
Coinductive Logic Programming and its Application to Boolean SAT

Richard Min and Gopal Gupta
Department of Computer Science
The University of Texas at Dallas

Richardson, Texas, USA

Abstract

Coinduction has recently been introduced into logic
programming by Simon et al. The resulting paradigm,
termed coinductive logic programming (co-LP), allows one
to model and reason about infinite processes and objects.
Co-LP extended with negation has many interesting
applications: for instance in developing top-down, goal-
directed evaluation strategies for Answer Set Programming.
In this paper we show yet another application of co-LP,
namely, elegantly realizing Boolean SAT solvers.

Introduction
Coinduction has been recently introduced into logic
programming and shown to have interesting applications to
modeling and reasoning about infinite processes and
objects. Coinductive logic programming has also been
extended with negation resulting in yet more applications.
The most interesting of these applications is leveraging
coinduction and negation to obtain goal-directed strategies
for executing answer set programs. Answer Set
Programming (ASP) (Gelfond and Lifschitz 1988; Niemelä
and Simons 1996; Baral 2003; Ferraris and Lifschitz 2005)
is a powerful paradigm for performing non-monotonic
reasoning within logic programming. Current ASP
implementations are restricted to “grounded range-
restricted function-free normal programs” (Niemelä and
Simons 1996) and use an evaluation strategy that is
“bottom-up” (i.e., not goal-driven). Recent introduction of
coinductive Logic Programming (co-LP) has allowed the
development of top-down goal evaluation strategies for
ASP (Min and Gupta 2009; Gupta et al 2007). This co-LP
based method eliminates the need for grounding, allows
functions, and effectively handles a large class of predicate
ASP programs including possibly infinite ASP programs.
In this paper we show yet another application of co-
inductive logic programming, namely, to elegantly
obtaining Boolean SAT solvers. We show how co-LP
extended with negation can be used to obtain Boolean SAT
solvers. We contrast this method of obtaining Boolean
SAT solvers to the one based on using answer set

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

programming.

Coinductive Logic Programming
Coinduction has been recently introduced into logic
programming (termed coinductive logic programming, or
co-LP for brevity) by (Simon et al. 2006) and extended
with negation as failure (termed co-SLDNF resolution) by
(Min and Gupta 2008a). Practical applications of co-LP
include modeling of and reasoning about infinite processes
and objects, model checking and verification (Simon et al.
2007), and goal-directed execution of answer set programs
(Gupta et al. 2007). The basic concepts of co-LP are based
on rational, coinductive proof (Simon et al. 2006), that are
themselves based on the concepts of rational tree and
rational solved form of (Colmerauer 1978) and (Maher
1988).

Definition 1 (adapted from (Colmerauer 1978), (Maher
1988), and (Simon et al. 2006)).
Let node(A, L) be a constructor of a tree with root A and
subtrees L, where A is an atom and L is a list of trees.
(1) A tree is rational if the cardinality of the set of all its

subtrees is finite. An object such as a term, an atom, or
a (proof or derivation) tree is said to be rational if it is
modeled (or expressed) as a rational tree.

(2) A rational proof of a rational tree is its rational solved
form computed by rational solved form algorithm.

(3) A coinductive proof of a rational (derivation) tree of
program P is a rational solved form (tree-solution) of
the rational (derivation) tree.

(4) Coinductive hypothesis rule: (Simon et al 2006) states
that during execution, if the current resolvent R
contains a call C’ that unifies with an ancestor call C
encountered earlier, then the call C’ succeeds; the new
resolvent is R’� where � = mgu(C, C’) and R’ is
obtained by deleting C’ from R. �

Thus rational tree (RT) is a special class of infinite trees
which has a finite set of subtrees. Further for rational trees
(or its equivalent system of equation), a rational proof
always terminates and effectively computes a solution if
one exists. Following the convention defined above, a

75

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

rational term is then a term expressed as a rational tree of
finite or rational constants and functions. With this rational
feature, co-LP allows programmers to manipulate rational
(finite and rationally infinite) structures in a decidable
manner. To achieve this feature of the rationality,
unification has to be necessarily extended, to have “occurs-
check” removed (Colmerauer 1978). Thus, unification
equations such as X=[1|X] are allowed in co-LP (X
represents an infinite sequence or stream of 1s, or a
rational tree consisting of two nodes where the root node
points to a node of 1 and to itself). In fact, such equations
will be used to represent infinite (regular) structures in a
finite manner.

Coinductive SLDNF Resolution
SLD resolution (for definite LP) extended with the
coinductive hypothesis rule is called co-SLD resolution
(Simon et al. 2006). Co-SLDNF resolution, devised by the
authors, extends co-SLD resolution with negation.
Essentially, it augments co-SLD with the negative
coinductive hypothesis rule, which states that if a negated
call not(p) is encountered during resolution, and another
call to not(p) has been seen before in the same
computation, then not(p) coinductively succeeds. First we
define a (well-formed) query (or current resolvent), and the
notion of positive or negative context of a literal occurring
in it. Note that nt(A) below denotes coinductive “not” of A.

Definition 2 Well-Formed Query & Context of a literal.
(1) The syntax of a (well-formed) query Q in BNF can be
defined as follow:

Q ::= L | L, Q
L ::= a | nt(Q)
where a �{A | A is a positive literal}

(2) Note that the same atom may occur multiple times in a
query. Each occurrence of an atom in a query is
distinct. If (a distinct occurrence of) an atom a occurs in
a query Q, we write a � Q.

(3) Nesting level of negation of an occurrence of an atom a
in a query Q, denoted by nln(Q, a), is inductively
defined as an integer (� 0).
(a) nln(a, a) = 0
(b) nln(nt(Q), a) = nln(Q, a) + 1 where a � Q
(c) nln({L, Q}, a) = nln(L, a), if a � L
 = nln(Q, a), if a � Q
(d) nln({L}, a) = nln(L, a), where a � L (L is a literal)

 (4) The context of occurrence of a literal a in a query is
defined as follow:
(a) If nln(Q, a) is zero or an even-number, then a is in

positive context.
(b) If nln(Q, a) is an odd-number, then a is in negative

context. �
For example, let’s consider a query Q = { a1, b1, nt(c1), d1,

nt(c2, e1, f1, nt(g1))) }. Then, the nln of a1, c1, c2, and g1 will
be respectively 0, 1, 1, and 2, while their contexts will be
respectively positive, negative, negative and positive.

To implement co-SLDNF, the set of positive and
negative calls has to be maintained in the positive
hypothesis table (denoted �+) and negative hypothesis
table (denoted �-), respectively. Note that nt(A) below
denotes coinductive “not” of A, and � denotes an empty
clause {}.

Definition 3 Co-SLDNF Resolution: Suppose we are in the
state (G, E, �+, �-) where G is a list of goals and E is a set
of substitutions (environment). Consider a subgoal A� G:
(1) If A occurs in positive context (i.e., under even

number of negations), and A’ � �+ such that � =
mgu(A,A’), then the next state is (G’, E�, �+, �-),
where G’ is obtained by replacing A with �.

(2) If A occurs in negative context (i.e., under odd number
of negations), and A’ � �- such that � = mgu(A,A’),
then the next state is (G’, E�, �+, �-), where G’ is
obtained by replacing A with false.

(3) If A occurs in positive context, and A’ � �- such that
� = mgu(A,A’), then the next state is (G’, E, �+, �-),
where G’ is obtained by replacing A with false.

(4) If A occurs in negative context, and A’ � �+ such that
� = mgu(A,A’), then the next state is (G’, E, �+, �-),
where G’ is obtained by replacing A with �.

(5) If A occurs in positive context, then the next state is
(G’, E’, {A} � �+, �-), where G’ is obtained by
expanding A in G via normal call expansion with E’ as
the new system of equations obtained.

(6) If A occurs in negative context, and there is no A’ �
(�+ � �-) that unifies with A, then the next state is
(G’, E’, �+, {A} � �-) where G’ is obtained by
replacing A in G with disjunction of the extended
bodies of all the modified candidate clauses Ci (where
1� i � n) for A. Each candidate clause Ci, of the form
{H(ti) :- Bi.}, is modified to {H(x) :- x = ti, Bi.}, where
(x = ti, Bi) refers to the extended body of the clause, ti
is an n-tuple representing the arguments of the head of
the clause Ci, and Bi is a conjunction of goals, and x is
an n-tuple of fresh unbound variables. � = mgu(A,
H(x)) and E’ = E�.

(7) If A occurs in positive or negative context and there
are no matching clauses for A, and there is no A’ �
(�+ � �-) such that A and A’ are unifiable, then the
next state is (G’, E, �+, {A} � �-), where G’ is
obtained by replacing A with false.

(8) (a) nt(…, false, …) reduces to �, and (b) nt(A, �, B)
reduces to nt(A, B) where A and B represent
conjunction of subgoals. �

Note (i) that the result of expanding a subgoal with a unit
clause in step (5) and (6) is an empty clause (�), and (ii)
that when an initial query goal reduces to an empty clause

76

(�), it denotes a success with the corresponding E as the
solution.
 Co-SLDNF derivation of the goal G of program P is a
sequence of co-SLDNF resolution steps with a selected
subgoal A, consisting of (1) a sequence (Gi, Ei, �i+, �i-) of
state (i � 0), of (a) a sequence G0, G1, ... of goal, (b) a
sequence E0, E1, ... of mgu's, (c) a sequence �0+, �1+, ... of
the positive hypothesis tables, (d) �0-, �1-, ... of the negative
hypothesis tables, where (G0, E0, �0+, �0-) = (G, �, �, �)
is the initial state, and (2) for Definition 3 (5-6), a sequence
C1, C2, ... of variants of program clauses of P where Gi+1 is
derived from Gi and Ci+1 using �i+1 where Ei+1 = Ei�i+1 and
(�i+1+, �i+1-) as its resulting positive and negative
hypothesis tables. (3) If a co-SLDNF derivation from G
results in an empty clause of query �, that is, the final state
of (�, Ei, �i+, �i-), then it is a successful co-SLDNF
derivation, and a derivation fails if a state is reached in the
subgoal-list which is non-empty and no transitions are
possible from this state.
 C1,�1 C2,�2
 (G0, E0, �0+, �0-) �	 (G1, E1, �1+, �1-) �	 …

The declarative semantics of negation over the rational
Herbrand Universe and Herbrand Base is based on the
work of (Fitting 1985) (Kripke-Kleene semantics with 3-
valued logic), extended by (Fages 1994) for stable model
with completion of program. Their framework based on
maintaining a pair of sets (corresponding to a partial
interpretation of success set and failure set, resulting in a
partial model) provides a good basis for the declarative
semantics of co-SLDNF. One interesting property of co-
SLDNF is that a program P coincides with its completion
comp(P) under co-SLDNF. We state the soundness and
completeness results for co-SLDNF (proofs can be found
in (Min and Gupta 2008a).

Theorem 1 (Soundness and Completeness of co-SLDNF
resolution): Let P be a normal program over the rational
Herbrand Universe and Herbrand Base of P (denoted
HUR(P) and HBR(P), resp.). HMR(P) denotes the rational
Herbrand Model of P.
(1) (Soundness of co-SLDNF resolution): (a) If A has a
successful derivation in program P with co-SLDNF
resolution, then A is true in program P, i.e., A � HMR(P).
(b) Similarly, if a grounded goal { nt(A) } has a successful
derivation in program P, then nt(A) is true in program P,
i.e., A � HBR(P)\HMR(P).
(2) (Completeness of co-SLDNF): (a) If A � HMR(P),
then A has a successful co-SLDNF derivation or an
irrational derivation. (b) If A � HBR(P)\HMR(P), then
nt(A) has a successful co-SLDNF derivation or an
irrational derivation. �

Next we summarize how co-SLDNF resolution can be used

to realize goal-directed execution of answer set programs,
followed by description of how co-SLDNF resolution can
be employed to build a Boolean SAT solver. Finally, we
contrast it with the way Boolean SAT problems are solved
using ASP.

Answer Set Programming
Answer Set Programming (ASP) and its stable model
semantics have been successfully applied to elegantly
solving many problems in nonmonotonic reasoning and
planning. Answer Set Programming (A-Prolog (Gelfond
and Lifschitz 1988)) or AnsProlog (Baral 2003)) is a
declarative logic programming language. Its basic syntax
(Simons and Syrjanen 2003) is of the form:
 Lo :- L1, … , Lm, not Lm+1, …, not Ln. (1)
where Li is a literal where n � 0 and n � m. In the Answer
Set interpretation this rule states that Lo must be in the
answer set if L1 through Lm are in the answer set and Lm+1
through Ln are not in the answer set. If L0 =
 (or null),
then its head is null (meant to be false) to force its body to
be false (a constraint rule or a headless-rule), written as
follows:
 :- L1, … , Lm, not Lm+1, …, not Ln. (2)
This constraint rule forbids any answer set from
simultaneously containing all of the positive literals of the
body and not containing any of the negated literals. The
(stable) models of an answer set program are computed
using the Gelfond-Lifschitz method ((Gelfond and Lifschitz
1988; Baral 2003; Ferraris and Lifschitz 2005); S-Models,
NoMoRe, and DLV are some of the well-known
implementations of the Gelfond-Lifschitz method. The
main difficulty in the execution of answer set programs is
caused by the constraint rules, which are the headless rules
above as well as rules of the form:
 Lo :- not Lo, L1, … , Lm, not Lm+1, …, not Ln (3)
Such constraint rules force one or more of the literals L1,
… , Lm, to be false or one or more literals “Lm+1, …, Ln” to
be true. Note that ‘not Lo’ may be reached indirectly
through other calls when the above rule is invoked in
response to the call Lo. Such rules are said to contain an
odd-cycle in the predicate dependency graph (Fages 1994).
A program is call consistent if it contains no odd-cycle
rules. A predicate ASP program is order consistent if none
of its rules when grounded produce an odd-cycle rule
(Fages 1994).

Coinductive ASP Solver
Our current work is an extension of our previous work
discussed in (Gupta et al. 2007) for grounded
(propositional) ASP solver to the predicate case (Min and
Gupta 2009). Our approach possesses the following
advantages: First, it works with answer set programs
containing first order predicates with no restrictions placed

77

on them. Second, it eliminates the preprocessing
requirement of grounding, i.e, it directly executes the
predicates. Third, it computes not only stable model
semantics with least fixpoint (lfp) in the style of Gelfond-
Lifschitz, it is also capable of computing partial models
(Fitting 1985) (thus, providing a solution even for
incomplete or inconsistent KnowledgeBase). Finally, it
constitutes a top-down/goal-directed/query-oriented
paradigm for an ASP solver, a radically different
alternative to current ASP solvers. We term our strategy of
solving answer set programming with co-LP as coinductive
Answer Set Programming (co-ASP), and this ASP solver
with co-LP as coinductive ASP Solver (co-ASP Solver).
The co-ASP solver’s strategy is first to transform an ASP
program into a coinductive ASP (co-ASP) program and use
the following solution-strategy: (1) execute the query goal
using co-SLDNF resolution (this may yield a partial
model), (2) eliminate loop-positive solution (e.g., p derived
coinductively from rules such as { p :- p. }). (3) perform
an integrity check on the partial model generated
(represented by �+ and �-) to account for the constraints.
Given an odd-cycle rule of the form { p :- body, not p. },
this integrity check, termed nmr_check is crafted as
follows: if p is in the answer set, then this odd-cycle rule is
to be discarded, else body must be false. This can be
synthesized as the condition: p � not body which must be
satisfied by �+ and �- in order for �+ (computed during
co-SLDNF resolution) to be an answer set. The integrity
check nmr_chk synthesizes this condition for all odd-
cycle rules, and is appended to the query as a
preprocessing step. This solution strategy has been
implemented and results found to be satisfactory (Min and
Gupta 2009). Our current prototype implementation is a
first attempt at a top-down predicate ASP solver, and thus
is not as efficient as current optimized ASP solvers, SAT
solvers, or Constraint Logic Programming in solving a
practical problem. However, we are confident that further
research will result in greater efficiency. One can prove
that our co-ASP solution procedure is sound and complete
(Proofs can be found in (Min and Gupta 2008b).

Theorem 2 (Soundness of co-ASP Solver): Let P be a
general ASP program which is call-consistent or order-
consistent. If a query Q has a successful co-ASP solution,
then Q is a subset of an answer set. �
Theorem 3 (Completeness of co-ASP Solver): If P is a
general ASP program with a stable model M in the rational
Herbrand base of P, then a query Q consistent with M has a
successful co-ASP solution (an answer set). �

In the next section, we show the application of co-SLDNF
and co-ASP Solver to the Boolean SAT problem1. First,

1 More examples and performance data can be found in (Min and
Gupta 2008b).

we show how co-SLDNF resolution can be used to solve
propositional Boolean SAT problems. Second, we use
existing approaches to convert a Boolean SAT problem to
an answer set program and use co-ASP to solve it. In
doing so, we note some of the distinct characteristics of the
two approaches. Moreover, we show how inductive
(Prolog) and coinductive (co-LP) predicates can be mixed
and used in a (hybrid or integrated) co-LP program in the
presence of negation. This is an extension of the work done
by (Simon et al. 2007; Bansal 2007) for co-LP integrated
with Tabled logic and Constraint Logic Programming.
Note that we use “not” to denote ASP’s negation as
failure. Note also that for each rule of the form p:-B., its
negated version: nt(p) :- nt(B) is added during pre-
processing. A call not p is evaluated by invoking the
procedure for nt(p).

Coinductive SAT Solver
Let’s consider the following example of a simple co-ASP
program consisting of two clauses.

Example 1. The following co-LP program is a “naïve”
coinductive SAT solver (co-SAT Solver) for propositional
Boolean formulas, consisting of two clauses.

P1: t(X) :- not neg(t(X)).
 neg(t(X)) :- not t(X).
The predicate t/1 is a truth-assignment (or a valuation)
where X is a propositional Boolean formula to be checked
for satistifiability. The first clause {t(X) :- not neg(t(X)).}
asserts that t(X) is true if there is no counter-case for
neg(t(X)) (that is, neg(t(X)) is false (coinductively), with
the assumption that t(X) is true (coinductively)). The
second clause { neg(t(X)) :- not t(X). } similarly asserts
that neg(t(X)) is true if there is no counter-case for t(X).
Next, any well-formed propositional Boolean formula
constructed from a set of propositional symbols and logical
connectives { �, �,
} and in conjunctive normal form
(CNF) can be translated into a co-LP query for co-SAT
program (P1) as follows. First, (1) each propositional
symbol p will be transformed into t(p). Second (2), any
negated proposition, that is
t(p), will be translated into
neg(t(p)). Third (3), for the Boolean operators, AND (“,”
or “�”) operator will be translated into “,” (Prolog’s AND-
operator), and the OR (or “�”) operator will be “;”
(Prolog’s OR-operator). Note that the “;” operator in
Prolog is syntactic sugar in that (P ; Q) is defined as:
 P;Q :- P.
 P;Q :- Q.
The predicate t(X) determines the truth-assignment of
proposition X (if X is true, t(X) succeeds, else it fails).
Note that each query is a Boolean expression whose
satistifiability is to be coinductively determined. Next, we
show some of examples of Boolean formulas and their
corresponding co-SAT Boolean queries.

78

(1) p will be: t(p).
(2)
p will be: neg(t(p)).
(3) p �
p will be: t(p) , neg(t(p)).
(4) p �
p will be t(p) ; neg(t(p)).
(5) p1 � p2 will be: t(p1); t(p2).
(6) p1 � p2 will be: t(p1), t(p2).
(7) (p1 � p2 � p3) � (p1 �
 p3) � (
 p2 �
 p4) will

be: (t(p1); t(p2); t(p3)), (t(p1); neg(t(p3))),
(neg(t(p2)); neg(t(p4))).

Executing the above queries under co-SLDNF will produce
a truth assignment in the sets �+ (positive hypothesis table)
and �- (negative hypothesis table) if the formula is
satisfiable. The above simple SAT solver has been
implemented on top of our co-LP system [Gupta et al
2007]. A built-in called ans has to be added to the end of
the query if the user is interested in viewing the truth
assignment. Note that we only show the first answer for
each query, other models can be found via backtracking.

?- t(p1).
yes

?- t(p1), neg(t(p1)).
no

?- (t(p1); t(p2); t(p3)).
yes

?- (t(p1); t(p2); t(p3)),ans.
 Answer Set:
 positive_hypo ==> [t(p1)]
 negative_hypo ==> []

yes
?- (t(p), neg(t(p))), ans.

no
?- (t(p); neg(t(p))), ans.
 Answer Set:
 positive_hypo ==> [t(p)]
 negative_hypo ==> []

yes
?-(t(p1);t(p2);t(p3)),(t(p1); neg(t(p3))), (neg(t(p2));
 neg(t(p4))), ans.
 Answer Set:
 positive_hypo ==> [t(p1)]
 negative_hypo ==> [t(p2)]

yes

Coinductive ASP Solver for Boolean SAT
As noted in (Baral 2003), propositional logic has been one
of the first languages used for declarative problem solving,
specifically for the task of planning by translating a
planning problem into a propositional theory and thus a
satisfiability problem. The following procedure maps a
Boolean conjunctive normal form (CNF) into an answer set
program as shown in (Baral 2003).

Example 2. Let S be a set of propositional clauses where
each clause is a disjunction of literals and P be its

corresponding answer set program of S. First (1), for each
proposition p in S, let us define p and n_p in P as follow:

p :- not n_p.
n_p :- not p.

Second (2), for each clause ci (that is, i-th clause where 1�
i � n, for some n clauses in S) and for each a literal lj (that
is, j-th literal occurring in ci), Let’s define ci as follow.

(2.a) if lj is a positive atom (e.g., a) then let’s define in
P: { ci :- lj. }.

(2.b) if lj is a negative atom (e.g.,
a) then let’s define in
P: { ci :- n_a. }.

Third (3), Let’s define a headless constraint rule in P for
each ci defined in (2) as follows:
 :- not c1, not c2, … not cn.

Thus, the Boolean CNF formula S of (p1 � p2 � p3) � (
p1 �
 p3) � (
 p2 �
 p4) will be coded as the following
answer set program.

%% Step (1)
p1 :- not n_p1. n_p1 :- not p1.
p2 :- not n_p2. n_p2 :- not p2.
p3 :- not n_p3. n_p3 :- not p3.
p4 :- not n_p4. n_p4 :- not p4.
% Step (2)
c1 :- p1. c1 :- p2. c1 :- p3.
:- c1. %% Step (3)
c2 :- p1. c2 :- n_p3.
:- c2. %% Step (3)
c3 :- n_p2. c3 :- n_p4.
:- c3. %% Step (3)

Therefore, the corresponding co-ASP program P’ for P is
as follows:

p1 :- not n_p1. n_p1 :- not p1.
p2 :- not n_p2. n_p2 :- not p2.
p3 :- not n_p3. n_p3 :- not p3.
p4 :- not n_p4. n_p4 :- not p4.
c1 :- p1. c1 :- p2. c1 :- p3.
n_c1 :- not c1.
c2 :- p1. c2 :- n_p3.
n_c2 :- not c2.
c3 :- n_p2. c3 :- n_p4.
n_c3 :- not c3.
nmr_chk :- n_c1, n_c2, n_c3.
%% the query will be ?- nmr_chk.

For each headless rule ci we define a new rule with head
n_ci.. The integrity constraint nmr_chk is finally added
combining all headless rules (constraints). Further we may
note the cycles in negation (even-cycle) over pi and n_pi,
thus we can simplify the program further as follow:

p1 :- not nt(p1). % n_p1 :- not p1.
p2 :- not nt(p2). % n_p2 :- not p2.
p3 :- not nt(p3). % n_p3 :- not p3.
p4 :- not nt(p4). % n_p4 :- not p4.
c1 :- p1. c1 :- p2. c1 :- p3.

79

n_c1 :- not c1.
c2 :- p1. c2 :- nt(p3).
n_c2 :- not c2.
c3 :- nt(p2). c3 :- nt(p4).
n_c3 :- not c3.
nmr_chk :- not n_c1, not n_c2, not n_c3.
%% query: ?- nmr_chk.

From these examples (co-SAT and co-ASP), we can
clearly see the difference between co-SAT and co-ASP
solvers on how to transform a SAT problem into a co-SAT
query and a co-ASP query, respectively. This provides
insights into how to represent and solve a Boolean SAT
problem via the solving strategy employed by each.

Roughly speaking, co-ASP Solver (and thus ASP) uses
double negation (somewhat similar to “proof by
contradiction”) to prune out all the negative cases with its
headless constraint rules. That is, it first computes the
negative cases, then checks for their consistency w.r.t. the
answer set. In contrast, co-SAT solver finds a supported
model (Apt, Blair, and Walker 1988) consistent with the
propositional theory (that is, the given query). This also
gives an intuitive explanation of the ASP program having
to add the pair of definitions (rules with p and n_p in the
head) for each propositional symbol p. We believe that the
co-SAT method is more elegant and more efficient
compared to the co-ASP method. Further one may notice a
close resemblance between co-SLDNF and Davis-Putnam
Procedure (DPP) in (Davis and Putnam 1960). For
example, consider the CNF formula, (p) � (p � q) � (
 p �
r), consisting of three clauses. If p is true (a stand-alone
clause), in DPP, Clauses 1 and 2 will disappear and Clause
3 will be left with (r) after deleting (
 p). In co-SAT, p is
true; thus Clauses 1 and 2 will be empty clauses, and
Clause 3 will be evaluated for r (as not p is false). DPP has
a few more rules including splitting to check whether p is
true or p is false (to try either cases) whereas co-SAT
accomplishes the same with backtracking.

Conclusion and Future Work
In this paper we showed how co-SLDNF resolution can be
used to elegantly develop Boolean SAT solvers. The SAT
solvers thus obtained are simpler and more elegant than
solvers realized via ASP. We also discussed how co-
SLDNF resolution can be employed to obtain goal-directed
execution mechanisms for answer set programs. Our future
work is directed towards making the implementation of
both co-ASP and co-SAT more efficient so as to be
competitive with the state-of-the-art solvers for ASP and
SAT.

References
Apt, K., Blair, H., and Walker, A. 1988. Towards a Theory

of Declarative Knowledge. In: Minker, J. (ed.)
Foundations of Deductive Databases and Logic
Programming. pp. 89-148. Morgan Kaufmann (1988).
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Bansal, A. 2007. Next Generation Logic Programming
Systems. Ph.D. Diss. The University of Texas at Dallas.
Barwise, J., and Moss, L. 1996. Vicious Circles: On the
Mathematics of Non-Wellfounded Phenomena. CSLI Pub.
Colmerauer, A. 1978. Prolog and Infinite Trees. In Clark,
K.L. & Tarnlund, S.-A. (Eds.), Logic Programming. 293-
322. New York: Prenum Press.
Davis, M. and Putnam, H. (1960). A Computing Procedure
for Quantification Theory. Journal of the Association for
Computing Machinary, 7(3), 201-215.
Fages, F. 1994. Consistency of Clark's completion and
existence of stable models. Journal of Methods of Logic in
Computer Science 1: 51-60.
Ferraris, P., and Lifschitz, V. 2005. Mathematical
Foundations of Answer Set Programming. In We Will
Show Them! Essays in Honour of Dov Gabbay. 615-664
King's College Publications.
Fitting, M. 1985. A Kripke-Kleene semantics for logic
programs. Journal of Logic Programming 2: 295-312.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Kowalski, R. &
Bowen, K. (Eds.), Proceedings of International Logic
Programming Conference and Symposium, 1070-1080.
Gupta, G., Bansal, A., Min, R., Simon, L., and Mallya, A.
2007. Coinductive logic programming and its applications.
(tutorial paper), Proc. of ICLP07, 27-44.
Maher, M. J. 1988. Complete Axiomatizations of the
Algebras of Finite, Rational and Infinite Trees, Proc. 3rd
Logic in Computer Science Conference, 348-357.
Min, R., and Gupta, G. 2008a. Negation in Coinductive
Logic Programming. Technical Report UTDCS34-08.
Computer Science. University of Texas at Dallas.
www.utdallas.edu/~rkm010300/research/co-SLDNF.pdf
Min, R., and Gupta, G. 2008b. Predicate Answer Set
Programming with Coinduction. Technical Report (Draft).
Computer Science. The University of Texas at Dallas.
http://www.utdallas.edu/~rkm010300/research/co-ASP.pdf
Min, R., Bansal, A. and Gupta, G. 2009. Towards
Predicate Answer Set Programming via Coinductive Logic
Programming. AIAI’09. (to appear).
Niemelä, I., and Simons, P. 1996. Efficient implementation
of the well-founded and stable model semantics.
Fachbericht Informatik 7-96.
Niemelä, I. 2003. Answer Set Programming: From Model
Computation to Problem Solving, Proc. CADE-19.
Simon, L., Mallya, A., Bansal, A., and Gupta, G. 2006.
Coinductive Logic Programming, ICLP'06. 330-344.
Simon, L., Bansal, A., Mallya, A., and Gupta, G. 2007. Co-
Logic Programming, Proc. ICALP'07, 472-483. Springer.
Simons, P., and Syrjanen, T. 2003. SMODELS and
LPARSE. http://www.tcs.hut.fi/Software/smodels/

80

