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Abstract

We present a semantically-driven approach to uncer-
tainties within and across ontologies. Ontologies are
widely used not only by the Semantic Web but also by
artificial systems in general. They represent and struc-
ture a domain with respect to its semantics. Uncertain-
ties, however, have been rarely taken into account in on-
tological representation, even though they are inevitable
when applying ontologies in ‘real world’ applications.
In this paper, we analyze why uncertainties are neces-
sary for ontologies, how and where uncertainties have to
be represented in ontologies, and what their semantics
are. In particular, we investigate which ontology con-
structions need to address uncertainty issues and which
ontology constructions should not be affected by uncer-
tainties on the basis of their semantics. As a result, the
use of uncertainties is restricted to appropriate cases,
which reduces complexity and guides ontology devel-
opment. We give examples and motivation from the
field of spatially-aware systems in indoor environments.

Motivation

Ontologies are used as a method for making explicit what
is known implicitly. They aim at interoperability and re-
usability among different sources of information. Their ter-
minology provides an interface for communication, either
between agents or between agents and humans. Ontologies
have a clearly predefined structure with an inherent meaning
in itself. This structure consists of a taxonomy of classes,
relations between these classes, and axiomatizations. For-
mally they are defined as “an engineering artifact, consti-
tuted by a specific vocabulary used to describe a certain
reality, plus a set of explicit assumptions regarding the in-
tended meaning of the vocabulary words” (Guarino 1998).
This certain reality then requires a precise analysis of a spe-
cific domain with respect to its actual semantics.

Ontologies are not primarily supposed to represent un-
certainties, as their specifications of a domain are strict and
well-defined. As soon as an ontology is used as an instan-
tiation in a system, however, different types of uncertainties
arise. In the case of spatial systems we have found that these
uncertainties are caused, for instance, by lack of knowledge
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about the environment, unreliable sources of information,
shortcomings in sensorimotor data, unknown or unexpected
results of actions, or unknown intentions of other communi-
cation partners (specific examples are illustrated in the use
case). Even though the ontology itself may not be affected
by uncertainties, a system’s instantiation of it is. Facts of
a domain as specified by an ontology can either be true or
false, and a system may be uncertain as to which is the case.
The ontology should then provide definitions of uncertain-
ties by specifying syntax and semantics for modeling them.

Often foundational ontologies, such as DOLCE (Masolo
et al. 2003), do not have any classes or relations reflecting
uncertain information. SUMO (Niles & Pease 2001) pro-
vides a relation ProbabilityRelation that assigns a percent-
age to the probability of an event, which is still not sufficient
as other kinds of probabilities that are not related to events
may be required as well. Similarly, the recent version of Re-
searchCyc1 defines notions of uncertainty only as a feeling
of being unsure about something and probability for assign-
ing values of likelihood.

Technical aspects of representing uncertainties in ontolo-
gies have been investigated in more detail. Although these
approaches provide uncertain definitions in ontologies, they
focus mainly on questions of complexity and expressivity of
certain logics. Such approaches define either uncertainties
within an ontology or across different ontologies. Repre-
sentations for uncertainties in ontologies have recently been
developed by enhancing the web ontology language, OWL
DL2. The language has been extended with Bayesian net-
works (Ding, Peng, & Pan 2006), fuzzy logic (Stoilos et
al. 2005), and probabilities (Costa & Laskey 2006). Such
approaches allow one specific type of uncertainty to be rep-
resented in an ontology. Given the formal definition of an
ontology by (Guarino 1998), however, a clear specification
of the intended meaning of these uncertainties is missing.
So far it has not been studied in detail which kinds of uncer-
tainties are appropriate to describe a certain reality. Inter-
ontology mappings (Euzenat & Shvaiko 2007) relate con-
ceptualizations across different ontologies mostly for identi-
fying identical definitions, which can be affected by uncer-
tainties. Several solutions for this problem have been pro-

1http://research.cyc.com
2http://www.w3.org/2004/OWL

51

Proceedings of the Twenty-Second International FLAIRS Conference (2009)



posed, including Bayesian networks (Mitra, Noy, & Jaiswal
2005) and probabilities (Calı̀ et al. 2007). In general, such
approaches determine uncertain mappings either based on
classes or instances.

Finally, there are many efforts in the field of vague cat-
egorizations in ontologies. This vagueness is, however, at-
tributed to linguistic underspecifications and vague expres-
sions in natural language (Bennett 2005), which is different
from defining uncertainties in a domain. Such methods an-
alyze specific linguistic aspects of vagueness, not related to
a complete analysis of possible uncertainties in domain on-
tologies in general. Although vagueness therefore is outside
the scope of uncertainties in ontologies, we briefly outline
methods for such aspects below.

As ontologies aim to represent the semantics of a certain
reality, it is necessary to analyze the possibility of uncer-
tainties in ontologies. We propose a semantically-driven ap-
proach for representing uncertainties in ontologies. Uncer-
tainties are not supposed to be modelled by some classes
nor to be indicated by logical formalisms. They are mostly
caused by agent-based instantiations of the ontology. We
therefore analyze the possibility of uncertain aspects in on-
tological definitions and discuss reasons for this. Different
types of uncertainties and their appropriateness are exam-
ined. The framework endeavors to combine these aspects by
differentiating meanings of uncertainties accordingly. As a
result, the framework not only reduces and simplifies com-
plexity, as it narrows down the use of uncertainties to ap-
propriate cases, it can also guide ontology engineers in their
development of ontologies, as it indicates meanings of a do-
main’s categorization. Moreover, it reveals uncertain aspects
of the domain, on the one side, while implying necessary
reasoning strategies, on the other. We therefore characterize
possible uncertainties in domains and their reasons, distin-
guish the different kinds of uncertainties arising, and discuss
possible formalizations and reasoning mechanisms.

We give a short overview of uncertainty methods in the
next section. We subsequently introduce our semantically-
driven approach for providing ontologies with uncertainties
by analyzing ontological constructions with respect to their
potential of being uncertain. Finally, a use case is shown.

Types of Uncertainties
There are several methods for representing and reasoning
with uncertainty in AI. They differ in the type of uncertainty
they describe as well as in their reasoning techniques.

Probability theories are one group of methods for dealing
with uncertainties. Here, uncertainty is caused by ignorance,
i.e., lack of knowledge. Information is either not available
or too cost-intensive. Predefined or calculated truth values
or probabilities between 0 and 1 are assigned to sentences.
Prior and posterior probabilities are based on application-
specific assumptions. Ways of processing such values de-
pend on the interpretation of truth values, either as proba-
bility, belief, possibility, frequency, similarity, or likelihood.
Examples are Bayes’ theory, especially Bayesian networks,
Dempster-Shafer’s Belief theory, or utility theory.

Although non-monotonic logical theories are not intended
to specify uncertain information, their assumption that facts

are true as long as nothing else is proven also implies a no-
tion of uncertainty. Examples are default logic and circum-
scription. The former method defines default rules to gen-
erate conclusions, i.e., given a prerequisite and certain jus-
tifications a predefined conclusion can be drawn. The latter
defines abnormal objects in a logical formula. Here, reason-
ing is based on model preferences, i.e., models with fewer
abnormal objects are preferred to other models.

Statistical models are another method to reason with
uncertain information. They provide random variables
to analyze the chance of an event. These methods are
mostly applied to dynamic systems with changing condi-
tions over time, such as hidden Markov models. Here, states
are described as single discrete random variables (Cappé,
Moulines, & Rydén 2005). Ontologies, however, have to
follow a different approach to formalize dynamic aspects
(Grenon & Smith 2004). Hence, statistical models are less
relevant for uncertainties in ontologies.

In the following, we analyze the possibility of uncertain-
ties in ontological constructions with respect to different un-
certainty theories and their respective semantics. We aim
at elucidating which ontological constructions are affected
by which type of uncertainty. If they are affected, we want
to provide the particular uncertainty theory that reflects the
type of uncertainty best.

A Semantic Approach to Uncertainties

The representation of uncertainties in ontologies is demon-
strated by refining syntax and semantics for DL ontologies.
The uncertainties are analyzed according to different types,
reasons, and occurrences of uncertainties in ontologies.

Table 1 lists all constructions that are relevant to define
an ontology.3 The syntax refers to the ontology definitions
given by the web ontology language OWL DL. Thus we fo-
cus here on ontologies as theories formulated in description
logic (Baader et al. 2003), in particular SHOIN . Even
though ontologies may be formulated in more or less expres-
sive logics, description logic (DL) is not only widely used
and a common standard for ontology specifications but it
also provides constructions that are general enough for spec-
ifying complex ontologies (Horrocks, Kutz, & Sattler 2006).
Moreover, they provide a balance between expressive power
and computational complexity in terms of reasoning practi-
cability. While OWL DL ontologies offer all constructions
that are generally necessary for defining ontologies, the de-
velopment of extensions shows that additional features are
required for specific purposes, e.g., rules4, discrete domains
(Haarslev & Möller 2003), and also uncertainties.

DL ontologies distinguish between TBox and ABox. The
first specifies the terminology of the domain. The latter
specifies all instances within the ontology. These instances
are specified in terms of the definitions provided by the
TBox. Formally, instances are not part of the ontology it-
self, but they are structured and defined by the ontological
terminology determined by the TBox.

3We omit constructions not directly related to ontology specifi-
cations, such as annotation properties, for simplicity.

4http://www.w3.org/Submission/SWRL
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Table 1: DL syntax and semantics with examples
DL Syntax OWL Semantics Examples

C1 � C2 subClassOf Office � Room

C1 � . . . � Cn intersectionOf BearingWall � CurtainWall

C1 � . . . � Cn unionOf Elevator � Staircase

¬C complementOf ¬ Staircase

C1 ≡ C2 equivalentClass OpenOffice≡¬ClosedOffice

P1 � P2 subPropertyOf size � attribute

P1 ≡ P2 equivalentProperty connect ≡ isAttached

P+ transitiveProperty spatialParthood
+

P− inverseProperty compose
−≡isComposedOf

∀P.C allValuesFrom ∀ size.Volume

∃P.C someValuesFrom ∃ compose.Room

≤ nP maxCardinality ≤ 2 sensor

≥ nP minCardinality ≥ 1 neighbor

= nP cardinality = 2 access

a : C type k : Kitchen

〈a, b〉 : R property 〈 k,building 〉 : compose

Uncertainties within Ontologies

In the following, we analyze construction elements of DL
ontologies in Table 1 with respect to potential uncertainty.

Class Constructions Classes in an ontology are supposed
to define the entities of a certain domain. They specify prop-
erties and constraints of all the entities that are instances of a
class. Examples are Wall, Window, or Color. Classes catego-
rize the domain into distinct groups with the same semantics,
i.e., they structure the domain according to different kinds of
members. All classes are meant to be well-defined. Either
an instance is a member of a class or not. Hence, there is
no indication to use uncertainties with respect to class defi-
nitions as such. The construction C1 � C2 should therefore
be strict. For example, either the class TemperatureSensor

is subclass of Sensor or not. The domain can, however, im-
ply that only parts of C1 are entailed. This case is spec-
ified by the union of C1’s parts: C11 and C12. Only one
of them may then be defined as a subclass of C2. Their
union again defines the class C1. For example, the union of
Thermometer and TemperatureSensor is defined as the class
TemperatureMeasureEntity, but only TemperatureSensor is
also a subclass of Sensor. Similarly, a concrete instance of
Room, for example, may also be seen as an instance of Office

to a certain degree. This, however, does not reflect uncer-
tainties of class definitions but uncertainties that arise from
the instantiation of classes, as described below.

Note that one may argue for the definition of fuzzy classes
in an ontology. This fuzziness, however, is caused by un-
derspecified linguistic terminology, as discussed above. A
library, for instance, is not defined by an exact number of
books, i.e., by a strict definition. It describes instead a
linguistic concept, which is determined by contextual and
real world aspects (e.g., the possibility to read and borrow
books). Such underspecified linguistic assignments can be
interpreted by separate ontological layers, as discussed in
(Bateman, Tenbrink, & Farrar 2007). The connection be-
tween these layers may then be indicated by uncertainties,
i.e., uncertainties across ontologies (see below).

Unions and intersections of classes are applicable for con-
straints or relations among several classes. The domain

or range of a property, for instance, may be assigned to a
union of classes. For example, the union Wall � Window

� Door fills the range of the relation border of Room in a
someValuesFrom construction. Union and intersection con-
structions allow flexible relationships in class restrictions
and are therefore not influenced by uncertainties. They work
merely as operators for other constructions. Similarly, nega-
tions of classes are strict. They negate all class definitions
and they are also used in particular for defining restrictions
of class or relation definitions. A class Table and its negation
¬Table have their clear semantics. Specific attributes deter-
mine the meaning and behaviour of Table and its negation
accordingly. This differs, however, from an instantiation,
i.e., an actual entity in the world. This entity may or may
not be of the type Table, specified by the construction type

(see below).
Equivalent classes are typically used to relate different on-

tologies. We will discuss this construction in more detail in
the next section, as it aims at defining relations across differ-
ent ontologies. Other use of equivalent classes as a logical
operator is clearly not affected by uncertainties.

Property Constructions Object properties define a spe-
cific relation among classes. They define the domain and
range of classes that are related with each other. Exam-
ples of relations are containedIn, size, or sensorRange.
Such relations can be classified according to their types,
e.g., (Masolo et al. 2003). They may therefore spec-
ify necessary constraints for classes. While a relation
may hold or not, its definition itself is strictly specified,
i.e., the general definition of possible relations between in-
stances is not affected by uncertainties. The property def-
inition itself simply defines a relationship and its domain

and range. The relation (property) hierarchy of an on-
tology is therefore well-defined. For example, the prop-
erty containedIn defines the containment relationship be-
tween Room and Building. A specific Room Office1 can
then be containedIn a Building OfficeBuilding. Whether this
particular instantiation of the property containedIn, namely
containedIn(Office1,OfficeBuilding1), is actually true is irre-
spective of the definition of the relation itself, namely that
Room and Building are related by this relation.

The transitiveProperty and inverseProperty constructions
define a property to be transitive, e.g., containedIn, or in-
verse, e.g., neighbor, respectively. These aspects may ei-
ther hold for a specific relation or not and are therefore not
affected by uncertainties. For example, a relation nearTo

may define a close distance between two classes and within
certain limits may even be considered as transitive to some
extent. But given a sequence of instances which are pair-
wise nearTo each other, it is difficult to say whether the rela-
tion nearTo between the first and the last instance still holds.
This, however, does not indicate that transitiveProperty has
to provide a notion of likelihood. Rather, it indicates that
nearTo is not a transitive relation.

Class Restrictions The ontology specifies not only class
and relation definitions but also restrictions of classes.
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These are given by the constructions allValuesFrom,
someValuesFrom, as well as cardinality constraints.
allValuesFrom and someValuesFrom constrain the range of a
relation to be of a specific type of class. The choice between
these two constraints allows a flexible definition within an
ontology. Uncertainties in terms of likelihood, for instance,
are covered by someValuesFrom. Additional uncertainties
are therefore not indicated. It remains questionable, whether
a notion of default information is applicable here.

Cardinality restrictions specify the number of relations
of a class. In OWL DL, positive integer values can be as-
signed to the constraints maxCardinality, minCardinality, and
cardinality in order to define a necessary amount of relations.
This amount can thus define how many relations are required
at least, at most, in an interval from minimum to maximum,
or with a specific number. This allows a flexible mech-
anism for constraining relations. Just as for value-related
constraints, uncertainties seem not to be necessary here. A
Street, for instance, may have a certain number of junction

relations, ranging from 0 to n. In order to model domain on-
tologies, however, it is sometimes essential to define value
and cardinality constraints by default, which are not as strict
as the ontological constraints described. In the domain of
indoor environments, for example, it may be required that
an instance x, that contains one instance of type Refrigerator

and one instance of type Oven, be of type Kitchen by de-
fault. If some of these instances are not related by the rela-
tion contains, x is still able to be of type Kitchen. In contrast,
DL cardinality restrictions can only assign a specific value
(1), a minimum (0), or a maximum (n), which is more re-
strictive than a default rule. By adding default rules to cardi-
nality restrictions, the TBox can define common facts about
the domain. As long as the justifications for x being an in-
stance of Kitchen are not false, the instantiation of this class
can be derived.

Instance Constructions Finally, instantiations of classes
and relations are specified by an ontology. Instances of
classes are defined by type, instances of relations are defined
by property. Both definitions are most likely affected by un-
certainties, as we have already seen in the example above. A
system instantiates an ontology in order to represent its en-
vironment. Whether environmental entities are instantiated
as a specific type or relation depends on various kinds of
uncertainties: Input data of a system is vulnerable to inaccu-
racy, incompleteness, ambiguity, and incorrectness, because
of noise, unreliable sources, or limitations of a system’s sen-
sorimotor capabilities. Assumptions or conclusions that are
drawn may turn out to be wrong and lead to additional er-
rors. For example, a spatially-aware system has to classify
perceived entities on the basis of its sensory input, which is
not only affected by noise but also relies on results from a
recognition system, as described in (Schill, Zetsche, & Hois
2009). The classification process is consequently affected by
uncertainty. In general, complete knowledge of the domain
is not fully available in natural environments (open world
assumption) and an object’s type can hardly be defined with-
out difficulties. Uncertainties influence the instantiation of
an object or a relation between objects. Hence, type and

Table 2: Ontology constructions affected by uncertainties
DL Syntax Uncertainty Example

C1 ≡∗ C2 similarity The two parts from different
or ontologies are similar with a
P1 ≡∗ P2 similarity value 3

≤ nP default Given 〈x, z〉 : livesIn and
≥ nP 〈x, y〉 : neighbor, then
= nP 〈y, z〉 : livesIn by default

a : C probability x is of type SlidingDoor with a
probability of .8

belief The belief for x being a
CopyRoom of .9

〈a, b〉 : R probability The probability of a being
sensor of b is .2

belief The belief of a being a
spatialParthood of b is .8

property imply notions of probability or belief, depending
on uncertainty values from a priori probabilities or expert-
defined beliefs.

In summary, instantiations of classes and relations may be
affected by probabilities or beliefs, while cardinality restric-
tions may benefit from default rules (cf. Table 2).

Uncertainties across Ontologies

In contrast to the specification of one ontology, the specifica-
tion of relations between different ontologies appears more
likely to be affected by uncertainties. In order to provide
semantic integration and information exchange as well as
alignments and mappings between ontologies, classes and
relations from different ontologies are compared and related
with each other. This can be done for ontological definitions
(TBox) or for instances (ABox).

Ontological constructions that allow mappings across do-
mains have to define the meaning of possible uncertainties
as well. Constructions in OWL DL allow imports of on-
tologies. Classes and relations of imported ontologies can
be related by equivalentClass and equivalentProperty con-
structions. This is often not sufficient for complex relations
between heterogeneous sources, as methods for aligning on-
tologies show. Such relations can, for instance, be defined
by distributed description logics (Borgida & Serafini 2003)
or E-connections (Kutz et al. 2004). These methods range
from single mappings of two instances from different on-
tologies to complex formulae that describe relations between
several classes from different ontologies. Regardless of the
complexity of such relationships, parts of one ontology are
related to parts of another. For simplicity, we use ≡∗ as a
placeholder for mapping operations of various kinds.

The equivalence construction indicates that parts from
different ontologies are likely to be equal or identical. These
parts can, for instance, be seen as similar definitions, i.e.,
the parts resemble each other closely in their representation.
The ≡∗ operation (as a placeholder for ontology mapping
functions) is therefore affected by an uncertainty that can be
defined by similarity values, cf. (Hois & Kutz 2008).5

5Although probability or likelihood measures could also be
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Table 3: Extended constructions in the semantic framework
Extended Syntax Interpretation

sim(C1 ≡∗ C2) → n, n ≥ 0 similarity across ontologies
of related classes

sim(P1 ≡∗ P2) → n, n ≥ 0 or of related properties
[≤n〈a,b〉:R]:[a:C1,b:C2]

[a:C1]
default rules for

(accordingly for ≥ and =) cardinality restrictions

m(a : C) → [0, 1] belief or probability
of class or of

m(〈a, b〉 : R) → [0, 1] property instantiations

Uncertainty Constructions for Ontologies

A semantically-driven framework for appropriate uncertain-
ties in ontologies thus has to integrate different types of un-
certainties as analyzed above. Hence, ontology construc-
tions given in Table 1 are extended by the constructions
given in Table 2. The result is defined in Table 3.

In detail, inter-ontology mappings are assigned positive
values that reflect the similarity of related classes or rela-
tions. While 0 indicates closest similarity, no similarity is in-
dicated by infinity. Pre-defined concrete values for this sim-
ilarity are then indicated together with the definition of the
mapping relation. This kind of uncertainty is not influenced
by an agent’s instantiation of ontologies but by the mapping
relation between different ontologies. Concrete values are
therefore defined by developers that provide mapping rela-
tions themselves or by automatically detected mapping re-
lations. For example, a spatial system may have to use a
spatial domain ontology together with an ontology for qual-
itative spatial relations. The similarity of classes across both
ontologies then has to be defined. Given particular instances
in the domain ontology (such as a Column inside a Room),
a spatial system can then relate these instances to informa-
tion from the qualitative ontology (such as a specific Region

that is a proper part of another region) by assigning specific
similarity values to each relation if necessary. In terms of
the inference process the closest similarity can be chosen if
multiple similarities across ontologies are defined.

Cardinality restrictions are given by default rules (Reiter
1980). As long as the instances a and b are classified as C1

and C2 respectively, a is of type C1 given a specific relation
between a and b. Given this definition, default aspects of
classes can be defined in an ontology specification. Here,
common conclusions with respect to cardinality restrictions
are available. For example, a spatial system that navigates
in indoor environments can get default information about
its surroundings from the ontology. Typical default defi-
nitions that are relevant for the system are, for instance, a
Refrigerator is containedIn a Kitchen. A system that detects
an instance of Refrigerator in its environment may therefore
infer that it is located in a Kitchen, e.g., as long as it does not
gain further information that the location is a Laboratory.

Agent-based instantiations of classes and relations that are
affected by uncertainties are defined by belief values. This
belief may then, for instance, be defined by the Dempster-

used, we omit this possibility for simplicity for the time being.

Shafer theory of evidence (Shafer 1976), but also by other
probability theories. For simplicity, we use only belief val-
ues for uncertainties in instantiations. The semantics of a
belief of an agent in a specific instantiation or relation is
given by m(A) in Dempster Shafer’s theory. Dempster’s
rule of combination allows the calculations of beliefs ac-
cordingly (Shafer 1976). In particular, the combination of
all beliefs about the evidence of the type of an instance, e.g.,
m(x : Refrigerator) and m(x : Freezer), does not have
to sum up to 1. Concrete values are supposed to be provided
by “experts”. If the instantiation of a class is, for instance,
uncertain because of ambiguous data from an object recog-
nition process, the concrete uncertainty value from the result
of this recognition process can be used. If such uncertainty
values are unavailable, they can be approximated by aver-
aged probabilities over class restrictions, e.g., a class defines
n relations and a are verified then a belief of a

n
is assumed.

Use Case: A Spatially-Aware System
Our use case is related to applications of ontologies in spatial
systems that perceive and interact with their environment,
be it virtual or real. In the long term, we are aiming at a
general system capable of dealing with applications in the
field of way-finding, navigation, spatial guidance, assistance
systems, ambient intelligence, smart offices, and human-
computer interaction. For representing the spatial domain
of the system, we specified spatial indoor ontologies.

In (Schill, Zetsche, & Hois 2009), we describe sensori-
motor aspects of the spatial system, that is supported by on-
tologies in object recognition and localization tasks. The
system relies on the object recognition process that provides
object classification results. The results are, however, af-
fected by uncertainties of several kinds, e.g., due to limits
of sensorimotor input and processing. Ontological instanti-
ations are indicated by belief values of the Dempster-Shafer
theory. High-level reasoning on the basis of these values
is provided here. Abstract information of relations between
rooms and objects is defined by the ontology, which is inde-
pendent of low-level data analyses. Here, belief values are,
for instance, assigned to rooms providing a specific type of
room, e.g., office, kitchen, laboratory.

Different ontologies that describe the spatial domain from
different perspectives have to be related with each other in a
spatial system. Mapping relations have to be defined across
these ontologies accordingly. In (Hois & Kutz 2008), we
describe a similarity-based mapping formalism. It connects
qualitative spatial information with spatial language. By ap-
plying inter-connections between spatial and linguistic in-
formation, the system is able to provide an interface for in-
teraction by natural language. Moreover, this mechanism
provides a solution for dealing with vagueness in natural
language expressions. The similarities can be implemented,
e.g., with SIM-DL (Janowicz et al. 2007).

Within the domain ontology, we need to define default
rules for representing common sense world knowledge, such
as typical objects in rooms or typical interactions with ob-
jects. This allows the modeling of precise definitions of
the environment. The integration of default rules for par-
ticular relations between specific types of rooms and their
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contained objects as well as for specific types of buildings
and their contained rooms is currently under development.
Such definitions are being applied to improvements of ob-
ject recognition and localization tasks.

Conclusions and Future Work

In this paper, we have introduced a framework that pro-
vides ontologies with uncertainties in appropriate cases. The
framework allows us to define different types of uncertain
information and limits possible occurrences of these types.
A certain reality can then be analyzed with respect to these
possibilities and can then be specified with such uncertain-
ties where adequate. We use this framework for a spatial ap-
plication, which combines different ontologies and different
types of uncertainties. We are implementing our framework
for OWL DL in particular, though the development is still
in progress. In summary, we have shown that the ontology
constructions are only partially affected by uncertainties. In-
stantiations are the main constructions that suffer from un-
certain information. The way these uncertainties have to be
formulated and structured, however, has to be specified by
ontological constructions, as introduced above.

Transformations between different uncertainty theories
are still an open issue. They provide an approximation for
translating one uncertainty theory into another. The rele-
vance of such a translation is left for future work. Also, re-
lated reasoning techniques as indicated by the proposed un-
certainty theories have to be provided. In order to access this
information, for instance, the query language has to support
uncertainty-related requests. So far, calculations of uncer-
tainties are only provided outside ontological structures.
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