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Abstract

The performance of all relational learning techniques has an
implicit dependence on the underlying connectivity structure
of the relations that are used as input. In this paper, we show
how clustering can be used to develop an efficient optimiza-
tion strategy can be used to effectively measure the structure
of a graph in the absence of labeled instances.

Introduction

Relational learning refers to machine learning techniques
that take as part of their input a set of relations between
learning instances. These relations can be used in several
ways. In supervised learning, for example, the class label of
a particular instance can be modeled using the class labels of
neighboring instances (Neville & Jensen 2003). In unsuper-
vised learning, relations are typically analyzed more directly
for significant connectivity patterns that uniquely identify a
partitioning of objects (Nowicki & Snijders 2001). If the
edges in a relation are randomly distributed, the patterns
these algorithms take advantage of do not exist. Therefore, it
would be useful to have a computationally inexpensive ran-
domness test that would help to avoid running a costly re-
lational learning algorithm on a data set that includes a ran-
dom relation. This test could be used to identify and filter
out relations that do not have meaningful structure.

In this paper we propose a graph-based metric, block mod-
ularity, that evaluates the structure in a relation, given a set
of labels. After partitioning a relation graph with respect
to the labels, the block modularity score is used to mea-
sure whether the distribution of relations within and between
class groups is significant. Our preliminary results show that
the average block modularity, computed using an efficient
optimization technique, can be used as an a priori indicator
of relational structure.

Related Work

To our knowledge there is no prior work that focuses on de-
termining a relation’s usefulness for a learning task. Recent
approaches have combined propositionalization (i.e. flatten-
ing structured data) with feature selection to determine the

∗This material is based upon work supported by the National
Science Foundation under Grant No. #0545726.
Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example block model, in which the majority of
links fall into blocks b11 ,b12 and b33.

best propositionalized attribute vector for a relational data
set (Popescul & Ungar 2007). Such techniques could be
considered to be a form of relation selection, in that the algo-
rithms must choose which relation types to “follow” to find
relevant features.

The block modularity measure, which we introduce be-
low, is an extension of the well-known modularity objective
for directed graphs (Leicht & Newman 2007). The two ob-
jective functions are identical in their choice of graph mod-
els and underlying theory. The difference between our ob-
jective and Leicht & Newman’s is that ours is extended to
measure the amount of structure in any kind of graph (e.g.
bipartite, hierarchical, ring) while the original modularity is
only able to measure the quality of structure in graphs that
have communities, or groups that are densely connected with
few links leaving the group.

Approach

Figure 1 shows a representation of a relation called a block
model (Faust & Wasserman 1992). A block model is merely
an adjacency matrix with the rows and columns rearranged
such that objects in the same cluster are adjacent to one an-
other in the matrix. The lines drawn show the separation
between clusters, creating k2 blocks, which are labeled bij .
It is clear that if a clustering can be found for which most
of the edges fall into a small number of blocks, leaving the
remainder very sparse or empty, then the graph has a high
level of structure. If the graph were random, then for all
possible clusterings, one would expect to see the same num-
ber of edges in each block. The block modularity objective
is based on this observation.

Given a partitioning of the vertices in a relation graph into
k groups, the block modularity objective (defined over a re-
lation S and a clustering C that divides the data into k clus-
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ters) is computed as:
(1)

BM(C, S) =
1
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where diout
and djin

are the in- and out-degrees of vertices
i and j, respectively, and I[·] is equal to 1 if the edge ex-
ists, and 0 otherwise. The term (diout

djin
)/m represents the

degree-conditioned probability of an edge existing between
vertices i and j in a null model random graph. By summing
over all pairs of objects in each block bij , the function is
computing the difference between the number of observed
edges in each block and the expected number in a random
graph. The absolute value ensures that blocks which have
either significantly more, or significantly fewer, edges than
are expected will receive a high score.

We we are currently in the process of developing an effi-
cient clustering algorithm that uses block modularity as an
objective. Our first version of this algorithm uses a greedy
K-means style of optimization:

1. Randomly initialize the vertices into k clusters.

2. Until convergence, do:

1. For each vertex, in random order (without repeats):

a. Assign the vertex to the cluster that increases block
modularity the most

b. Update the block modularity score, given the greedy
selection

Because there could be many clusterings for which the
block model of a relation is significantly different from a
random relation’s block model, this algorithm locates sev-
eral peaks for which block modularity is exceptionally high.
In practice, because the algorithm can be efficiently imple-
mented, we run the algorithm multiple times and take the
highest-scoring clustering as the best solution. In this paper,
we have found a unique use for the remaining high-value,
but non-maximal, clusterings.

We hypothesize that a structured graph will have many
more peaks with high block modularity scores than a ran-
dom graph does. Therefore, by averaging the locally op-
timal value found by our algorithm over several runs, we
can effectively measure the inherent structure in a relation
without making any a priori assumptions about the expected
structure (i.e. there is no need to search for the best commu-
nity, k-partite, or hierarchical structures individually). One
could argue that the relation selection step is unnecessary if
the process itself requires clustering, but we argue that we
are only applying a uni-relational algorithm, whereas multi-
relational clustering algorithms (e.g. Kemp et al. (2006))
that are executed over a set of N relations have a much
higher cost than running the above algorithm N times. We
now show some preliminary results under this hypothesis.

Preliminary Results
To test our hypothesis, we started with a structured graph,
which we generated using a generative model developed by
Nowicki & Snijders (2001), which is a probabilistic inter-
pretation of a block model. We then randomized the graph

% Random 0 10 20 30

Average BM 0.116 0.111 0.105 0.092

% Random 40 50 100

Average BM 0.085 0.089 0.087

Table 1: Average block modularity scores for an increas-
ingly randomized graph.

by removing a percentage of the total edges in the relation
and reinserting the same number of edges at random. We
specifically chose a random graph model that is different
from block modularity’s null model to show that this method
is applicable to graphs with different distributions.

Table 1 shows the average block modularity score (over
100 runs) for an increasingly randomized graph. Statistical
significance between each successive average (e.g. between
30% and 40%) was confirmed using a T-test, with each test
yielding p-values less than 0.001. There is a downward trend
from 0%-30% that shows that we can measure the degree of
randomness between different graphs. Between 40%, 50%
and 100% random, the values are very close. We believe
this is because once a high number of edges are rewired,
the result is virtually indistinguishable from a 100% random
relation.

Conclusion

In this paper, we presented the block modularity objective
function, which, given a clustering, measures the amount of
significant relational structure in a relation, compared to a
random graph model. We presented an algorithm that opti-
mizes block modularity and how the results of multiple runs
can be used as a statistic for measuring the inherent struc-
ture in a relation, without requiring any structural assump-
tions. In future work, we intend to continue investigating
this structural statistic and its applications to relation selec-
tion. We also intend to further develop the block modularity
objective and optimization technique to allow more control
over the clustering output.
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