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Abstract

We present a little crawling robot with a two DOF arm that
learns to move forward within about 15 seconds in real time.
Due to its small size and weight the robot is ideally suited
for classroom demonstrations as well as for talks to the pub-
lic. Students who want to practice their knowledge about re-
inforcement learning and value iteration can use a wireless
connection to a PC and monitor the internal state of the robot
such as the value function or the reward table. Due to its
adaptivity, depending on the surface properties of the under-
ground the robot may surprise its audience with unexpected
but efficient walking policies. The GUI is open source and
the robot hardware is available as a kit from the authors.

Introduction

In a classical introductory Al class, reinforcement learning
has a narrow time slot of a few hours only. In our Al class we
introduce value iteration (Bertsekas 1987) and Q-Learning
(Watkins 1989) on discrete state- and action spaces and ex-
plain the exploration problem. Finally we give a short out-
look on continuous problems and other algorithms.

In order to give a vivid presentation, we were looking
for an example of a simple robot that enables us to directly
demonstrate the learning algorithms. The state space of such
arobot has to be two dimensional and the actions of the robot
should be moves to neighbor states in the two dimensional
grid world. A robot that very nicely fulfills these require-
ments was presented as a simulation in (Kimura, Miyazaki,
and Kobayashi 1997). Figure 1 shows an outline of the little
crawling robot with a two degree of freedom arm. In case
of discrete positions and small movement angles of the two
joints the state space can be approximated by a cartesian grid
world as shown in Figure 2.

To move forward, the robot has to repeatedly perform a
cycle of moves. An example for such a cycle is shown
in Figure 2 on the right or in the sequence shown in Ta-
ble 1. The task for the learning algorithms is to find a policy
(which might be such a cycle) that maximizes the long-term
cumulative reward. The reward is the speed of the robot, i.e.
the distance the body of the robot moves forward per time
step. Consequently, a move forward gives positive reward
whereas any backward move yields negative reward.
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Figure 1: The robot with its two joints g, and g,.
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Figure 2: The cartesian 5 x 5 grid-world model (left) and

a cyclic walking policy (right). States within the cycle are
labled as ().

As a last but important requirement, the robot has to be
small, lightweight and autonomous, such that it can easily be
taken to the class room in a brief case and be demonstrated
without an external power supply.

In the following sections we describe the robot hardware,
the robot software and a graphical user interface (GUI) on
the PC with a wireless connection to the real robot (Tokic
2006). For didactic purposes the GUI is very helpful because
it allows us to view the value table and reward table and to
watch the learning process of the robot.

The Robot
Hardware Setup

Our crawling-robot prototype as depicted in Figure 3 is
controlled by an ATmega32 microcontroller board which



robot time state reward | action
t Gy 9z X Qg
S4saa 002 4 0 | up | left 0 right
S4saa 002 4 I | up |right] O |down
sS4 240125 45 2 |down|right| O left
444-2-14)12345 3 |down| left 1 up

Table 1: Four steps of a simple cyclic forward walking pol-
icy.

is mounted on top of the robot. The joints of the robot

are driven by servos and the robot’s movement is measured
by an optical incremental encoder attached to one of the
wheels. The board has outlets for the servos, a serial wire-
less transceiver, an outlet for the encoder and a DIP switch
to setup several parameters. For instance one of these pa-
rameters inverts the encoder signal such that the robot learns
a backward-moving strategy instead of moving forward.

Figure 3: The crawling-robot prototype.

In addition to this prototype we developed a new version
of the crawling robot as shown in Figure 4. Due to its ro-
bustness this robot is more suitable for lectures and labora-
tory tutorials. It has two wheels at the rear with a rigid axle.
The axle is connected via a non-slip belt transmission to the
encoder. This assembly reduces the sensor noise to a mini-
mum. The board has the same features as the board above
but with a bus interface for Dynamixel AX-12 servos in ad-
dition. These servos communicate with a half-duplex asyn-
chronous packet-protocol on TTL-level with up to 1,000,000
bps. The maximum holding torque is about 1.17 Nm.
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Figure 4: The new crawling robot for use in our laboratory
tutorials.

The Learning Algorithm

We consider the reinforcement learning framework, see for
example (Sutton and Barto 1998), where an agent, in our
case the crawling robot, interacts with a Markovian decision
process (MDP). At each time ¢ € {0,1,2,...} the agent is
in a certain state s; € S. After executing action a; € A
the agent receives a reward signal R%, = E{riii|s; =
s,a; = a, $¢11 = s’} by passing into a successor state s;1
with probability P, = Pr{si41 = §'|s; = s,a; = a},
Vs, s € S,a € A. 0(s,a) denotes a transition function
and represents the successor state s’ after action a has been
selected in s. The decision which action a is chosen in a
certain state s is characterized by a policy, 7(s) = a, which
could also be stochastic w(s,a) = Pr{a: = a|s; = s}.
A policy which maximizes the average reward over time is
denoted as 7*. On the crawling robot we use the value-
iteration algorithm (Bertsekas 1987; Sutton and Barto 1998;
Powell 2007) for learning a cyclic deterministic policy 7(s)
by which the robot moves forward. The algorithm value it-
eration which we use on the robot basically works by assign-
ing a numerical value V' (s) € V to each state s € S where
each state value represents the expected cumulated reward
over time when following 7(s). Based on these state values
V in conjunction with R?,, a deterministic policy m(s) can
be derived.

We adapted the value-iteration algorithm to perform on
the crawling robot as depicted in Algorithm 1. Here a dis-
counting factor 0 < = < 1 is used to specify the portion
of influence of neighbor-state values V' (d(s,a)) on V(s).
Since the robot is faced with a zero-knowledge environment
after switching it on, a tradeoff between exploration (long-
term optimization) and exploitation (short-term optimiza-
tion) has to be done (Thrun 1992; Kaelbling, Littman, and
Moore 1996; Sutton and Barto 1998). A very simple explo-
ration technique is e-Greedy exploration. Here the agent se-
lects an action at random with a probability e, uniformly and
independently of V' (s), instead of following 7(s). Heuristi-
cally € could be set to a high value at the beginning of the
learning process and then be decreased over time. This en-
sures much exploration at the beginning and pure exploita-
tion starting at some time ¢.



Algorithm 1 VALUEITERATION ON ROBOT

1: Initialize V arbitrarily, e.g., V(s) = 0, forall s € S
2: Initialize R?,, arbitrarily, e.g., 7(s,a) = 0, for all r €

a
ss’

3: state «— (g, = 1,9, = 1)

4: loop

5 ¢ «— rand(0..1)

6 if £ < € then

7 a — rand(A(state))

8: else

9: a — argmax,R%, + vV (s)
10: end if

11: successorState — §(state, a)

12: observe r(state, a) and update R?,,

13: for all s € S do

14: V(S)  MaXge A(s) T(Sa a) + ’yV((S(S, a))
15: m(s) < argmax,e 4(5)7(s,a) + YV (4(s, a))
16: end for

17: state «— successorState
18: end loop

As the value-iteration algorithm requires the rewards
r(s,a) for each action a in state s, we simply save them
into a memory table RZ_,. After executing action a in s, we

update the corresponding record 7(s, a) in R%,,.

The Robot Software

The robot’s software architecture runs autonomously in a
single thread on the ATmega32 microcontroller. This micro-
controller comes with four “pulse-width modulated” (PWM)
pins. We use two PWM-pins associated with Timerl A/B to
directly position the joint-servos. The optical incremental
encoder which is connected to an external-interrupt pin pro-
vides the reward signal 7 (s, a). An interrupt-service routine
(ISR) counts the distance the robot moved within a small
delay time ¢. It is activated subsequently after setting up the
Timer1A/B registers by which we position the servos with
respect to state s and action a.

In an endless loop the robot executes actions either with
respect to the learned policy 7 (s) or exploration steps. After
each action a value-iteration step for all s € S is performed.
Subsequently the serial interface is polled to check if the
GUI sent a command to which the microcontroller should
respond. For instance such a command can be a request for
transmitting } and RZ,, to the GUI in order to display the
robot’s “brain”.

Walking Robot Simulation

To demonstrate and test reinforcement learning algorithms
on the two-dimensional grid-world, we developed a graph-
ical user interface (GUI) which allows control of the real
hardware robot and a simulated version of it. In addition to
an animation of the robot’s x-z-projection the GUI comes
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up with a reward editor, a display of the current value ta-
ble and a view of the current policy, Figures 5 and 6. A
configuration editor enables the user to select the size of the
state space and to specify the learning algorithm parame-
ters, for example the discounting factor ~y. In the configura-
tion dialog it is also possible to configure a neural network
for approximating the V'-Function using back- or resilient-
propagation (Rumelhart, Hinton, and Williams 1986; Ried-
miller and Braun 1992).

In the view of the value table the user is able to control
value iteration step-by-step using the “next iteration”-button.
As well it is also possible to run the learning algorithm in a
time-delayed or full-CPU-speed loop. Due to this feature
the user can observe the robot’s learning progress over some
time period. For this in each robot state s, which is a cell in
the value table, we also display an arrow respresenting the
robot’s current policy 7(s) as shown in Figure 5.

Walking Robo
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Figure 5: The simulator’s value table view with arrows for
the current policy in each state. Please note the marked
cyclic policy which the hardware robot learned after execut-
ing 66 value-iteration steps with respect to the environment
as displayed in Figure 6.

Another important feature of the simulator is the reward
editor as depicted in Figure 6. It allows the user to model
the agent’s environment and thus to simulate the real hard-
ware robot on different grounds. Alternatively the hardware
robot’s reward table R¢_, is displayed in this view when the
simulator is connected to the robot. In combination with the
robot’s value table this enables the user to get an insight into
the robot’s “brain”. In the next section we will show how the
simulator can be used by students to model different robot
environments.

Apart from simulating the crawler, the simulator can also
be used to simulate arbitrary two dimensional grid worlds
with the four actions left, right, up and down.

Serial Robot Interface

One of the GUI’s main features is the serial robot interface
by which the user is able to communicate wireless with the
hardware robot. The interface enables the user to analyze the
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Figure 6: The simulator’s reward editor displaying the hard-
ware robot’s reward table R, .

robot’s learning progress and to setup several learning pro-
cess specific parameters. The link is realized by a RF04/400
USB telemetry module on the PC side, connected to the USB
port. On the microcontroller side, we use an Easy-Radio
ER400TRS transceiver which is directly connected to the
microcontroller’s USART pins and which is also a part of
the RF04/400 USB telemetry module. The two transceivers
operate at the 433MHz frequency band with a serial baudrate
of 19200. The GUI view provides to the user the following
features:

e send control commands to the robot, e.g. “start walking”
or “stop walking”

e retrieval of RY,, and V from the robot

e transfer RY,, and V from the GUI to the robot

e configuration of the robot’s discounting factor ~y

e configuration of the robot’s exploration parameter €

e retrieval of a counter, ¢, that indicates what distance the
robot moved forward since the last counter reset

e reset of the distance counter ¢

Class Room Experience

We used the crawler in the Al class for the computer science
master students. At the very beginning of the section on re-
inforcement learning we give a demonstration of the crawler
learning to walk within about 20 seconds. This simple demo
leads to a high motivation: the students want to know “how it
works”. Then, after introducing value iteration, the students
can perform their own experiments on the robot. Some of
the possible experiments are described in the following.

In our laboratory tutorials a typical task for a student is
to observe the robot’s learning behaviour on different sur-
faces. A part of this exercise is the examination of the
robot’s learning progress by loading V and RY,, from the
robot into the GUI. This enables the student to identify the
policy cycle and to verify it. This is done by computing
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Figure 7: Left: The robot’s policy learned on the laboratory
carpet as depicted in Figure 3. Right: The robot’s policy
learned on a table with a slippery surface as depicted in Fig-
ure 8. States within the cycles are labeled as (©.

the average reward which is the ratio of the cumulated re-
ward and the number of actions within the cycle. In the
example of Figures 5 and 6 the robot’s average reward is
w = 8.833. Afterwards the students simulate
the behaviour with a different discounting factor  to get a
sense about the effect of v on learning times. For example
a low v leads to short learning times because value iteration
converges faster. But unfortunately this leads to the prob-
lem that the optimal cycle is eventually not learned and sub-
optimal cycles are learned instead of the optimal one. Since
V (s) respresents the expected reward in the future, this ef-
fect is caused by too little information about states farther
away from s. However solving this problem with a high
v < 1leads to longer learning times because value iteration
converges slower. For the hardware robot we recommend
v = 0.9 as the discounting factor since in all our experi-
ments we got short learning times with it and we were able
to find the optimal cycle.

Another parameter which can also be explored by the stu-
dents is the exploration-rate parameter 0 < ¢ < 1. The
choice of ¢ also impacts the learning time. For example,
e = 1 leads to 100% exploration and the robot performs ran-
dom actions all the time. On the other hand if ¢ = 0, then the
robot exploits greedily the current policy without exploring
if there are other actions that yield more reward in the fu-
ture. This effect is observable by the students as the robot
will mostly stick in sub-optimal walking policies if € = 0
is configured. During the experiments the students find out
that ¢ = 0.1 is a good choice for balancing exploration and
exploitation on this little crawling robot.

Some results of our experiments are shown in Figure 7
where the robot learned different policies due to different
surface properties. We stopped the robot after a while of
learning and examined the policy. The videos showing this
learning process can be found on our laboratory website (Al-
Lab HRW 2008).

Another very valueable exercise for the students is the in-
verse of the above task. Here the student has to design pat-
terns of immediate rewards that simulate different surfaces
on which the crawler has to move. Then the student uses the
simulator to train a policy with value iteration. Now he/she
can check if the policy meets the requirements.



Figure 8: The crawling-robot prototype on a desk with a
slippery surface.

As a first task, a flat surface is given. On such a ground,
whenever the robot lifts its body a little bit, it can move ef-
fectively. An appropriate 5 x 5 reward pattern together with
the resulting walking policy is given in Figure 9. With min-
imal vertical lifting, but maximal horizontal movement, the
robot makes “big flat steps”.

1 |2 |3 |4 |5
0 0 0 0 0
100 0 00 00 00 00
_lo 0 0 0 0
0 0 0 0 0
200 o 00 00 (] 00
_lo 0 0 0 0
0 0 0 0 0
30 1 1 -1 1 -1 1 -1 10
_lo 0 0 0 0
0 0 0 0 0
4o 1 1 -1 1 -1 1 -1 10
_lo 0 0 0 0
0 0 0 0 0
500 -1 1 -1 1 -1 1 -1 10
0 0 0 0 0

Figure 9: Simulated reward pattern for a flat surface (left)
and the corresponding learned policy (right).

As a next task, the surface is rough, like it is if a human or
animal walks in deep snow. Here the legs have to be lifted
up high. Otherwise, the resistance or friction is very high.
This can be modelled with high rewards if the body is lifted
up high and low (but non-zero) rewards with small lifts. Fig-
ure 10 shows such a reward pattern together with the result-
ing walking policy.

1 |2 |3 |4 |5
0 0 0 0 0
100 0 00 00 00 00
_lo 0 0 0 0
0 0 0 0 0
200 0 00 00 00 00
_lo 0 0 0 0
0 0 0 0 0
30 1 11 1 -1 1 -1 10
_lo 0 0 0 0
0 0 0 0 0
4o -1 1 -1 11 1 -1 10
_lo 0 0 0 0
0 0 0 0 0
50 -2 2 2 2 2 2 2 2 0
0 0 0 0 0

Figure 10: Simulated reward pattern for a rough surface (e.g.
deep snow) and the corresponding learned policy.

Finally, the student can compare the simulated policies
and reward patterns with the results from the experiments
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on the real robot. Differences are due to the fact, that for
large angles of the robot joints, the geometry of the crawler
movements is far from the Euclidean (rectangular) geome-
try in the simulation. This leads to the insight that even a
robot as simple as our crawler can “invent” policies which
a programmer never would have designed. For the students
this is a very convincing motivation for the study of learning
algorithms for robots.

Conclusions and Future Work

Due to the relatively small state- and action space the learn-
ing times on the real robot with its ATmega32 microcon-
troller are very short. Usually after about 10 to 30 seconds
the value-iteration algorithm has learned a nice walking pol-
icy. Due to this impressive learning speed and its animal like
shape and movements, in many lectures and talks the little
crawling robot was able to attract the attention of students
and spectators. Especially for an abstract and mathemati-
cally challenging subject such as reinforcement learning this
is the best way of motivating students we can imagine.

Even for us developers it was surprising to observe how
sensible this very simple robot adapts its behaviour to the
surface properties of the underground. The videos at (Al-
Lab HRW 2008) show five policies learned on different sur-
faces. This can easily be demonstrated in the classroom e.g.
by running the robot on a table or on a carpet and observing
the difference.

Since this is an ongoing project we currently implement
Q-Learning on the hardware robot as well as in the simulator
as an alternative to value iteration. Once it is implemented
the students are able to perform observations of the learn-
ing speed with respect to different learning algorithms. As
a further extension we plan to implement different explo-
ration/exploitation techniques, for example counter-based
exploration as described in (Thrun 1992), since this will also
impact the learning times.

Last but not least we want to encourage other universi-
ties to use this little robot for communicating the fascination
in robot learning to their students. On our website (Al-Lab
HRW 2008) we offer a hardware kit, an open-source simu-
lator and the hardware robot’s open-source software.
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