
Tuning Search Heuristics for Classical Planning with Macro Actions

I. Murugeswari and N. S. Narayanaswamy
Department of Computer Science and Engineering

Indian Institute of Technology Madras, India
email: eswari@cse.iitm.ac.in and swamy@cse.iitm.ac.in

Abstract

This paper proposes a new approach to improve do-
main independent heuristic state space search planners
for classical planning by tuning the search heuristics us-
ing macro actions of length two extracted from sample
plans. This idea is implemented in the planner AltAlt
and the new planner Macro-AltAlt is tested on the do-
mains introduced for the learning track of the Interna-
tional Planning Competition (IPC-2008). The perfor-
mance of Macro-AltAlt measured by the length of the
plan found and the number of states explored to find the
plan is compared with that of AltAlt.

Introduction

Domain independent heuristic state space search planners
for classical planning (Ghallab, Nau, and Traverso 2004)
work by searching the state space with the guidance of a
heuristic function. We explore the possibility of improving
the search process by tuning the heuristic values of states us-
ing domain specific knowledge gained through experience in
solving problems in a domain. We do this by learning macro
actions and their frequencies in a domain independent man-
ner from plans for sample problems in a domain. A macro
action is defined as a sequence of actions in which consec-
utive actions work on a common object in the problem. A
sequence of actions occurring repeatedly in plans for differ-
ent problems in a domain indicates that it is characteristic of
plans for problems in the underlying domain to have these
actions together in the same order. Therefore, it might be
useful to bias the search to give preference to actions that
form a highly frequent macro action learnt from experience.
This can be done by appropriately adjusting the heuristic
values of states based on the frequency of the macro action
that generates it.

Related Work

Improving domain independent planners with domain spe-
cific details and identifying useful macro actions for aid-
ing problem solvers have been approached in ways differ-
ent from that of ours. STAN (Long and Fox 1999), an im-
plementation of graphplan employs a preprocessing module

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

TIM (Type Inference Module) that performs domain analy-
sis for identifying domain features. MacroFF (Botea et al.
2005), a forward state space search planner extracts macro
actions through domain analysis and extends the domain op-
erator set with macro actions. Jeremy Frank (Frank 2007)
has talked about using data mining techniques for identi-
fying macro actions. Richard E. Korf (Korf E. 1985) and
Glenn A. Iba (Iba A. 1989) have used macro actions in gen-
eral problem solving by abstracting them into domain oper-
ators.

Our Work

We have implemented our idea of using macro actions to
improve search in AltAlt (Nigenda, Nguyen, and Kambham-
pati 2000). The new planner Macro-AltAlt is organized as
a system with two components: A Learner and a Planner as
shown in Figure-1.

Figure 1: Structure of Macro-AltAlt

Learner The Learner is an off-line component that is run
before the planner. It learns macro actions in a domain in-
dependent manner from a set of sample plans. The set of
plans can come from any source: a domain expert or a plan-
ning program. We have made a few implementation level
changes to AltAlt primarily to reduce memory requirements.
We have used the modified version of AltAlt to generate this
set. A macro extractor module reads this set and creates

217

Proceedings of the Twenty-Second International FLAIRS Conference (2009)



a knowledge base of macro actions using the apriori (Han
and Kamber 2006) data mining algorithm. The steps in the
macro action extraction algorithm are given below:

1. Create a list of actions (considering only the action name)
in the plan and determine the frequency of each action.

2. Associate a list with each action and save the position(s)
of its occurrence(s) in the plan.

3. For each action in the list created in step-1 do:

(a) For each entry in the associated occurrence list created
in step-2 do:

i. If this action and the consecutive action in the plan
have a common argument then add the pair of actions
to the list of macro actions (if it is not in the list) and
update the frequency.

4. Group the macro actions according to the first action in
the pair. Rank the macro actions in a group in the ascend-
ing order of their frequencies.

Figure 2: Macro-AltAlt vs AltAlt (Plan Length)

Planner The Planner is the improved version of AltAlt.
It takes the knowledge base of the domain as an additional
input. AltAlt performs best first search. In each step, the
best node among the unexpanded nodes is expanded. The
steps in the algorithm to tune the heuristic value are given
below:

1. Let s be the current node. Generate the successors of s
and compute the heuristic value of each successor.

2. Offset the heuristic value of each successor by the rank of
the macro action 〈a, x〉 where a is the action that generated
s and x is the action that generated the successor node.

3. Consider the new heuristic values of the successor nodes
while choosing the best node for expansion in the next
step.

Experiments and Observations

We have tested Macro-AltAlt on a set of 25 problems on
the following five domains: Blocks World, Matching Blocks

Figure 3: Macro-AltAlt vs AltAlt (Nodes Generated)

World, Gold Miner, Sokoban and N-Puzzle. Macro-AltAlt
is compared with AltAlt in the following performance mea-
sures: Plan Length and States Explored. Out of the five do-
mains, Macro-AltAlt performs well in the Blocks World do-
main as shown in the plots in Figure-2 and Figure-3. The re-
sults indicate a correlation between the ratios of the lengths
of plans found by the two planners and the ratios of the num-
ber of states explored by them. This has to be studied further.

Acknowledgements

We are thankful to Dr. Deepak Khemani and Dr. B.
Ravindran in the Department of Computer Science and
Engineering, Indian Institute of Technology Madras, for
their advice and support.

References

Botea, A.; Enzenberger, M.; Muller, M.; and Schaffer, J.
2005. Macro-ff: Improving ai planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research 24 581–621.
Frank, J. 2007. Using data mining to enhance automated
planning and scheduling. Computational Intelligence and
Data Mining, 2007 251–260.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning - theory and practice. Morgan Kaufmann.
Han, J., and Kamber, M. 2006. Data Mining: Concepts
and Techniques. Morgan Kaufmann, 2nd edition.
Iba A., G. 1989. A heuristic approach to the discovery of
macro-operators. Machine Learning 3 285–317.
Korf E., R. 1985. Macro-operators: A weak method for
learning. Artificial Intelligence 26 35–77.
Long, D., and Fox, M. 1999. Efficient implementation
of the plan graph in stan. Journal of Artificial Intelligence
Research 10 87–115.
Nigenda, R. S.; Nguyen, X.; and Kambhampati, S. 2000.
Altalt: Combining the advantages of graphplan and heuris-
tic state search. Technical report, In KBCS-00.

218




