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Abstract 
LEGO Mindstorms robots are very popular with colleges and 
universities for teaching computer concepts and programming.  
These robots elicit excitement in students and provide a 
nontrivial, real-world platform for exploring algorithmic 
concepts.  We created a simple algorithmic language, called 
Robolang, and wrote a translator that turns it into Lejos code, a 
variant of Java that can be run on the RCX version of the LEGO 
Mindstorms robots.  Seeing that students were eager to explore 
programming with the RCX robots at home, we wrote a graphical 
simulator to visualize actions of our penbot, a configuration of the 
RCX robot that we used in most assignments.  Using an emulator 
approach, we intercept the ROM calls to the RCX's hardware 
made by the TinyVM, the stripped-down Java Virtual Machine 
that runs compiled Java bytecodes.  Our system then forwards 
these calls to a software model that represents the actual robot 
hardware.  The software model creates the graphics to mimic the 
penbot using Java2D. This approach greatly simplified coding by 
capitalizing on existing software, namely the Java compiler and 
the JVM.  Students can program either in Robolang or in actual 
Lejos and use the simulator to visualize the actions of the robot 
acting as a sort of visual debugger.1 

Introduction 
In 2005, eager to get students to program the RCX LEGO 
Mindstorms robots in a simplified procedural language, we 
created a simple environment called Robotran (Meyer and 
Burhans 2007). A programming language called Robolang 
was embedded in Robotran, providing the ordinary 
algorithmic constructs as well as robot movement 
commands.  Robotran contains a parser that creates a Lejos 
program from the Robolang program, which can then be 
compiled using lejosc and downloaded to a real robot.  We 
shied away from the primitive visual programming 
language that LEGO provided, called Robolab, because of 
its weaknesses and because we wanted the students to 
begin experiencing a programming language that was not 
too far removed from Java which they would see in the 
following semester. 
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Robotran was very successful at our college.  Students 
enjoyed it and were able to draw complex letters and 
shapes, follow the beam of a flashlight, sense a black track 
on paper underneath the robot, and respond to touch sensor 
bumps using only a few lines of code.  Lejos, which is Java 
with a special robot-command library, was deemed too 
complicated for this group of students, some of whom were 
taking robotics for a general education requirement.  
However, Robolang was sufficiently powerful that students 
could program for our robot competition in it and do quite 
well against other students who wrote directly in Lejos or 
NQC (Not Quite C). 

A limiting factor with all robots used in education is the 
expense of the robots.  Since each kit costs approximately 
$300, we couldn’t expect students to buy their own, 
especially if they took the course for general credit.  To 
avoid loss or damage, we could not lend out robots, forcing 
students to only work on robot assignments at school, but 
not at home.  It was then that we decided to embark on the 
ambitious route of simulator building. 

Since the purpose of our simulator was very specific and 
curricular in its scope, we didn’t attempt to create a 
physically accurate general-purpose simulator, but rather 
one that would respond to our students’ Robolang 
programs somewhat realistically.  Our penbot is a standard 
roverbot (Fig. 1) with bump sensors, a pen attached to a 
motor for up and down movement and a light sensor. To 
match our curricular use, we modeled our simulator’s robot 
on this hardware configuration, adding a world of barriers, 
light sensors and a floor on which the robot could draw and 
a track that the robot could follow. 

Because we needed to run compiled Lejos programs, 
which are actually Java programs, we wrote the simulator 
and IDE in Java.  This permitted a conservation of effort 
since we emulate the josx API with our own Java code, 
instead of writing a simulator engine that follows the 
Robolang program directly.  This strategy appears to be 
unique to our approach and has a number of benefits as 
well as trade-offs which we will explore. 

Writing and testing a simulator is a very daunting task.  
Though more testing needs to be done, the simulator is 
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mature enough to let students do most of their assignments 
with it. 
 

 
Fig. 1:  Penbot used in Robotran 

Previous Work 
Robot simulators fulfill a crucial role in saving time and 
money, both in industrial and educational settings.  
Simulators make it possible for students to explore high-
cost robots that they would likely never get to touch.  They 
enable more students to write and debug robot controller 
programs, unconstrained by the limited number of robots. 
There are many reasons for using simulators as well as 
some drawbacks (Dodds 2006).   

There exist several dimensions along which a robot 
simulator can be pegged to describe crucial differences 
between simulators.  These include 1) tie-in to a real-world 
robot, 2) dimensionality of the graphics, i.e. 2D or 3D, 3) 
physical verisimilitude, 4) configurability, 5) programming 
model and permitted programming languages, and 6) 
number of robots in the world and 7) obstacles in the world 
other than robots. 

Karel the robot is one of the most widely used robotic 
simulators, although it does not actually simulate an 
existing robot, but rather an idealized one (Pattis 1995).  
The programming language Karel, and its descendent, 
Karel++, was based on structured programming languages 
e.g. Pascal, and later C++ and Java.  Since the purpose of 
Karel is to teach programming, verisimilitude is less 
important.  Karel is part of a long lineage of robot-like 
teaching tools, going back to the LOGO programming 
language and others.  LOGO was designed to implement 
turtle graphics, which itself was an idealization of turtle 
robots. 

With the advent of low-cost robot kits about ten years ago 
and their continued improvement, the field has seen an 
explosion of interest in programming actual devices rather 
than simulators.  Simulators are still useful as test beds or 
to provide access to otherwise expensive machinery.  
Along with this shift in emphasis to real hardware, 
simulators are now driven by the hardware.  Thus, the tie-
in to physical robots has strengthened since the days of 
LOGO and Karel as more projects attempt to mimic the 
real world. 

An important dimension of simulator differences is 
whether they attempt to model the physical properties and 
constraints of a robot accurately.  The Doane Roverbot 
simulator attempted to do that (Buss et al. 2005).  Its 
creators studied the roverbot's physical movement, 
including its speed at different power levels.  They 
carefully measured the motion of the actual roverbot using 
a motion sensor and charted its position versus time at ten 
different power levels.  The authors also measured the 
torque exerted by the motors and factored in the weight of 
the robot to make the most realistic 3D simulation possible.  
However, they found that some movements, like turning, 
were very difficult to model.  They fell short of 
implementing a collision detection system or sensor inputs.  

However, some point out that simulators are often too 
perfect (Dodds et al. 2006). They do not replicate real-
world settings in which robots do not move in a perfectly 
straight line or respond to every sensor input in a consistent 
way.  The Jago simulator (Wolf et al. 2003) corrected this 
by causing the simulated robots to sometimes veer off 
course and to represent quantification errors that arise from 
sensors, thereby giving students a more realistic taste of 
what they can expect from actual robots. 

One of the most visible dimensions of difference among 
simulators is the level of the graphics.  Robotran is only 
2D, as is Jago and Karel.  Gazebo offers both 2D and 3D 
simulations, and runs on Linux only.  The Doane simulator 
is a 3D simulation.  Many commercial packages, such as 
Webots, use 3D graphics for a more realistic simulation.  
Commercial simulators offer a much larger range of 
functionality but are often not free.  Vajta and Juhasz 
(Vajta and Juhasz 2005) discuss the role of 3D simulation 
in robotic design, test and control.  They note the difficulty 
of achieving true binocular vision and the need for special 
glasses or at least visual clues that give the illusion of 
depth.  Their Webots Simulator is widely used and they 
discuss a newer simulator called RobotMAX that uses a 
3D visualization engine and a CAD interface to allow the 
user to design virtual environments (Tellez and Angulo, 
2006). 

Yet another dimension of simulator design is 
configurability.  Robotran permits only one modification of 
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the basic roverbot design, specifically the orientation of the 
light sensor.  Commonly, other educational simulators, 
such as Jago and Doane, do not permit much 
customization.  Some commercial packages, including 
Webots, permit the user to define a model, which is a 
configuration of sensors and motors.  This model is 
uploaded to the simulator for use during actual runs and is 
not alterable during execution. 

The programming model is where Robotran differs from 
all other LEGO simulators.  Most simulators accept 
programs written in some programming system that is used 
with actual robots and then interpret the commands in 
terms of the simulated world and robot.  Assembly 
language is sometimes used, as in RCXSimulator (Butler 
and Brockman 2001)  NQC (Not Quite C) is another 
popular choice. 

Some simulators, such as the Doane simulator, emulate the 
brick by interpreting the low-level bytecodes.  This 
approach gives more control over the simulation but also 
means that the software must include a full interpreter for 
the bytecodes, either P-script or Java.  Writing and testing 
this part of the simulator, which is behind the scenes, is a 
huge undertaking in itself.  Robotran makes use of the 
standard Java bytecode interpreter, the JVM, which is 
available for almost every computer, and intercepts the 
specific commands to the RCX brick.  This approach was 
not seen to be duplicated elsewhere, at least in terms of 
RCX simulators. 

Some RCX simulators, for example LegoSim (Roblitz, 
Buhn and Mueller 2002), model the behavior of the brick 
alone.  They show an image of the brick, as LegoSim does, 
with clickable button images and the LCD display, but 
there are no sensors or motors visibly attached.  LegoSim 
displays three boxes for the three sensor input ports, and 
three other boxes for the A, B and C motors, displaying the 
direction and speed.  The emphasis is on the internal state 
of the brick. 

Other simulators model a brick with sensors and motors, 
forming a roverbot, penbot or other student-built robot, like  
the Doane Roverbot Simulator (Buss et al. 2005).  This 
robot uses a set configuration which has two bump sensors 
and two motors.  The world that the simulated roverbot 
moves around in is a rectangular box with some objects in 
it, closely mimicking a real-world test setup.  The Doane 
Roverbot uses downloaded P-Brick script files, which are 
generated by the visual programming language Robolab, 
into the simulator which then interprets them and runs the 
simulation. 

While it is not necessary to have more than one robot in a 
simulated world, having the capability of more than one 
allows exploration of inter-robot behavior, for example 
“sumo wrestling” or racing, popular themes for robotics 

competitions.  Jago permits multiple robots per world, 
whereas Robotran does not. 

User Interfaces 
Robotran contains two major windows: an IDE for editing 
Robolang and Lejos code, and a simulator for visualizing 
what the code will do on a real robot.  The IDE permits 
entry, editing and saving of programs in either language.  It 
also translates from Robolang to Lejos.  Thus, the 
simulator can be used in our earliest course where only 
Robolang is used, as well as our CS 1 course, which is a 
Java-based introduction to programming.  Fig. 2 shows the 
basic IDE with tabbed panes in which the programs are 
edited. 
 

 
Fig. 2:  Robotran IDE 

 
The simulator’s visual interface consists of two panes: the 
virtual robot in its world, and an image of the RCX brick 
with control buttons (Fig. 3).  The buttons on the image 
can be pressed just as a student would press the buttons on 
a real RCX to start, run and stop a program.  The LCD also 
provides output identical to a real RCX robot. 

The robot’s world is simple, consisting of a square sheet of 
paper over which the robot moves and draws if the pen is 
down.  Only one robot can exist in this world. There are 
four boundaries around this world which the robot can hit 
and by which it will be stopped.  Additional barriers can be 
placed inside the world.  Blue barriers represent marks on 
the paper that trigger the robot’s light sensor if the light 
sensor is oriented down.  This allows students to test out 
line-following algorithms.  A simulated light source can be 
placed in the world, corresponding to a flashlight which the 
robot may follow or avoid, depending on the assignment. 
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Fig .3:  Robotran simulator interface 

Simulation Architecture  
The key to making this approach work is to emulate calls 
to the RCX’s ROM.  Normally, the TinyVM calls routines 
in the RCX’s controller directly via Java JNI (Java Native 
Interface).  JNI is the Java technology that permits calling  
machine language routines outside the JVM.  The physical 
robot responds to these calls by turning motors on or off or 
actuating a sensor. 

Our approach replaces the bottom layer only, namely the 
real robot, with a software model, comprised of a number 
of Java classes.  This model’s interface is the set of ROM 
calls that TinyVM makes.  By replacing the original 
package that Lejos used on the robot with our own, we 
cause the running program to call our model instead of a 
real robot.  Another thread continuously inspects the state 
of the model and makes calls on a graphics panel to display 
a visual analogue of what the real robot would be doing.  
For instance, if the TinyVM would have turned on motors 
A and C in the forward direction, our model's components 
corresponding to A and C motors would be set.  During the 
next repaint cycle, our graphics object would get updated 
to show the simulated roverbot moving forward in a 
straight line. 

The following steps comprise the lifecycle of a student 
RCX program as executed on a real robot: 
 
1. Student writes Robolang code on PC. 
2. Student translates code to Lejos using the Robotran 

translator on PC. 
3. Student compiles the Lejos code on PC using lejosc. 
4. Student downloads the .class file to the RCX using the 

infrared tower. 

5. The .class file now resides in RAM of the RCX and 
the TinyVM is already in RAM, ready to execute. 

6. Student presses the green RUN button on the RCX. 
7. TinyVM loads the .class file and interprets the 

bytecodes, making calls to the hardware ROM when 
methods inside the josx package are called. 

8. The student stops the program by pressing the STOP 
button on the robot. 

The lifecycle of a simulated program differs from the 
above as follows.  The .class file created from compiling 
the student’s program exists only on the PC and is never 
downloaded to the robot. 
 
1 to 3. Identical to above 
5. The student starts the simulator software which loads 

the .class file into PC’s RAM. 
6. A graphical window opens, which continually checks 

the state of the in-RAM RCX model. 
7. The PC's JVM interprets the bytecodes of the .class 

file, making calls to our stand-in josx package.  The 
running program changes values in the RCX model.  
When these are eventually spotted by the graphics 
window thread, they cause the simulator to change its 
display. 

8. The student stops the program by pressing the on-
screen STOP button. 

Fig. 4 illustrates the two complementary scenarios. 

Most of the josx framework’s functionality is achieved by 
performing native ROM calls on the RCX.  This means 
that for a given Java operation the endpoint usually is a 
ROM call to the RCX.  RCX ROM calls require a memory 
address and zero to four parameters.  Robotran takes 
advantage of this simple hardware interface since all that 
must be done is to emulate the functionality of the RCX 
ROM calls.   

Here is a sample Lejos program that starts the RCX’s 
motors going forward indefinitely. 
 
Motor.A.forward(); 
Motor.C.forward(); 

The Java code that these statements activate in our 
simulator is the following: 

 
ROM.call(0x1a4e, 0x2000, 1, 3); 
ROM.call(0x1a4e, 0x2002, 1, 3); 

On the real RCX these calls would pass through JNI and 
the layers of native code and reach the hardware.  Our 
simulator redirects these calls to our virtual ROM instead 
of the native code. 
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Fig. 4:  Comparison of the actual lejos/RCX architecture with Robotran simulator 

 
Here is the ROM method header from the original josx 
code: 
 
public static native void call(short aAddr, 

    short a1, short a2, short a3, short a4); 

Next is our modified version of the method that redirects 
the call to our virtual ROM. 

 
public static void call(short aAddr, short a1, 
            short a2, short a3, short a4) { 
   RCX.rom.call(aAddr, a1, a2, a3, a4);  
   //RCX.rom points to Robotran’s virtual ROM 
} 

Only minimal changes needed to be made to the josx 
source to intercept the ROM calls since all ROM calls are 
passed to a native function.  Once the ROM call enters the 
virtual ROM it is handled by the following code: 
//controlMotor call:   
//a1: which motor 
//a2: the motor's mode 
//a3: the motor's power 
else if (aAddr == 0x1a4e) { 
 if (a1 == Opcodes.MOTOR_0) { 
  rcx.motorA.setMode(a2); 
  rcx.motorA.setPower(a3); 
 } 
 else if (a1 == Opcodes.MOTOR_1) { 
  rcx.motorB.setMode(a2); 
  rcx.motorB.setPower(a3); 
 } 
 else if (a1 == Opcodes.MOTOR_2) { 
  rcx.motorC.setMode(a2); 
  rcx.motorC.setPower(a3); 
 } 
} 

The parameter of the call specifies changes to the state of 
the model, in this case the rcx object that replaces the real 
robot, by updating Robotran’s internal data structures  The 
example above changes the mode (direction) and the power 
of the virtual RCX’s motors.  There are data structures for 
every component in a real RCX, including  Button, 
Display, Memory, Motor, and Sensor. 

Alternative Approaches 
Our need to simulate students’ Robolang programs 
directed many of our choices.  The first approach was to 
write an interpreter that would interpret and simulate 
Robolang directly.  However, the interpreter would have 
required quite a lot of code.  The biggest flaw of this 
design is that simulating at such a high level means we 
would not be able to simulate Lejos programs at all. 

The current design of intercepting the RCX’s ROM calls 
was not the first idea we tried.  Other designs were 
considered and some were prototyped.  One way was to 
create an intermediate language  (IL) that the simulator 
would interpret.  A benefit of this design is that we could 
simulate any program that could be compiled down to this 
IL.  We spent some time with this idea and even designed 
the intermediate language.  But it was abandoned because 
it would have required us to write an interpreter for it as 
well as a Lejos to IL compiler, a not insignificant task even 
using a compiler compiler like JavaCC or YACC. 

Another design that was considered involved writing a 
Java bytecode interpreter that would interpret a compiled 
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Lejos program.  This would give us much more control of 
the execution of the program since we would be able to 
precisely control timings and forbid features that exist on 
desktop Java but are not implemented on the TinyVM.   
We decided against this approach because the learning 
curve of understanding how to interpret Java bytecodes 
was too steep for this project.  

Although our current scheme has some downsides we felt 
that it was the best choice since it required much less new 
code and was at a low enough level to simulate most Lejos 
programs. 

Challenges and Future Work 
Robotran is now stable enough to be used in a classroom 
setting and will be deployed in Spring 2009 with a CS 1 
class.  Consequently student feedback does not yet exist 
but a survey will be taken and grade comparisons with the 
last two years’ worth of CS 1 students will be made to 
ascertain any visible effect of using the simulator.  In those 
previous classes, the RCX robots were used for about half 
of the lab projects, but no simulator was involved.  
 
Despite the elegant simplicity of our approach and the 
economies which we exploited, writing a simulator 
complete enough for students to use in place of robots is a 
substantial undertaking. 

Several user interface enhancements are expected in the 
near future, including an ability to save a world 
configuration, which consists of the set of shapes, barriers, 
floor marks and light source, and then to reload it.  A 
longer range goal is permitting more than one robot to exist 
in the simulation so students could hold competitions or 
investigate emergent behavior from multiple robots. 

The minimal requirements for running Robotran are very 
modest.  The Java 1.6 JDK must be installed because it 
calls the Java compiler as well as the JVM.  We have 
tested Robotran on a number of average Windows PCs as 
well as a MacBookPro and a PC running Ubuntu Linux 
and performance was more than adequate. 

The most pressing, and perhaps most difficult, challenge is 
to recast the simulator so it can work with Lejos NXJ and 
to model an NXT LEGO Mindstorms robot.  The code for 
NXJ has been significantly restructured.  Furthermore, 
several sensors exist in the NXT that were either rarely 
used with NXTs or not built in.  Every NXT kit comes 
with a sonar sensor, which would have to be modeled in 
Robotran.  This would not actually be too difficult because 
the simulator could duplicate the logic of a bump sensor, 
with the change in that a barrier or boundary does not need 
to actually touch the bump sensor in order to activate it.  
Even more significant are rotation sensors that are built 

into the NXT’s motors.  Though rotation sensors existed 
for the RCX, they were externally attached to wheels and 
used up valuable sensor ports.  The NXT sensors are 
accurate to 1 degree of rotation, in contrast to 6 degrees in 
the older system.  Because the NXT’s rotation sensors are 
always present in the motors, they are more often used in 
NXT projects and should be simulated. 
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