ N .

Similarly w.r.t. the Emission Matrix B we define the
Emission Crossover N + j as:

bλ1
j (k) ←→ bλ2

j (k) , ∀k : 1 ≤ k ≤ M (4)

Each bλ1
j (k) ←→ bλ2

j (k) symbolizes the swap of the cor-
responding entries of matrices Bλ1and Bλ2 . An emission
crossover shown in Eqn. 4 is a complete exchange of row j
among the emission matrices of models λ1 and λ2. There are
N such emission crossovers possible. They are numbered
from N +1 to 2N , corresponding to each row j of emission
matrix, for 1 ≤ j ≤ N .

Consider the case in Fig. 5. Numbers 1 to 4 symbolizes the
four rows of the transition matrix in a model, and numbers
5 to 8 symbolizes the rows of the emission matrix. Given
the model constraints, we can only exchange rows with the
same number between the Model 1 and Model 2 for a valid
crossover. An transition crossover would be a crossover be-
tween rows 1 to 4 and a emission crossover would be a
crossover between rows 5 to 8. From a GA point of view
there is no difference between the Transition Crossover and
the Emission Crossover. We simply perform a random num-
ber of Transition Crossover and/or Emission Crossover in
each cycle of the GA.

Mutation
Mutation is done by running a model through one iteration
of the Baum-Welch algorithm. The seed model for this iter-
ation is the current individual. The model resulting from the
iteration of the Baum-Welch algorithm is the mutated model.
Solutions produced by the mutation step are added back to
the population.

The GA loop is terminated when no better individual is
found for a constant number of iterations. The best perform-
ing individual is selected as the final solution.

Experimental Evaluation
The data used for the experiments focuses on the detection of
INL states from different AUV missions. The data has been
divided into two classes; learning missions and test mis-
sions. Table 1 highlights the dataset. The learning mission
data consists of a set of approximately 500,000 observations
from four different AUV missions between the years 2003
and 2005 sparsely labeled at between 7% and 9.7%. This
data is used by the Baum-Welch algorithm in mutation and
while generating a model for the initial population. Baum-
Welch algorithm ignores the labels in the data. The testing
data used for model evaluation consists of approximately
150,000 observations from thirteen missions between 2008
and 2010. As the evaluation makes use of labels, more test
data is labeled at ∼ 21%.

Our experiments compare the performance of HMM mod-
els in terms of fitness over test missions. A detailed evalua-
tion is done by using the normalized confusion matrix, used
for calculating the fitness of a model. We select models at
three different levels of optimization.

Boot-strap Model This model is constructed using learn-
ing data and serves as a seed model for Baum-Welch. First
all unlabeled data points are labeled using a known proba-
bility distribution of observations over states. Then model
parameters are estimated using a frequency counting tech-
nique. Table 2 shows the confusion matrix and fitness score
for this model. The fitness value is 134.3 and the classifica-
tion accuracy for boundary state is very poor.

Baum-Welch Model This model is built after running
Baum-Welch over the boot-strap model. The learning data
are used as a training set, after ignoring the labels.
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Table 1: List of AUV missions used for experimentation
Mission # (yr-day) Date Labeled

Learning missions

2003-308 Nov 4, 2003 7.0%
2004-028 Jan 28, 2004 7.8%
2004-321 Nov 16, 2004 7.1%
2005-306 Nov 2, 2005 9.7%

Test missions

2008-315 Nov 10, 2008 13.0%
2008-318-1 Nov 13, 2008 16.3%
2008-318-2 Nov 13, 2008 9.8%
2009-308 Nov 4, 2009 12.9%
2009-313 Nov 9, 2009 25.0%
2009-342 Dec 8, 2009 35.0%
2009-348 Dec 14, 2009 22.7%
2010-081 Mar 22, 2010 10.6%
2010-082 Mar 23, 2010 23.8%
2010-083-1 Mar 24, 2010 27.4%
2010-083-2 Mar 24, 2010 29.7%
2010-118 Apr 28, 2010 28.3%
2010-119 Apr 29, 2010 22.7%

Table 2: Boot Strap Hidden Markov Model
Out. Bound. In. Cent. Unknown

Out. 93.5 1.5 2.7 1.9 0.4
Bound. 66.4 2.6 9.2 0.0 21.7
In. 10.1 12.9 41.5 9.4 26.11
Cent. 17.3 11.1 33.2 33.5 4.9

Fitness Score = 134.3

Table 3: Baum-Welch Hidden Markov Model
Out. Bound. In. Cent. Unknown

Out. 73.4 21.2 2.1 3.2 0.2
Bound. 23.6 54.0 6.6 0.0 15.8
In. 5.0 4.1 25.8 44.5 20.6
Cent. 5.2 1.6 18.4 71.0 3.8

Fitness Score = 149.6

The confusion matrix for this model is shown in the Table
3. Fitness for the model is 149.6 and the classification accu-
racy is 25.8 for the inside state. There are also large values
of false positives for boundary and centroid states.

Genetic Algorithm Model This model is learned by using
a GA with Boot-strap and the Baum-Welch models as the
initial population. The confusion matrix for this model is
shown in Table 4. The fitness for this model is 199.4. The
percentage of false positives for the boundary is 5.0, 0.8
and 0.0 and for a centroid at 1.8, 0.0 and 8.8. This is low

Table 4: GA Hidden Markov Model
Out. Bound. In. Cent. Unknown

Out. 89.0 5.0 3.7 1.8 0.4
Bound. 45.8 23.9 8.8 0.0 21.4
In. 3.6 0.8 63.4 8.8 23.3
Cent. 3.0 0.0 52.8 39.6 4.5

Fitness Score = 199.4

when compared to other models.

Related Work
HMMs are a common approach for handling sequential data
with various applications in the field of speech process-
ing and analyzing biological data. The idea of using Ge-
netic Algorithms (GA) to learn HMMs has been used earlier.
These attempts can be categorized into three classes (Volkert
2006).

Model parameter evolution Earlier work of Chau et al.
(Chau et al. 1997) using GA for optimizing HMM param-
eters started with a random population of solutions. Their
objective was to maximize the log probability of observ-
ing the training sequences, logP (O|λ). Experiments showed
improved performance over the Baum-Welch algorithm.

Slimane et al. (Slimane et al. 1996) conducted a series
of experiments to study the use of genetic algorithm for
optimizing HMM parameters. Their findings suggested that
HMM trained by Baum-Welch using seeds generated by GA
gives the best quality models. Kwong et al. (Kwong and
Chau 1997) optimized HMM parameters for speech recog-
nition using GAs.

Evolution of model parameters and structure Kwong
et al. (Kwong et al. 2001) also developed a hybrid-GA to
evolve both the topology and the model parameters of a left-
right HMM for speech recognition.

A genetic algorithm training approach combined with
Baum-Welch has been used by Yada et.al to train HMM
models representing signal patterns in DNA sequences
(Yada et al. 1994; Yada 1996). It evolved both the topology
and model parameters.

HMMs evolved both for topology as well as model struc-
ture have been used by Thomsen (Thomsen 2002) for solv-
ing the problem of predicting the secondary structure of pro-
tein sequences.

Model structure evolution Recent work on optimizing
the structure of HMM for biological sequence analysis
and secondary structure prediction also use the GA ap-
proach. Won et al. (Won, Prgel-Bennett, and Krogh 2004;
Won et al. 2005) have focused their efforts on evolving only
topology, while the task of learning parameters is left to the
Baum-Welch algorithm.

Our work is within the first class, most closely related to
the approach of Slimane et al. We also use a combination of
Baum-Welch and Genetic Algorithm to optimize the HMM
parameters. Our approach differs from the above, as we try
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to optimize the model found by Baum-Welch using GA in-
stead of using it for producing seed models for Baum-Welch.
We do this because, first we have partially labelled data for
producing good seed models for Baum-Welch. And second,
because our evaluation function is also different. Given that
in our work data examples are typically unbalanced, our
evaluation function aims to maximize the normalized accu-
racy taking into account the cost of false positives for cer-
tain states, whereas most other algorithms try to optimize log
probability of observing the training sequences logP (O|λ).

Conclusion
This paper presents an approach for in-situ identification of
dynamic ocean features using a Hidden Markov Model. We
present the use of Genetic Algorithms to further optimize the
solution found by the Baum-Welch algorithm. Tables 3 and
4 show that more refined models can be found by using GAs
over already optimized models. Additional optimization is
not the only benefit of using GAs; the flexibility to design
an arbitrary evaluation function allows introduction of sys-
tematic bias into the model where necessary. This is helpful
in preventing false positives for certain states important in
scenarios such as ours where the AUV has limited sample
acquisition capability.
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