
Just-in-Time Backfilling in Multi-Agent Scheduling

Anthony Gallagher
anthonyg@cs.cmu.edu
Carnegie Mellon University

Pittsburgh, PA 15213

Luke Hunsberger
hunsberg@cs.vassar.edu

Vassar College
Poughkeepsie, NY 12604

Stephen F. Smith
sfs@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This paper addresses the problem of how a group of agents
cooperating on a complex plan with interdependent actions
can coordinate their scheduling and execution of those ac-
tions, particularly in domains where actions may fail or have
uncertain durations. If actions fail (or fail to meet their dead-
lines), the repercussions for the rest of the team’s plan can
be dramatic. This paper presents a pro-active strategy, called
Just-in-Time Backfilling (JIT-BF), that agents can use to in-
crease the fault tolerance of their interdependent schedules by
identifying actions in danger of failing and inserting redun-
dant (or back-up) actions into their schedules. The insertion
of redundant actions can be done locally (i.e., by the agent
whose action is in danger of failing) or through negotiations
with the rest of the team. The computations performed by
agents following the JIT-BF strategy depend on probabilis-
tic models of action durations and the “quality” achieved by
successfully executing actions. The paper presents an exper-
imental evaluation of the JIT-BF strategy within a simulated
real-time dynamic environment that demonstrates that teams
using the pro-active JIT-BF strategy significantly out-perform
teams that rely solely on reactive strategies.

Introduction

The primary focus of this paper is on coordinating the inter-
dependent actions of multiple agents in uncertain execution
environments—in particular, in environments in which ac-
tions can fail or have uncertain durations. In such environ-
ments, agents must make predictive assumptions about ac-
tions they are inserting into their schedules. If those assump-
tions later turn out to have been wrong, the agents must have
some way of reconciling the conflicts that arise when con-
tradictory information becomes available at execution time.

In multi-agent scheduling domains, agents frequently face
inconsistencies involving temporal beliefs. For example, an
agent may believe that one action shall end and enable a sec-
ond action to begin, only to find later on that the first action
overran its deadline and failed. As this example suggests, the
root cause of conflicts among temporal beliefs is the uncer-
tainty of action durations. Approaches that deal with execu-
tion uncertainly fall into two broad categories: reactive and
proactive. In reactive approaches, agents react to conflicting

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

temporal beliefs as they occur during execution. In contrast,
pro-active approaches make use of models of uncertainty to
reason about potential conflicts before they arise, and de-
cide what to do in advance. Reactive approaches suffer in
circumstances where the execution state does not provide
any basis for recovery, while proactive approaches tend to
be overly conservative with respect to what can be accom-
plished in a given time frame.

In earlier work (Smith et al. 2007), we developed an
agent system in which agents use Simple Temporal Networks
(STNs) (Dechter, Meiri, and Pearl 1991) to manage the tem-
poral constraints in their schedules, not only when construct-
ing initial schedules, but also over time as actions are exe-
cuted and agents learn new information. STNs are useful be-
cause they allow agents to maintain flexibility in their sched-
ules. Thus, for example, if an action is originally expected
to take 30 time units, but actually ends up taking 40 time
units, the STN may be able to absorb the changes without
sacrificing consistency.

Using our agent system, we previously presented reactive
strategies for maintaining the consistency of temporal be-
liefs and resolving conflicts when they arise (Gallagher and
Smith 2008). Such strategies are fundamental to the use of
STNs in a dynamic, multi-agent scheduling environment. In
this paper, we build on these results and consider the addi-
tion of a pro-active strategy designed to anticipate inconsis-
tency and take advance action to insulate the plan against
it. Our approach, called Just-In-Time Backfilling (JIT-BF),
aims to minimize the impact of activity failure in quality
maximization contexts through the introduction and execu-
tion of redundant activities by other agents.

The Problem Domain

We take as our starting point the problem domain used
in DARPA’s Coordinators Program (Wagner et al. 2004),
which uses a variant of the TAEMS (Decker 1996) model-
ing framework called CTAEMS (Boddy et al. 2005). Below,
we give the basic assumptions about temporal constraints,
actions and models of uncertainty in this domain.

• Actions are subject to temporal constraints. This paper re-
stricts attention to simple temporal constraints each hav-
ing the form, tj − ti ≤ δij , where ti and tj are variables,
called time-points, that represent the starting or stopping

189

Proceedings of the Twenty-Second International FLAIRS Conference (2009)



times of actions, and δij is a real number (Dechter, Meiri,
and Pearl 1991).

• Primitive actions are executed by individual agents.
Agents can execute only one action at a time. Although
agents control when actions start, actions can have un-
certain durations. This paper presumes that the duration
of each action is governed by a given discrete probabil-
ity distribution. For example, the duration of an action A
might be 25 with probability 0.5, 30 with probability 0.3,
and 35 with probability 0.2.

• Actions accrue quality when successfully executed before
their deadlines. However, actions can also be linked by
contraints, called enabling constraints, such that the suc-
cessful execution of the target action depends on the suc-
cessful execution of one or more source actions. In this
setting, a plan is a hierarchy of nodes, where leaf nodes
correspond to primitive actions and interior nodes corre-
spond to abstract actions. Each interior node accumulates
quality according to a quality-accumulation function (or
QAF), where different interior nodes can have different
QAFs associated with them. For example, one interior
node might have a max QAF, according to which the qual-
ity of that node is the maximum of the qualities of all of
its child nodes; another interior node might have a sum
QAF, according to which the quality of that node is the
sum of the qualities of all of its child nodes.

• A group of agents receives an initial (potential) plan (i.e.,
action hierarchy) and their goal is to maximize the qual-
ity of that plan (i.e., to maximize the quality of the root
node in that hierarchy). Given that the initial plan typi-
cally contains more actions than the group of agents can
hope to execute, they must decide which subset of actions
to attempt to execute. That subset of actions then popu-
lates their initial schedules.

• To provide flexibility to the agents, the initial (potential)
plan contains redundant actions. For example, if an in-
terior node has a max QAF, then it can accrue positive
quality even if only one of its child nodes achieves pos-
itive quality. In this case, the rest of the nodes could be
considered redundant (i.e., there is no harm in executing
more than one child; but only the highest quality child that
gets executed contributes quality to the parent node).

Approach

As described earlier, we have developed an agent system
based on the use of STNs (Smith et al. 2007). In particular,
the agents in our system use STNs to manage the temporal
constraints in their schedules. Since STNs do not readily ac-
commodate models of uncertainty, our agents, when insert-
ing actions into their schedules, assume that the durations
of those actions will be their expected durations according
to the probabilistic models. As a result of this deterministic
scheduling assumption, agents may be faced with temporal
conflicts during execution of those actions.

Since agents cannot typically execute all of the actions
in a given plan, our agents select a subset of actions from
a given plan which they insert into their individual sched-

ules. New temporal constraints are added to an agent’s STN
whenever the agent (1) inserts a new action into its sched-
ule, (2) removes an action from its schedule, (3) updates
the current time, (4) begins to execute an action, or (5) fin-
ishes executing an action. Contraints added to an STN are
propagated throughout the network. Elsewhere, we have ex-
amined reactive approaches to maintaining the consistency
of STNs and repairing them when they become inconsistent
(e.g., when an action executes past its deadline) (Gallagher
and Smith 2008). That work was based on indentifying and
analyzing the negative cycles of constraints that characterize
STNs containing inconsistencies.

In this paper, we present a complementary pro-active
strategy, called the Just-In-Time Backfilling strategy, in
which agents increase the fault-tolerance of their schedules
by identifying actions that may be in danger of failing and, in
advance of their execution, select appropriate redundant (or
backup) actions to insert into their schedules. The computa-
tions are based on probabilistic models of action durations,
as well as estimates of changes in quality.

Each agent follows the JIT-BF strategy by repeatedly—
and independently—cycling through the following steps.
First, the agent examines its own schedule to identify any
soon-to-execute actions that might be in danger of failing.
Second, for each such action, the agent attempts to insert
redundant actions into its own schedule aiming to minimize
adverse impacts to their overall quality. If that attempt fails,
the agent can choose to coordinate with other agents to de-
termine whether they might be able to schedule redundant
actions. These steps are repeated each time an agent begins
the execution of the next action in its schedule.

To bound the computation required by the JIT-BF strat-
egy, the first step restricts attention to pending actions—that
is, actions that are currently executing or will be executing
soon. The redundant actions considered in the second step
can be scheduled locally (i.e., by the agent whose action is
in danger of failing) or remotely (i..e, by one of the other
agents in the group). Crucially, except for the coordination
in Step 2, each agent follows the JIT-BF strategy indepen-
dently, without the need for large-scale multi-agent synchro-
nization. These steps are described in more detail below.

Identifying Actions in Danger of Failing

The pending actions include the action that an agent is cur-
rently executing, together with a number of actions imme-
diately following that action in the agent’s schedule.1 The
number of pending actions considered by the JIT-BF strat-
egy is limited by the following parameters:

• MaxPendingActions places an explicit upper bound on the
number of pending actions.

• PendingActionsHorizon sets a width for the time-window
to which the pending actions must belong. If the current
time is c, then the time-window is:
[c, c + PendingActionsHorizon].

1Since the agent identifies the pending actions whenever it starts
executing some action, the pending actions always include an ac-
tion that the agent is currently executing.

190



For each pending action, A, the agent does the following:
(a) Collect the predecessors of A.
(b) Estimate ProbFail(A), the probability that A (or one

of its successors) will fail due to one or more of A’s
predecessors finishing late. Any action A for which
ProbFail(A) is greater than a specified threshold value
is identified as endangered.

(c) Estimate ExpQualLoss(A): the expected loss in qual-
ity due to one or more of A’s predecessors finishing late.

Each of the above steps is discussed in detail below.

Identifying the Predecessors of A. An action P is a pre-
decessor of A if there is a constraint in the STN stipulating
that P must finish executing before A begins. P is called
a problem predecessor of A if the plan given to the agents
includes a chain of one or more enabling constraints from
P to A. Otherwise, P is called a scheduler predecessor of
A since, in that case, the requirement that P precede A is
due to sequencing constraints added by the scheduler. If
P is linked by a single enabling constraint to A, or P im-
mediately precedes A in the schedule, then P is called an
immediate predecessor of A.

Estimating ProbFail(A) and ExpQualLoss(A). Let
P(A) = {P1, . . . , Pn} be the set of predecessors of the
pending action A. Each action Pi has a discrete probabilistic
duration model. The n-tuple, dc = ((d1, p1), . . . , (dn, pn))
is called a duration combination for P(A) if each di is a du-
ration of Pi having positive probability pi. For each duration
combination, dc, the agent takes the following steps:
• P (dc) = Πipi, is computed, which represents the proba-

bility that the duration combination, dc, will occur.
• For all durations, di in dc, insert the corresponding tem-

poral constraints into the temporal network.
• If the resulting network is consistent, set QLoss(dc) = 0.

In this case, dc does not lead to an action failure.
• If the resulting network is inconsistent, then dc does lead

to an action failure. In this case, the network contains at
least one negative cycle. That negative cycle must contain
at least one action, F , that fails to meet its deadline. By
construction, the possibilities for F are as follows:
◦ F is a predecessor of A,
◦ F is A, or
◦ F is a successor of A.
In general if the source action of an enabling constraint
fails (and hence achieves zero quality), then the target ac-
tion of that constraint must also fail (by definition). Thus,
if F fails, all of its problem successors must also fail.2
Thus, QLoss(dc, F ), the quality loss due to the failure of
F , is approximated as follows:

QLoss(dc, F ) = q(F ) +
∑

S∈PS(F )

QLoss(dc, S)

where q(F ) is the local quality loss due to F itself, and
PS(F ) is the set of all problem successors of F .
2G is a problem successor of F if there is a chain of enabling

constraints from F to G.

After computing this sum, all of the constraints due to
F and its problem successors are removed from the net-
work. If the resulting network is still inconsistent, this
step is repeated, with a new failed action playing the role
of F . The step is repeated until the resulting network is
consistent. Afterward, the following estimate of the total
quality loss due to the duration combination, dc, is com-
puted:

QLoss(dc) =
∑

F

QLoss(dc, F )

After each duration combination is analyzed, the results are
combined as follows:

• Let F be the set of all duration combinations that lead to
an action failure.

• The probability of some predecessors of A finishing late
and causing an action failure:

ProbFail(A) =
∑

dc∈F
P (dc).

• The expected quality loss due to some predecessors of A
finishing late:

ExpQualLoss(A) =
∑

dc∈F
P (dc)QLoss(dc).

If ProbFail(A) is greater than some fixed threshold, then
the action A is identified as endangered.

Scheduling Redundant Actions

For each action, A, that has been identified as in danger
of failing, the agent can safeguard against the potential
failure—and the resultant loss in quality—by scheduling one
or more backup actions.3 The JIT-BF approach combines a
passive strategy and an aggressive strategy, each of which is
described below.

Passive Strategy. The passive strategy involves the op-
portunistic scheduling of redundant actions by agents when
doing so has minimal deleterious effects on their sched-
ules. The agent, GA, in charge of the endangered action,
A, broadcasts the following information to the rest of the
agents:

• The endangered action A

• ProbFail(A): the probability that A will fail

• ExpQualLoss(A): the expected loss in quality from A
failing

Any agent, G, that can schedule a redundant action, R, will
do so only if the following conditions are met:

• Inserting R into G’s schedule will not cause any of G’s
other actions to become newly endangered.

3Recall that the plan is presumed to contain multiple, redun-
dant, non-mutually-exclusive actions.

191



• The expected quality loss due to G inserting R into its
schedule is smaller than the expected quality loss due to
A failing. In particular,

∑

Ai∈EAG

ExpQualLoss(Ai) < ExpQualLoss(A)

where the EAG is the set of endangered actions in G’s
schedule.

Aggressive Strategy. If the passive strategy does not lead
any agent to insert a redundant action into its schedule, then
the agent GA can take more aggressive steps to avoid los-
ing quality should A fail. The aggressive strategy only kicks
in when the endangered action A is the next action to ex-
ecute on GA’s schedule. The agent GA broadcasts a coer-
cive request for help to the rest of the agents. This coercive
request compels each of the other agents to generate an op-
tional schedule that includes some redundant action R, even
if doing so would have a deleterious effect on their schedule.
(The receiving agents can choose which redundant actions to
attempt to schedule.) Each of the receiving agents responds
by sending the following information back to GA:
• ExpQualLoss(R)
where R is the redundant action. If all of the values,
ExpQualLoss(R), exceed ExpQualLoss(A), then the
agent GA releases the other agents from doing their optional
redundant actions. Otherwise, GA selects the optional ac-
tion R with minimal ExpQualLoss(R) and compels that
agent to do that action.

Aborting Redundant Actions

Using either of the above strategies, an agent inserts redun-
dant actions into its schedule over time. Eventually, these
actions must be executed. When an agent is executing one of
these redundant actions, it can sometimes be advantageous
to abort that action. Our agents abort a backup action, A, if
any of the following conditions are met.
• The deadline for the action A has already passed—in

which case A is guaranteed to generate no quality, and
hence the continued execution of A cannot contribute any-
thing useful to the multi-agent plan.

• Continuing to execute A would cause other, more valu-
able actions in the agent’s schedule to fail to meet their
deadlines, with a resultant loss in overall quality.

• An action, A′, which is one of the alternatives to A, has
already been executed, and the quality that it generated
is higher than the quality A would generate should it be
successfully completed (i.e., q(A′) > q(A)).

• An action, A′, which is one of the alternatives to A, has
already been executed, and:
◦ the quality accrued by A′ is lower than the quality A

would accrue should it finish successfully, however:
◦ the probability that A will fail is greater than some fixed

threshold (i.e., pfail(A) > pthreshold); and
◦ continuing to execute A could lead to greater losses

than the quality that would be gained by finishing it:
ExpQualLoss(A) > [q(A)− q(A′)]

Experimental Evaluation

This section describes our experimental evaluation of the
JIT-BF strategy. We compared the performance of two teams
of agents:

• REACTIVE TEAM: This team of agents used a purely
reactive approach to dealing with the uncertainty of ac-
tion durations. They use a centralized scheduler to gen-
erate their initial schedule based on the expected values
of action durations. When inconsistencies arise, they take
conflict-resolution actions to repair their schedules, as de-
scribed in earlier work (Gallagher and Smith 2008).

• JIT-BF TEAM: This team of agents used an approach that
augments the reactive strategy of (Gallagher and Smith
2008) with the pro-active JIT-BF strategy described in the
last section. Like the reactive team, this team begins with
an initial schedule based on expected action durations.
The agents on the JIT-BF team used both the passive and
aggressive strategies. The aggressive strategy kicks in
when the next-to-execute action has a high probability of
failure and no agent has stepped in to try to schedule a
backup action for it.

For these experiments, we used the following parameter set-
tings for the JIT-BF strategy:

• Neighbor Level = 1. This indicates that for each pending
action, A, the agents collected only the immediate prede-
cessors of A.

• Max Pending Actions = 3.

• Pending Actions Horizon = 30. (roughly equivalent to 3
consecutively executed activities)

• pThreshold = 0.1.

To evaluate the JIT-BF strategy, we conducted two sep-
arate sets of experiments. First, we evaluated comparative
performance on a set of 56 problems used by DARPA as part
of the Year 2 evaluation of the Coordinators program. These
problems were designed to test performance under increas-
ing problem size and across a range of coordination prob-
lem structures. Second, we radomly generated a separate set
of 1350 problem scenarios with varying levels of durational
uncertainty and deadline flexibility. This problem suite was
designed to more systematically assess the sensitivity of JIT-
BF performance to these two problem factors. Both of these
sets of experiments are summarized in turn below.

Considering first the experiments performed with the
DARPA Coordinators program evaluation problems, we
tested both teams of agents on a set of 56 problems drawn
from the program’s 25- and 50-agent evaluation suites. The
larger 50-agent problems contained on average approxi-
mately 1500 methods, and were the largest problem size
tested extensively in the Year 2 evaluation.4 The 56 scenar-
ios were divided into 32 25-agent scenarios and 24 50-agent

4There was one small set of 100 agent problems also included
in the evaluation. However, these problems were artificially struc-
tured to make them easier to solve and were used mainly to test
scalability of the agent implementation.

192



scenarios.5
To compare the performance of the teams, we computed

the quality ratio for each (team, problem) pair. The qual-
ity ratio for a given team on a given problem is the quality
achieved by that team on that problem divided by the high-
est quality achieved by either team on that problem. Thus,
the quality ratio is a number between 0 and 1, where ra-
tios closer to 1 indicate better performance. The quality ra-
tios achieved by the agent teams on the problems described
above are given below:

Num Agents Reactive JIT-BF
25 0.8997 0.9817
50 0.8873 0.9504

The results for the 25-agent scenarios showed that the agents
using the JIT-BF strategy significantly out-performed the re-
active agents (with p = 0.0079 < 0.05).6 The results for
the 50-agent scenarios also appeared to show a performance
gain for the team using the JIT-BF strategy; however the re-
sults were not quite significant enough to draw certain con-
clusions (p = 0.0635 > 0.05). One additional point to note
in interpreting these results is that the reactive strategy tested
here was previously shown (Gallagher and Smith 2008) to
dominate a purely proactive approach wherein schedules
were generated using maximum durations rather than ex-
pected durations (hence guaranteeing that they will execute
successfully).

To understand the performance sensitivity of the JIF-BF
strategy to the level of duration uncertainty and deadline
tightness, we also compared the performance of the reac-
tive and JIT-BF teams on a separate set of randomly gen-
erated scenarios. Scenarios involving teams of ten, twenty
or thirty agents were generated while varying two other pa-
rameters: (1) deadline flexibility (df ), and (2) duration un-
certainty (du). The deadline flexibility for a high-level task,
w, is defined as the quantity

df (w) = deadline(w)− release(w)
maxDuration(w)

where:

• deadline(w) is an upper bound on the finish time of w;

• release(w) is a lower bound on the start time of w; and

• maxDuration(w) is the maximum duration of w, which
depends on the potential durations of its child actions as
well as any necessary delays between them.7

Notice that a deadline flexibility of 1 indicates potentially
no flexibility, whereas values larger than 1 indicate at least

5In addition to enabling constraints, scenarios for the Coordina-
tors Program can include other kinds of constraints (e.g., disabling,
facilitating or hindering constraints). To conform to the assump-
tions in this paper, we removed all instances of these other kinds of
constraints for the scenarios used in our experiments.

6Statistical significance was determined using the student’s t-
test, for which the common threshold for significance is p < 0.05.

7An enabling constraint can include a delay. Thus, for example,
an action A might enable another action B, but the start of B might
be required to occur at least k units after the end of A.

some slack in the bounding time window. In our experi-
ments, we used deadline flexibilities of 1.0, 1.2, and 1.4.

The duration uncertainty of a primitive action, A, is the
probability that the maximum duration of A will occur (as
opposed to its expected duration). In our scenarios, we
used three levels of uncertainty: 0.125, 0.25 and 0.333. We
hypothesized that the advantage of “risk-taking” strategies
would increase as the duration uncertainty decreases.

For each triple, (numAgts, df , du), we randomly gener-
ated 50 scenarios, for a total of 9 ∗ 150 = 1350 scenarios.
We computed the quality ratios for each set of 50 scenar-
ios for the reactive and JIT-BF teams. The results are given
in Table 1. The results in the table show deadline flexibil-
ity increasing from left to right, and duration uncertainty
increasing from top to bottom. Each pair of quality ratios is
accompanied by the p value generated by the student’s t-test.

All but two of the 27 sets of scenarios showed a statis-
tically significant advantage for the pro-active agents using
the JIT-BF strategy over the reactive agents. The deadline
flexibility proved to be the most important factor. Scenar-
ios with the least amount of flexibility (i.e., 1.0) showed the
largest performance gain. The performance gain decreased
as the deadlines became more flexible.

Related Work

Morris et al. (Morris, Muscettola, and Vidal 2001) aug-
mented STNs to include so-called contingent links—that is,
temporal intervals that are subject to known constraints, but
whose duration is not directly under the control of the plan-
ning agent. Reflecting the dynamic and uncertain nature
of the execution environment, the planning agent does not
learn of the duration of a contingent link until its terminat-
ing time-point has been executed. Morris et al. presented
an algorithm that an agent can use to ensure the consistency
of its temporal network no matter what durations the con-
tingent links end up having. Such a network is said to be
dynamically controllable. Unfortunately, their dynamic con-
trollability algorithm typically requires the agent to add con-
straints to the network that can severely restrict its flexibil-
ity. Hunsberger (Hunsberger 2002) introduced a temporal
decoupling algorithm that is related to dynamic controlla-
bility, but similarly requires restricting the flexibility of the
agent. The work closest to ours is (Hiatt et al. 2008), which
also investigates the concept of adding redundant actions to
previously generated deterministic schedule. In this work, a
probabilistic analysis of failure is used in a post-processing
step to determine the activities whose potential failure rep-
resent the greatest threats to achieving expected quality and
these activities are reinforced in order of importance until
expected quality can no longer be increased. This work can
be seen as complementary to ours, which focuses on opti-
mizing the quality return of previously scheduled activities
as execution results become known.

Concluding Remarks

In this paper, we have described an approach to minimizing
the impact of activity failure due to durational uncertainty
in the presence of deadlines on a joint schedule being exe-

193



Deadline Flexibility (df )

numAgts 1.0 1.2 1.4
Reactive JIT-BF Reactive JIT-BF Reactive JIT-BF

D
u

ra
ti

o
n

U
n

ce
rt

a
in

ty
(d

u
)

0.125

10 0.7545 0.9148 0.8345 0.9523 0.8428 0.9707
p = 0 p = 0 p = 0

20 0.7484 0.9898 0.8937 0.9659 0.9353 0.9685
p = 0 p = 0 p = 0.0132

30 0.7796 0.9894 0.9356 0.9790 0.9364 0.9792
p = 0 p = 0 p = 0

0.25

10 0.6699 0.9091 0.8143 0.9427 0.8653 0.9472
p = 0 p = 0 p = 0.0017

20 0.6749 0.9942 0.8733 0.9730 0.9275 0.9633
p = 0 p = 0 p = 0.0153

30 0.6766 0.9914 0.8677 0.9850 0.9398 0.9660
p = 0 p = 0 p = 0.0762

0.333

10 0.7041 0.9344 0.7680 0.9119 0.8426 0.9383
p = 0 p = 0 p = 0

20 0.6948 0.9776 0.8638 0.9660 0.9055 0.9708
p = 0 p = 0 p = 0

30 0.6866 0.9790 0.8751 0.9598 0.9339 0.9611
p = 0 p = 0 p = 0.0722

Table 1: Quality Ratios for Reactive vs. JIT-BF Strategies

cuted by a team of collaborative agents. Our approach as-
sumes the availability of an explicit model of durational un-
certainty and centers around the idea of an agent recruiting
other agents to schedule redundant activities when it detects
that one of its currently scheduled activities is in jeopardy
of not completing by its deadline. Whenever an agent com-
mences execution of the next activity in its schedule, it uses
its underlying STN-based schedule representation to analyze
the likelihood of a deadline failure within the immediate fu-
ture. If an endangered activity is identified, the agent coor-
dinates with other agents who might be able to perform a re-
dundant (back up) activity to ensure that the executing plan
will continue to produce the best possible result. We have
presented experimental results which show that this tech-
nique, referred to as Just-In-Time Backfilling, significantly
amplifies a previously developed reactive strategy for this
same class of multi-agent scheduling problem across a range
of quality-maximization scheduling scenarios.

Acknowledgements. The work reported in this paper
was supported in part by the Department of Defense Ad-
vance Research Projects Agency (DARPA) under Contract #
FA8750-05-C-0033. Any opinions findings and conclusions
or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of DARPA.

References

Boddy, M.; Horling, B.; Phelps, J.; Goldman, R.; Vincent,
R.; Long, A.; and Kohout, B. 2005. C taems language
specification v. 1.06.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.

Decker, K. 1996. TÆMS: A framework for environment
centered analysis & design of coordination mechanisms.
In O’Hare, G., and Jennings, N., eds., Foundations of Dis-
tributed Artificial Intelligence. Wiley Inter-Science. chap-
ter 16, 429–448.
Gallagher, A., and Smith, S. F. 2008. Recovering from
inconsistency in distributed simple temporal networks. In
Proc. FLAIRS- 2007.
Hiatt, L.; Zimmerman, T.; Smith, S. F.; and Simmons,
R. 2008. Reasoning about executional uncertainty to
strengthen schedules. In Proceedings ICAPS-2008 Work-
shop on A Reality Check for Planning and Scheduling Un-
der Uncertainty.
Hunsberger, L. 2002. Algorithms for a temporal decou-
pling problem in multi-agent planning. In Proceedings of
the Eighteenth National Conference on Artificial Intelli-
gence (AAAI-2002), 468–475. Menlo Park, CA: American
Association for Artificial Intelligence.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dy-
namic control of plans with temporal uncertainty. In Sev-
enteenth International Joint Conference on Artificial Intel-
ligence (IJCAI-01), 494–499.
Smith, S. F.; Gallagher, A.; Zimmerman, T.; Barbulescu,
L.; and Rubinstein, Z. 2007. Distributed management of
flexible times schedules. In Proceedings 6th International
Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 07).
Wagner, T.; Phelps, J.; Guralnik, V.; and Riper, R. V.
2004. COORDINATORS: Coordination managers for first
responders. In Third International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS-2004).
IEEE Computer Society.

194




