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Abstract 

Coinduction has recently been introduced into logic 
programming by Simon et al. The resulting paradigm, 
termed coinductive logic programming (co-LP), allows one 
to model and reason about infinite processes and objects. 
Co-LP extended with negation has many interesting 
applications: for instance in developing top-down, goal-
directed evaluation strategies for Answer Set Programming. 
In this paper we show yet another application of co-LP, 
namely, elegantly realizing Boolean SAT solvers.   

Introduction  
Coinduction has been recently introduced into logic 
programming and shown to have interesting applications to 
modeling and reasoning about infinite processes and 
objects. Coinductive logic programming has also been 
extended with negation resulting in yet more applications. 
The most interesting of these applications is leveraging 
coinduction and negation to obtain goal-directed strategies 
for executing answer set programs. Answer Set 
Programming (ASP) (Gelfond and Lifschitz 1988; Niemelä 
and Simons 1996; Baral 2003; Ferraris  and Lifschitz 2005) 
is a powerful paradigm for performing non-monotonic 
reasoning within logic programming. Current ASP 
implementations are restricted to “grounded range-
restricted function-free normal programs” (Niemelä and 
Simons 1996) and use an evaluation strategy that is 
“bottom-up” (i.e., not goal-driven). Recent introduction of 
coinductive Logic Programming (co-LP) has allowed the 
development of top-down goal evaluation strategies for 
ASP (Min and Gupta 2009; Gupta et al 2007).  This co-LP 
based method eliminates the need for grounding, allows 
functions, and effectively handles a large class of predicate 
ASP programs including possibly infinite ASP programs.  
In this paper we show yet another application of co-
inductive logic programming, namely, to elegantly 
obtaining Boolean SAT solvers. We show how co-LP 
extended with negation can be used to obtain Boolean SAT 
solvers. We contrast this method of obtaining Boolean 
SAT solvers to the one based on using answer set 
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programming. 

Coinductive Logic Programming 
Coinduction has been recently introduced into logic 
programming (termed coinductive logic programming, or 
co-LP for brevity) by (Simon et al. 2006) and extended 
with negation as failure (termed co-SLDNF resolution) by 
(Min and Gupta 2008a).  Practical applications of co-LP 
include modeling of and reasoning about infinite processes 
and objects, model checking and verification (Simon et al. 
2007), and goal-directed execution of answer set programs 
(Gupta et al. 2007).  The basic concepts of co-LP are based 
on rational, coinductive proof (Simon et al. 2006), that are 
themselves based on the concepts of rational tree and 
rational solved form of (Colmerauer 1978) and (Maher 
1988).   
 
Definition 1 (adapted from (Colmerauer 1978), (Maher 
1988), and (Simon et al. 2006)).   
Let node(A, L) be a constructor of a tree with root A and 
subtrees L, where A is an atom and L is a list of trees.   
(1) A tree is rational if the cardinality of the set of all its 

subtrees is finite.  An object such as a term, an atom, or 
a (proof or derivation) tree is said to be rational if it is 
modeled (or expressed) as a rational tree.   

(2) A rational proof of a rational tree is its rational solved 
form computed by rational solved form algorithm.  

(3) A coinductive proof of a rational (derivation) tree of 
program P is a rational solved form (tree-solution) of 
the rational (derivation) tree.   

(4) Coinductive hypothesis rule: (Simon et al 2006) states 
that during execution, if the current resolvent R 
contains a call C’ that unifies with an ancestor call C 
encountered earlier, then the call C’ succeeds; the new 
resolvent is R’� where � = mgu(C, C’) and R’ is 
obtained by deleting C’ from R.  � 

 
Thus rational tree (RT) is a special class of infinite trees 
which has a finite set of subtrees.  Further for rational trees 
(or its equivalent system of equation), a rational proof 
always terminates and effectively computes a solution if 
one exists. Following the convention defined above, a 
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rational term is then a term expressed as a rational tree of 
finite or rational constants and functions. With this rational 
feature, co-LP allows programmers to manipulate rational 
(finite and rationally infinite) structures in a decidable 
manner. To achieve this feature of the rationality, 
unification has to be necessarily extended, to have “occurs-
check” removed (Colmerauer 1978). Thus, unification 
equations such as X=[1|X] are allowed in co-LP (X 
represents an infinite sequence or stream of 1s, or a 
rational tree consisting of two nodes where the root node 
points to a node of 1 and to itself).  In fact, such equations 
will be used to represent infinite (regular) structures in a 
finite manner.  

Coinductive SLDNF Resolution 
SLD resolution (for definite LP) extended with the 
coinductive hypothesis rule is called co-SLD resolution 
(Simon et al. 2006).  Co-SLDNF resolution, devised by the 
authors, extends co-SLD resolution with negation. 
Essentially, it augments co-SLD with the negative 
coinductive hypothesis rule, which states that if a negated 
call not(p) is encountered during resolution, and another 
call to not(p) has been seen before in the same 
computation, then not(p) coinductively succeeds.  First we 
define a (well-formed) query (or current resolvent), and the 
notion of positive or negative context of a literal occurring 
in it. Note that nt(A) below denotes coinductive “not” of A. 
 
Definition 2 Well-Formed Query & Context of a literal.   
(1) The syntax of a (well-formed) query Q in BNF can be 
defined as follow:  

Q ::= L | L, Q 
L ::= a | nt(Q)  
where a �{A | A is a positive literal} 

(2) Note that the same atom may occur multiple times in a 
query. Each occurrence of an atom in a query is 
distinct. If (a distinct occurrence of) an atom a occurs in 
a query Q, we write a � Q.  

(3) Nesting level of negation of an occurrence of an atom  a 
in a query Q, denoted by nln(Q, a), is inductively 
defined as an integer (� 0). 
(a) nln(a, a) = 0     
(b) nln(nt(Q), a) =  nln(Q, a) + 1   where a � Q 
(c) nln({L, Q}, a)  = nln(L, a), if a � L 
                             = nln(Q, a), if a � Q 
(d) nln({L}, a) = nln(L, a), where a � L (L is a literal) 

 (4) The context of occurrence of a literal a in a query is 
defined as follow: 
(a) If nln(Q, a) is zero or an even-number, then a is in 

positive context.  
(b) If nln(Q, a) is an odd-number, then a is in negative 

context.                  � 
For example, let’s consider a query Q = { a1, b1, nt(c1), d1, 

nt(c2, e1, f1, nt(g1))) }. Then, the nln of a1, c1, c2, and g1 will 
be respectively 0, 1, 1,  and 2, while their contexts will be 
respectively positive, negative, negative and positive.  

To implement co-SLDNF, the set of positive and 
negative calls has to be maintained in the positive 
hypothesis table (denoted �+) and negative hypothesis 
table (denoted �-), respectively.  Note that nt(A) below 
denotes coinductive “not” of A,  and � denotes an empty 
clause {}. 

 
Definition 3 Co-SLDNF Resolution: Suppose we are in the 
state (G, E, �+, �-) where G is a list of goals and E is a set 
of substitutions (environment). Consider a subgoal A� G:  
(1)  If A occurs in positive context (i.e., under even 

number of negations), and A’ � �+ such that � = 
mgu(A,A’), then the next state is (G’, E�, �+, �-), 
where G’ is obtained by replacing A with �. 

(2)  If A occurs in negative context (i.e., under odd number 
of negations), and A’ � �- such that � = mgu(A,A’), 
then the next state is (G’, E�, �+, �-), where G’ is 
obtained by replacing A with false.  

(3)  If A occurs in positive context, and A’ � �- such that 
� = mgu(A,A’), then the next state is (G’, E, �+, �-), 
where G’ is obtained by replacing A with false. 

(4)  If A occurs in negative context, and A’ � �+ such that 
� = mgu(A,A’), then the next state is (G’, E, �+, �-), 
where G’ is obtained by replacing A with �.  

(5)  If A occurs in positive context, then the next state is 
(G’, E’, {A} � �+, �-), where G’ is obtained by 
expanding A in G via normal call expansion with E’ as 
the new system of equations obtained.  

(6) If A occurs in negative context, and there is no A’ � 
(�+ � �-) that unifies with A, then the next state is 
(G’, E’, �+, {A} � �-) where G’ is obtained by 
replacing  A in G with disjunction of the extended 
bodies of all the modified candidate clauses Ci (where 
1� i � n) for A.  Each candidate clause Ci, of the form 
{H(ti) :- Bi.}, is modified to {H(x) :- x = ti, Bi.}, where 
(x = ti, Bi) refers to the extended body of the clause, ti 
is an n-tuple representing the arguments of the head of 
the clause Ci, and Bi is a conjunction of goals, and x is 
an n-tuple of fresh unbound variables. � = mgu(A, 
H(x)) and E’ = E�. 

(7)  If A occurs in positive or negative context and there 
are no matching clauses for A, and there is no A’ � 
(�+ � �-) such that A and A’ are unifiable, then the 
next state is (G’, E, �+, {A} � �-), where G’ is 
obtained by replacing A with false.  

(8) (a) nt(…, false, …) reduces to �, and (b) nt(A, �, B) 
reduces to nt(A, B) where A and B represent 
conjunction of subgoals. � 

Note (i) that the result of expanding a subgoal with a unit 
clause in step (5) and (6) is an empty clause (�), and (ii) 
that when an initial query goal reduces to an empty clause 
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(�), it denotes a success with the corresponding E as the 
solution. 
 Co-SLDNF derivation of the goal G of program P is a 
sequence of co-SLDNF resolution steps with a selected 
subgoal A, consisting of (1) a sequence (Gi, Ei, �i+, �i-) of 
state (i � 0), of (a) a sequence G0, G1, ... of goal, (b) a 
sequence E0, E1, ... of mgu's, (c) a sequence �0+, �1+, ... of 
the positive hypothesis tables, (d) �0-, �1-, ... of the negative 
hypothesis tables, where (G0, E0, �0+, �0-) = (G, �, �, �) 
is the initial state, and (2) for Definition 3 (5-6), a sequence 
C1, C2, ... of variants of program clauses of P where Gi+1 is 
derived from Gi and Ci+1 using �i+1 where Ei+1 = Ei�i+1 and 
(�i+1+, �i+1-) as its resulting positive and negative 
hypothesis tables.  (3) If a co-SLDNF derivation from G 
results in an empty clause of query �, that is, the final state 
of (�, Ei, �i+, �i-),  then it is a successful co-SLDNF 
derivation, and a derivation fails if a state is reached in the 
subgoal-list which is non-empty and no transitions are 
possible from this state.  
  C1,�1    C2,�2 
 (G0, E0, �0+, �0-) �	 (G1, E1, �1+, �1-) �	  … 
 
The declarative semantics of negation over the rational 
Herbrand Universe and Herbrand Base is based on the 
work of (Fitting 1985) (Kripke-Kleene semantics with 3-
valued logic), extended by (Fages 1994) for stable model 
with completion of program.  Their framework based on 
maintaining a pair of sets (corresponding to a partial 
interpretation of success set and failure set, resulting in a 
partial model) provides a good basis for the declarative 
semantics of co-SLDNF.  One interesting property of co-
SLDNF is that a program P coincides with its completion 
comp(P) under co-SLDNF.  We state the soundness and 
completeness results for co-SLDNF (proofs can be found 
in (Min and Gupta 2008a).  
 
Theorem 1 (Soundness and Completeness of co-SLDNF 
resolution): Let P be a normal program over the rational 
Herbrand Universe and Herbrand Base of P (denoted 
HUR(P) and HBR(P), resp.). HMR(P) denotes the rational 
Herbrand Model of P. 
(1) (Soundness of co-SLDNF resolution):  (a) If A has a 
successful derivation in program P with co-SLDNF 
resolution, then A is true in program P, i.e., A � HMR(P).  
(b) Similarly, if a grounded goal { nt(A) } has a successful 
derivation in program P, then nt(A) is true in program P, 
i.e., A � HBR(P)\HMR(P).   
(2) (Completeness of co-SLDNF):  (a) If A � HMR(P), 
then A has a successful co-SLDNF derivation or an 
irrational derivation.  (b) If A � HBR(P)\HMR(P), then 
nt(A) has a successful co-SLDNF derivation or an 
irrational derivation.                               � 
 
Next we summarize how co-SLDNF resolution can be used 

to realize goal-directed execution of answer set programs, 
followed by description of how co-SLDNF resolution can 
be employed to build a Boolean SAT solver. Finally, we 
contrast it with the way Boolean SAT problems are solved 
using ASP.  

Answer Set Programming 
Answer Set Programming (ASP) and its stable model 
semantics have been successfully applied to elegantly 
solving many problems in nonmonotonic reasoning and 
planning.  Answer Set Programming (A-Prolog (Gelfond 
and Lifschitz 1988)) or AnsProlog (Baral 2003)) is a 
declarative logic programming language.  Its basic syntax 
(Simons and Syrjanen 2003) is of the form:  
 Lo :- L1, … , Lm, not Lm+1, …, not Ln. (1) 
where Li is a literal where n � 0 and n � m.  In the Answer 
Set interpretation this rule states that Lo must be in the 
answer set if L1 through Lm are in the answer set and Lm+1 
through Ln are not in the answer set. If L0  = 
 (or null), 
then its head is null (meant to be false) to force its body to 
be false (a constraint rule or a headless-rule), written as 
follows: 
 :- L1, … , Lm, not Lm+1, …, not Ln. (2) 
This constraint rule forbids any answer set from 
simultaneously containing all of the positive literals of the 
body and not containing any of the negated literals. The 
(stable) models of an answer set program are computed 
using the Gelfond-Lifschitz method ((Gelfond and Lifschitz 
1988; Baral 2003; Ferraris and Lifschitz 2005); S-Models, 
NoMoRe, and DLV are some of the well-known 
implementations of the Gelfond-Lifschitz method. The 
main difficulty in the execution of answer set programs is 
caused by the constraint rules, which are the headless rules 
above as well as rules of the form:  
 Lo :- not Lo, L1, … , Lm, not Lm+1, …, not Ln  (3) 
Such constraint rules force one or more of the literals L1, 
… , Lm,  to be false or one or more literals “Lm+1, …, Ln” to 
be true.  Note that ‘not Lo’ may be reached indirectly 
through other calls when the above rule is invoked in 
response to the call Lo. Such rules are said to contain an 
odd-cycle in the predicate dependency graph (Fages 1994).  
A program is call consistent if it contains no odd-cycle 
rules.  A predicate ASP program is order consistent if none 
of its rules when grounded produce an odd-cycle rule 
(Fages 1994).   

Coinductive ASP Solver 
Our current work is an extension of our previous work 
discussed in (Gupta et al. 2007) for grounded 
(propositional) ASP solver to the predicate case (Min and 
Gupta 2009).  Our approach possesses the following 
advantages:  First, it works with answer set programs 
containing first order predicates with no restrictions placed 
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on them. Second, it eliminates the preprocessing 
requirement of grounding, i.e, it directly executes the 
predicates.  Third, it computes not only stable model 
semantics with least fixpoint (lfp) in the style of Gelfond-
Lifschitz, it is also capable of computing partial models 
(Fitting 1985) (thus, providing a solution even for 
incomplete or inconsistent KnowledgeBase).  Finally, it 
constitutes a top-down/goal-directed/query-oriented 
paradigm for an ASP solver, a radically different 
alternative to current ASP solvers.  We term our strategy of 
solving answer set programming with co-LP as coinductive 
Answer Set Programming (co-ASP), and this ASP solver 
with co-LP as coinductive ASP Solver (co-ASP Solver).  
The co-ASP solver’s strategy is first to transform an ASP 
program into a coinductive ASP (co-ASP) program and use 
the following solution-strategy: (1) execute the query goal 
using co-SLDNF resolution (this may yield a partial 
model), (2) eliminate loop-positive solution (e.g., p derived 
coinductively from rules such as { p :- p. }).  (3) perform 
an integrity check on the partial model generated 
(represented by �+ and �-) to account for the constraints. 
Given an odd-cycle rule of the form { p :- body, not p. }, 
this integrity check, termed nmr_check is crafted as 
follows: if p is in the answer set, then this odd-cycle rule is 
to be discarded, else body must be false. This can be 
synthesized as the condition: p � not body which must be 
satisfied by �+ and �- in order for �+ (computed during 
co-SLDNF resolution) to be an answer set. The integrity 
check nmr_chk synthesizes this condition for all odd-
cycle rules, and is appended to the query as a 
preprocessing step. This solution strategy has been 
implemented and results found to be satisfactory (Min and 
Gupta 2009). Our current prototype implementation is a 
first attempt at a top-down predicate ASP solver, and thus 
is not as efficient as current optimized ASP solvers, SAT 
solvers, or Constraint Logic Programming in solving a 
practical problem.  However, we are confident that further 
research will result in greater efficiency. One can prove 
that our co-ASP solution procedure is sound and complete 
(Proofs can be found in (Min and Gupta 2008b). 
 
Theorem 2 (Soundness of co-ASP Solver): Let P be a 
general ASP program which is call-consistent or order-
consistent.  If a query Q has a successful co-ASP solution, 
then Q is a subset of an answer set. � 
Theorem 3 (Completeness of co-ASP Solver): If P is a 
general ASP program with a stable model M in the rational 
Herbrand base of P, then a query Q consistent with M has a 
successful co-ASP solution (an answer set). � 
 
In the next section, we show the application of co-SLDNF 
and co-ASP Solver to the Boolean SAT problem1.    First, 

                                                 
1 More examples and performance data can be found in (Min and 
Gupta 2008b).  

we show how co-SLDNF resolution can be used to solve 
propositional Boolean SAT problems.  Second, we use 
existing approaches to convert a Boolean SAT problem to 
an answer set program and use co-ASP to solve it.  In 
doing so, we note some of the distinct characteristics of the 
two approaches. Moreover, we show how inductive 
(Prolog) and coinductive (co-LP) predicates can be mixed 
and used in a (hybrid or integrated) co-LP program in the 
presence of negation. This is an extension of the work done 
by (Simon et al. 2007; Bansal 2007) for co-LP integrated 
with Tabled logic and Constraint Logic Programming.  
Note that we use “not” to denote ASP’s negation as 
failure. Note also that for each rule of the form p:-B., its 
negated version: nt(p) :- nt(B) is added during pre-
processing. A call not p is evaluated by invoking the 
procedure for nt(p). 

Coinductive SAT Solver 
Let’s consider the following example of a simple co-ASP 
program consisting of two clauses.   
 
Example 1. The following co-LP program is a “naïve” 
coinductive SAT solver (co-SAT Solver) for propositional 
Boolean formulas, consisting of two clauses. 

P1: t(X) :- not neg(t(X)). 
 neg(t(X)) :- not t(X). 
The predicate t/1 is a truth-assignment (or a valuation) 
where X is a propositional Boolean formula to be checked 
for satistifiability.  The first clause {t(X) :- not neg(t(X)).} 
asserts that t(X) is true if there is no counter-case for 
neg(t(X)) (that is, neg(t(X)) is false (coinductively), with 
the assumption that t(X) is true (coinductively)).  The 
second clause { neg(t(X)) :- not t(X). } similarly asserts 
that neg(t(X)) is true if there is no counter-case for t(X). 
Next, any well-formed propositional Boolean formula 
constructed from a set of propositional symbols and logical 
connectives { �, �, 
} and in conjunctive normal form 
(CNF) can be translated into a co-LP query for co-SAT 
program (P1) as follows. First, (1) each propositional 
symbol p will be transformed into t(p).  Second (2), any 
negated proposition, that is 
t(p), will be translated into 
neg(t(p)). Third (3), for the Boolean operators, AND (“,” 
or “�”) operator will be translated into “,” (Prolog’s AND-
operator), and the OR (or “�”) operator will be “;” 
(Prolog’s OR-operator). Note that the “;” operator in 
Prolog is syntactic sugar in that (P ; Q) is defined as: 
      P;Q :- P. 
      P;Q :- Q.  
The predicate t(X) determines the truth-assignment of 
proposition X (if X is true, t(X) succeeds, else it fails). 
Note that each query is a Boolean expression whose 
satistifiability is to be coinductively determined.  Next, we 
show some of examples of Boolean formulas and their 
corresponding co-SAT Boolean queries. 
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(1)  p  will be: t(p). 
(2)  
p will be: neg(t(p)). 
(3)  p � 
p will be: t(p) , neg(t(p)).  
(4)  p  � 
p will be t(p) ; neg(t(p)).  
(5)  p1  � p2 will be: t(p1); t(p2). 
(6)  p1  � p2 will be: t(p1), t(p2). 
(7)  ( p1  � p2 � p3 ) � ( p1 � 
 p3 ) � (
 p2 � 
 p4 ) will 

be: (t(p1); t(p2); t(p3)), (t(p1); neg(t(p3))), 
(neg(t(p2)); neg(t(p4))). 

Executing the above queries under co-SLDNF will produce 
a truth assignment in the sets �+ (positive hypothesis table) 
and �- (negative hypothesis table) if the formula is 
satisfiable.  The above simple SAT solver has been 
implemented on top of our co-LP system [Gupta et al 
2007]. A built-in called ans has to be added to the end of 
the query if the user is interested in viewing the truth 
assignment. Note that we only show the first answer for 
each query, other models can be found via backtracking. 

?- t(p1). 
yes 

?- t(p1), neg(t(p1)). 
no 

?- (t(p1); t(p2); t(p3)). 
yes 

?- (t(p1); t(p2); t(p3)),ans. 
   Answer Set: 
    positive_hypo ==> [t(p1)]   
    negative_hypo ==> [ ] 

yes 
?- (t(p), neg(t(p))), ans. 

no 
?- (t(p); neg(t(p))), ans. 
    Answer Set: 
      positive_hypo ==> [t(p)] 
      negative_hypo ==> [ ] 

yes 
?-(t(p1);t(p2);t(p3)),(t(p1); neg(t(p3))), (neg(t(p2)); 
  neg(t(p4))), ans. 
     Answer Set: 
       positive_hypo ==> [t(p1)] 
       negative_hypo ==> [t(p2)] 

yes 

Coinductive ASP Solver for Boolean SAT 
As noted in (Baral 2003), propositional logic has been one 
of the first languages used for declarative problem solving, 
specifically for the task of planning by translating a 
planning problem into a propositional theory and thus a 
satisfiability problem.  The following procedure maps a 
Boolean conjunctive normal form (CNF) into an answer set 
program as shown in (Baral 2003).  
 
Example 2.  Let S be a set of propositional clauses where 
each clause is a disjunction of literals and P be its 

corresponding answer set program of S.   First (1), for each 
proposition p in S, let us define p and n_p in P as follow: 

p :- not n_p. 
n_p :- not p. 

Second (2), for each clause ci (that is, i-th clause where 1� 
i � n, for some n clauses in S) and for each a literal lj (that 
is, j-th literal occurring in ci), Let’s define ci as follow.  

(2.a) if lj is a positive atom (e.g., a) then let’s define  in 
P:     { ci :-  lj. }.   

(2.b) if lj is a negative atom (e.g., 
a) then let’s define in 
P: { ci :- n_a. }.   

Third (3), Let’s define a headless constraint rule in P for 
each ci defined in (2) as follows: 
  :- not c1, not c2, … not cn. 
 
Thus, the Boolean CNF formula S of (p1  � p2 � p3 ) � ( 
p1 � 
 p3 ) � (
 p2 � 
 p4) will be coded as the following 
answer set program.  

%%  Step (1) 
p1 :- not n_p1. n_p1 :- not p1.  
p2 :- not n_p2. n_p2 :- not p2. 
p3 :- not n_p3. n_p3 :- not p3. 
p4 :- not n_p4. n_p4 :- not p4. 
% Step (2) 
c1 :- p1.       c1 :- p2.      c1 :- p3. 
:- c1.     %%  Step (3) 
c2 :- p1.       c2 :- n_p3. 
:- c2.     %%  Step (3) 
c3 :- n_p2.     c3 :- n_p4. 
:- c3.     %%  Step (3) 

 
Therefore, the corresponding co-ASP program P’ for P is 
as follows: 

p1   :- not n_p1. n_p1 :- not p1. 
p2   :- not n_p2. n_p2 :- not p2. 
p3   :- not n_p3. n_p3 :- not p3. 
p4   :- not n_p4. n_p4 :- not p4. 
c1 :- p1. c1 :- p2. c1 :- p3.  
n_c1 :- not c1. 
c2 :- p1.        c2 :- n_p3. 
n_c2 :- not c2. 
c3 :- n_p2.      c3 :- n_p4. 
n_c3 :- not c3. 
nmr_chk :- n_c1, n_c2, n_c3. 
%%  the query will be ?- nmr_chk. 

 
For each headless rule ci we define a new rule with head 
n_ci..  The integrity constraint nmr_chk is finally added 
combining all headless rules (constraints).  Further we may 
note the cycles in negation (even-cycle) over pi and n_pi, 
thus we can simplify the program further as follow: 

p1 :- not nt(p1). % n_p1 :- not p1. 
p2 :- not nt(p2). % n_p2 :- not p2. 
p3 :- not nt(p3). % n_p3 :- not p3. 
p4 :- not nt(p4). % n_p4 :- not p4. 
c1 :- p1.        c1 :- p2.       c1 :- p3. 
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n_c1 :- not c1. 
c2 :- p1.        c2 :- nt(p3). 
n_c2 :- not c2. 
c3 :- nt(p2).    c3 :- nt(p4). 
n_c3 :- not c3. 
nmr_chk :- not n_c1, not n_c2, not n_c3. 
%%  query:  ?- nmr_chk. 
 

From these examples (co-SAT and co-ASP), we can 
clearly see the difference between co-SAT and co-ASP 
solvers on how to transform a SAT problem into a co-SAT 
query and a co-ASP query, respectively.  This provides 
insights into how to represent and solve a Boolean SAT 
problem via the solving strategy employed by each.   

Roughly speaking, co-ASP Solver (and thus ASP) uses 
double negation (somewhat similar to “proof by 
contradiction”) to prune out all the negative cases with its 
headless constraint rules. That is, it first computes the 
negative cases, then checks for their consistency w.r.t. the 
answer set.  In contrast, co-SAT solver finds a supported 
model (Apt, Blair, and Walker 1988) consistent with the 
propositional theory (that is, the given query).  This also 
gives an intuitive explanation of the ASP program having 
to add the pair of definitions (rules with p and n_p in the 
head) for each propositional symbol p. We believe that the 
co-SAT method is more elegant and more efficient 
compared to the co-ASP method. Further one may notice a 
close resemblance between co-SLDNF and Davis-Putnam 
Procedure (DPP) in (Davis and Putnam 1960).  For 
example, consider the CNF formula, (p) � (p � q) � (
 p � 
r), consisting of three clauses.  If p is true (a stand-alone 
clause), in DPP, Clauses 1 and 2 will disappear and Clause 
3 will be left with (r) after deleting (
 p).  In co-SAT, p is 
true; thus Clauses 1 and 2 will be empty clauses, and 
Clause 3 will be evaluated for r (as not p is false). DPP has 
a few more rules including splitting to check whether p is 
true or p is false (to try either cases) whereas co-SAT 
accomplishes the same with backtracking.   

Conclusion and Future Work  
In this paper we showed how co-SLDNF resolution can be 
used to elegantly develop Boolean SAT solvers. The SAT 
solvers thus obtained are simpler and more elegant than 
solvers realized via ASP. We also discussed how co-
SLDNF resolution can be employed to obtain goal-directed 
execution mechanisms for answer set programs. Our future 
work is directed towards making the implementation of 
both co-ASP and co-SAT more efficient so as to be 
competitive with the state-of-the-art solvers for ASP and 
SAT. 
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