
Training to a Neural Net’s Inherent Bias

Steven Gutstein, Olac Fuentes & Eric Freudenthal
Computer Science Department
University of Texas at El Paso

Abstract

A neural net with multiple output nodes is capable of
distinguishing among a set of related input classes even
in the absence of training. It can do so with an accuracy
that is markedly better than random guessing. This is
because each class will tend to activate a different set
of output nodes. We refer to this tendency as the net’s
’inherent’ bias.
Ascertaining a net’s inherent bias may be thought of as
learning the net. One may learn the net either instead of
training it, or prior to training it. Furthermore, one only
needs a small number of samples from each input class
in order to reliably learn the net.
If a net has been previously trained on a different, re-
lated set of classes, then ascertaining the inherent bias
is a form of knowledge transfer. When such a net is
trained to respond in accordance with its inherent bias,
one may obtain substantially higher accuracies than is
provided by nets trained in the standard fashion.
Furthermore, when using a deep net, we were able to
obtain such improvements while only allowing the top
layer of the net to train. This layer contained only about
5.7% of the net’s free parameters.

Introduction

The term ’bias’, when used with respect to inductive learn-
ing refers not only to the hypotheses that a learner is capa-
ble of expressing, but also to the manner in which it will
search through the set of possible hypotheses for one which
matches its experiences. The internal parameters of a neural
net will give it preferred associations between various out-
puts and classes of inputs. This is what we refer to as the
net’s inherent bias. Ascertaining these associations can be
thought of as learning the net. If these associations are one-
to-one, the neural net will be able to discriminate among
those classes with an accuracy far better than a purely ran-
dom guesser. This advantage can translate into improved
learning with smaller training sets.

Obviously, not all biases are created equal for all tasks.
Yet, one general bias that humans seem to have is that sim-
ilar tasks employ similar solutions. It is generally accepted
that people use knowledge acquired from previously learned

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tasks to master new ones. This transfer enables us to acquire
new concepts both quickly and accurately based on very few
examples, because we have already learned to distinguish
between relevant and irrelevant features.

A neural net which has already been actively trained on
one set of tasks should have acquired a bias that will help it
with a similar set of tasks. Its inherent bias will have the full
advantage of knowledge gained while learning the prior set
of tasks.

Techniques to more effectively train a learner by us-
ing relevant, previously acquired knowledge are known
as ’knowledge transfer’ techniques. Some examples
of training methods that employ knowledge transfer in-
clude Discriminability-Based Transfer (Pratt 1993), Multi-
Task Learning (Caruana 1997a), Explanation Based Neu-
ral Nets (Thrun 1996), Knowledge Based Cascade Corre-
lation (Schultz and Rivest 2000) and Inductive Bias Learn-
ing (Baxter 2000). Our experiments draw most heavily from
Caruana’s Multi-Task Learning and Baxter’s Inductive Bias
Learning.

Background & Related Work

Knowledge Transfer

To the best of our knowledge, training a neural net using
its inherent bias has not previously been studied. This tech-
nique makes the most sense when the inherent bias is rele-
vant to the problem(s) at hand. The best way to ensure this
is to use a net that has already been trained for a similar set
of tasks.

Discriminability Based Transfer An obvious problem in
transferring knowledge with neural nets is deciding which
portions of a net are germane to a new task and which are
not. One of the early attempts to identify these relevant por-
tions is discriminability-based transfer (DBT), which was
first introduced by Pratt (Pratt 1993). Pratt took a standard
feed-forward neural net (i.e. 1 input layer, 1 hidden layer and
1 output layer) and trained it to perform, what she called, a
’source’ task, which was the source of the knowledge to be
transferred. Then, she used some of the learned weights to
seed a new net with the same architecture. This net was then
trained in a new, related task, which she called the ’target’
task.

However, direct transfer of all the original weights (i.e.

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

45

literal transfer) was found to be counter-productive. The rea-
son, given by Pratt, is that in general, only a subset of nodes
from a previously trained net will be relevant to a new set
of tasks, no matter how similar the two sets may be. Yet,
weights for a trained node are more likely to be large, and
thus resistant to retraining. This results in a net with both a
reduced capacity and poor bias.

In order to identify which nodes aided and which nodes
hindered learning, Pratt looked at the response of each hid-
den node to the training set for the new class. Nodes that
gave relevant output for the new task(s) (as measured by mu-
tual information) had their input weights transferred. Those
that did not had their input weights randomly reset. All input
weights for nodes of the output layers were reset.

This approach is best suited for cases when retention of
prior knowledge is not important. Since, ultimately, we want
to create a technique suitable for sequential learning, we do
not want to reinitialize large portions of our net. This makes
Pratt’s technique of using mutual information less immedi-
ately attractive for us. However, we expect that in future
work we will use a modified form of DBT to improve our
technique.

At its heart, the method of knowledge transfer, that we
use, is essentially literal transfer. We believe we avoid Pratt’s
problem of nodes that are both hard to train and irrelevant to
the new task(s) by training our net with Multi-Task Learn-
ing. This provides an internal representation that is large
and robust enough to have a sufficient number nodes that
need only minimal training for the new task(s).

Multi-Task Learning Multi-Task Learning (i.e. MTL),
which was introduced by Caruana (Caruana 1997a), simulta-
neously trains a neural net to perform many tasks. The main
insight of this technique is that when a net is simultaneously
trained to perform several related tasks, its performance for
each task is enhanced. Although Caruana suggests 5 main
mechanisms for this enhancement, the mechanism that is
most important for us is ’Representation Bias’ (Caruana
1997b).

According to Caruana, finding an internal representation
for shared features that generalizes well between tasks, bi-
ases the net toward learning an internal representation that
will generalize well within each task. Our use of knowledge
transfer involves first using MTL to train a net with a good
internal representation for several related tasks. So, when
we present the net with a new set of similar tasks, it already
has a good internal representation for them.

Inductive Bias Learning Use of a neural net to induc-
tively learn an appropriate bias for a set of related tasks was
employed by Baxter & Bartlett (Baxter and Bartlett 1998).
This is the most similar to our approach, since it depends
upon the neural net to inductively learn an internal represen-
tation for each member of a set of classes from a subset of
those classes. Then, it uses the resultant encoding to provide
the solution to classify input.

Baxter and Bartlett focused on learning a distance mea-
sure for their internal representation. They used this distance
measure to perform 1-NN classification on a database of ma-
chine printed Japanese kanji, which they obtained from the

CEDAR group at the State University of New York at Buf-
falo. This data set contained 90,918 segmented, machine
printed Kanji characters, which could be grouped into 3,018
classes (i.e. there were about 30 samples of each kanji).
They trained their net to recognize 400 of these classes and
to identify the other 2,618 as ’not among the known 400’.
Then, using 1-NN classification, they managed to achieve a
misclassification error of 7.5% on a test set containing the
other 2,618 character classes.

This experiment is very similar to ours, yet there are some
notable differences. The main one being that their net was
initially exposed to images of the ’new’ classes and trained
to recognize them as different than any member of the set of
classes that were being learned. Our net was never exposed
to the ’new’ classes until we attempted to learn to recognize
them. Additionally, we have a much smaller set of tasks
from the common domain that are used for transfer. Further-
more, we examine transfer learning with drastically smaller
training sets for the ’new’ classes.

Learning a Comparator Function A variation on learn-
ing a distance function is to learn a comparator function.
Rather than determine to which class a given input belongs,
a comparator function looks at two specific inputs and de-
cides whether they are members of the same class.

A recent use of a comparator function was demonstrated
by Chopra et al. (Chopra, Hadsell, and LeCun 2005). In this
work, a siamese net (Bromley et al. 1993) was trained on
a relatively small number of faces to recognize whether a
given pair of faces were from the same person. This tech-
nique was then able to correctly label pairs of faces, which
came from people not seen during training, as being same or
different. The fact that this technique works lends credence
to the idea of using a net’s inherent bias to improve learning.

Representational and Functional Knowledge Transfer
The techniques that have been described rely upon the cre-
ation of an internal representation of raw data to enhance a
net’s ability to learn multiple tasks. However, they represent
two fundamentally different methods of knowledge transfer
- representational and functional (Silver and Mercer 1996).
In representational transfer, as Pratt used, one finds the sub-
sets of an existing internal representation which are useful
for the new task being learned. In functional transfer, as was
used by each of Caruana, Baxter and Chopra, one trains in
such a way as to require learning a single, robust internal
representation, which is suitable for several tasks.

The technique shown here will be seen primarily as a rep-
resentational transfer technique. However, functional trans-
fer is used to create an initial representation that is robust
enough to be transferred using a literal transfer technique.

Convolutional Neural Nets

Our experiments were performed using a convolutional neu-
ral net (CNN). This architecture was chosen for several rea-
sons. It has been successfully used for the specific problem
we are employing to demonstrate the advantages of using a
neural net’s inherent bias (i.e. character recognition) (Le-
Cun et al. 1999) and it has a highly modular structure. This

46

type of architecture should readily lend itself to knowledge
transfer techniques.

CNN’s are comprised of several layers and are, there-
fore, considered ’deep’ nets. The nodes of each layer are
organized into several feature maps. The nodes compos-
ing a given feature map will all share weights and com-
mon receptive fields. Each such map may, therefore, be
viewed as acting to detect a given feature, wherever it oc-
curs. Furthermore, at higher layers of the net, feature maps
may be regarded as identifying the combinations of various
low-level features that compose more complex higher-level
features. The presence of feature maps as an architectural
component of CNN’s makes these nets an attractive candi-
date for knowledge transfer, since these maps represent dis-
crete, localizable detectors for specific features that distin-
guish among the various classes.

There are two standard types of layers found in a CNN:
convolutional and sub-sampling layers. In the convolutional
layers (C-layers) of the net, each feature map is constructed
by calculating the convolution of one or more small learned
kernels over a subset of feature maps in the previous layer,
or over the original input, when it constitutes the previous
layer.

Although a single feature map may be connected to many
feature maps of the prior level, it is connected to each by an
individual learned kernel. This results in a map that will
reflect the presence of a particular local feature, or local
combination of features, wherever they occur in maps of the
prior layer. It is the convolution of small kernels that gives
CNNs an architecturally based bias for translational invari-
ance. These kernels are also useful for problems with strong
local correlations.

In the sub-sampling layers (S-layers), each feature map is
connected to exactly one feature map of the prior layer. A
kernel of the sub-sampling layers is not convolved over the
corresponding feature map of the prior layer. Instead, the in-
put feature map is divided into contiguous non-overlapping
tiles, which are the size of the kernel. Each sub-sampling
kernel contains two learnable parameters:

1. a multiplicative parameter, which multiplies the sum of
the units in a given tile, and

2. an additive parameter, which is used as a bias.

This gives CNNs a decreased sensitivity to minor rotations
and distortions of an image, which helps make them robust
with respect to unimportant variations.

Because the architecture of CNN’s forces the early layers
to act as low-level feature extractors, these nets should make
good use of MTL, since different tasks may require recog-
nition of the same features located in different parts of an
image for different classes. Furthermore, as the upper lay-
ers of the net are required to encode more instances from a
set of classes (e.g. specific characters from a set of all char-
acters), they should be learning internal representations of
those classes, which could provide an effective mechanism
for dimensionality reduction.

With this in mind, it is convenient to view a CNN as pos-
sessing two halves - a lower half, which acts as a feature
extractor and an upper half, which combines the features to

Original Image
 32 X 32

Convolutional Layer (C1)
 6 Feature Maps
 28 X 28

Subsampling Layer (S2)
 6 Feature Maps
 14 X 14

Convolutional Layer (C3)
 16 Feature Maps
 10 X 10

Subsampling Layer (S4)
 16 Feature Maps
 5X5

 Convolutional Layer (C5)
 120 Feature Maps
 Each is connected to ALL S4 Feature Maps
 1X1

 Output Layer (F6)
 All 25 output units
connected to each C5 Unit

Figure 1: Architecture of our net, which is a slightly mod-
ified version of LeNet5. It should be noted that the feature
maps in the C5 & F6 (i.e. Output Layer) are 1 node × 1
node. So, they could with equal accuracy be considered as
traditional nodes in a non-weight sharing feed-forward neu-
ral net.

produce a reduced dimension representation of the input im-
age. Once a CNN has been trained to recognize a number of
specific classes from a set of related classes (i.e. characters,
faces etc.) it should be possible to train to recognize other
related classes by only training weights in the upper layers
of the net. These upper layers will, in essence, be solving
a problem with significantly reduced dimensionality. This
will now give three main advantages:

1. Significantly faster training time, because the dimension-
ality of the problem domain has decreased

2. Better generalized accuracy with small training sets, since
learning obtained from previous training sets is retained.

3. Smaller expected difference between the expected errors
of the training set and testing set, due to the decreased net
capacity.

Our experiments used a variation of the LeNet5 style ar-
chitecture (LeCun et al. 1999), which has already been suc-
cessfully used for Optical Character Recognition (i.e. OCR).
A diagram of the architecture we used is shown in Figure 1.

Experiments

All our experiments that used knowledge transfer to enhance
the benefits of training to a net’s inherent bias, started with
a net that had been trained to recognize the 25 characters
A-F,H,I,P,R-W,Y,a,b,d,e,g,h,q,r and t.

The data set from which we obtained samples of these
characters was the NIST Special Database 19, which con-
tains 62 classes of handwritten characters corresponding to
’0’-’9’, ’A’-’Z’ and ’a’-’z’. Our choice of which subset of
characters to train upon was governed mainly by the number
of samples of each character and the desire to avoid training

47

on either the letter ’O’ or ’o’, since we felt both were too
similar to the number ’0’.

The net was trained to respond to each character with a
unique pattern of the output nodes either firing or not fir-
ing. These patterns were thought of as vectors in a 25 di-
mensional space and will be referred to as ’target’ vectors.
The specific target vector for each character class was deter-
mined stochastically. Each node had a 50% chance of either
firing or not firing for the target vector of a particular class.
Input images were then classified based upon to which target
vector they were closest in a Euclidean sense.

Once the net was initialized, either with random values
or, as described above - with values obtained by training it
on a set of related tasks, it was introduced to samples of the
classes ’0’-’9’.

To estimate the inherent bias of the net with respect to this
set, we simply calculated the average output of the net for
each class. The desired output (i.e. target vector) for each
class would be determined by calculating the sign function
of each of the average output vectors. These were then used
to classify characters belonging to the classes ’0’-’9’. This
process may be thought of as ’learning’ the net.

For example, if we had been using only 3 output nodes
and the average output of the n samples in our training set of
the character ’7’ was [0.6, -0.8, 0.9], the target vector for ’7’
would have been [1.0,-1.0,1.0]. We felt this was a reasonable
estimation of the the net’s inherent bias for character ’7’.

The estimation of the net’s inherent bias did not change
any of its parameters. So, no training took place. However,
for lack of a better term, the set of characters used to es-
tablish the desired outputs will be referred to as a ’training’
set, whether or not they were subsequently used for actual
training.

All sets of experiments were run 5 times each, on multi-
ple training sets of 1, 5 , 10, 20, 40, 80 & 160 samples per
class, using different training, validation and testing sets for
each run. In each run with training, the net was allowed to
train for 400 epochs, although it would converge well before
that. The version of the net corresponding to the epoch that
performed best on a validation set of 100 samples per class
(i.e. 1,000 characters) was then given a new set of 100 sam-
ples per class to categorize. Unless otherwise stated, results
shown will be the average accuracies obtained on these test-
ing sets of 1,000 characters for the 5 runs performed with
each training set size.

Results

Initially, we examine the consequences of relying upon a
net’s inherent bias without any training. The results are
shown in Figure 2, where we examine 3 separate cases.

The first case is a benchmark case, which is a randomly
initialized net whose inherent bias is ignored. As expected,
without any training, its performance is no better than ran-
dom guessing.

The second case is a net with randomly initialized
weights, but whose inherent bias is taken into account. Here,
it may be seen, that the net’s average accuracy, though not at
the level of practical usefulness, is far better than random.

 0

 20

 40

 60

 80

 100

 1 10 100

%
 A

cc
ur

ac
y

Samples per Class (log scale)

Average Accuracies With No Training

Using Inherent Bias and Knowledge Transfer
Using Inherent Bias and Random Initialization

Using ONLY Random Initialization

Figure 2: Average accuracies in discrimination amongst the
characters ’0’-’9’, for a net with random initialization and
ignoring its inherent bias, a net with random initialization
using its inherent bias and a net employing knowledge trans-
fer along with its inherent bias. The x-axis shows the sam-
ples per class used to estimate the nets’ inherent bias. For
the first net, this is meaningless other than to ensure average
accuracy comparisons all involve the same test sets.

The third case is a net, which has been biased by learning
its internal parameters by training for a related set of tasks
and whose internal biases were taken into account. This net
has a level of accuracy that is beginning to approach that
needed for practical purposes.

It should be reiterated that use of the term ’training set’
when describing a neural net that uses its inherent bias with-
out training means that this set was used to help determine
the internal bias of the net for each class. However, none
of the parameters of the net were adjusted in so doing. The
’training’ set was used to determine the net’s existing be-
havior, not to train it for a specific, desired behavior. This is
what is meant by ’learning the net’.

Figure 3 shows the minimum, average and maximum ac-
curacies we obtained over 5 test sets for the experiment
shown in Figure 2 by a line marked with triangles (i.e. the
use of inherent bias and knowledge transfer without task-
specific training).

In any realistic experiment, a neural net would be allowed
to train. So, we next allowed the randomly initialized neural
net, which did not make use of its inherent bias to train for
400 epochs. Then, we found the version of the net which had
the highest accuracy on its validation set and found its accu-
racy on a new testing set. In Figure 4, we compare the per-
formance of this net to a net which relied solely upon knowl-
edge transfer and its inherent bias to discriminate among the
images in the test set.

The most notable feature of Figure 4 is that when the
training set has only 1 sample per class, using only knowl-
edge transfer and the net’s inherent bias without any task
specific training, provides better accuracy than using only

48

 50

 55

 60

 65

 70

 75

 80

 1 10 100

%
 A

cc
ur

ac
y

Samples per Class (log scale)

Accuracies Without Training Using ONLY Inherent Bias and Knowledge Transfer

Max
Avg
Min

Figure 3: Minimum, Average and Maximum accuracies
achieved for a neural net employing knowledge transfer
along with its inherent bias to discriminate among charac-
ters ’0’-’9’.

 40

 50

 60

 70

 80

 90

 100

 1 10 100

%
 A

cc
ur

ac
y

Samples per Class (log scale)

Average Accuracies

Training (Full Net) NOT Using Inherent Bias and NOT Using Knowledge Transfer
Using Inherent Bias with Knowledge Transfer and NO Training

Figure 4: Accuracies achieved for a neural net employing
knowledge transfer along with its inherent bias, but without
training to discriminate among characters ’0’-’9’ vs. a neu-
ral net, which was trained from scratch and did not make use
of either its inherent bias or knowledge transfer.

 50

 60

 70

 80

 90

 100

 1 10 100

%
 A

cc
ur

ac
y

Samples per Class (log scale)

Average Accuracies

Training (only Output Layer) Using Inherent Bias and Knowledge Transfer
Training (Full Net) NOT Using Inherent Bias and NOT Using Knowledge Transfer

Figure 5: Accuracies achieved for a neural net employing
knowledge transfer along with its inherent bias, and with
training only the output layer (F6) to discriminate among
characters ’0’-’9’ vs. a neural net, which was trained from
scratch and did not make use of either its inherent bias or
knowledge transfer. The output layer contains only 5.7% of
the net’s free parameters.

training. However, when the net is allowed to train, it does
not need many samples to surpass a net that relies purely on
knowledge transfer and its inherent bias and does not train.

Next, we decided to use a net’s inherent bias and knowl-
edge transfer, in conjunction with actively training it for the
new tasks. In order to minimize catastrophic forgetting (i.e.
losing the ability to perform previously acquired tasks) we
only allowed the top layer of the net (i.e. F6 - the output
layer shown in Figure 1) to train. The results of this are
shown in Figure 5. In the future, we plan to investigate the
degree to which our technique is prone to catastrophic for-
getting and ways in which catastrophic forgetting may be
minimized.

Here it can be seen that the advantage of using knowl-
edge transfer in conjunction with the net’s inherent bias is
more pronounced and longer lasting than before. When the
pure training technique does start outperforming, it requires
a larger training set and the improvement is less pronounced.
One additional difference, which is not apparent in Figure 5,
is that by only training the top layer of the net, we are only
training about 5.7% of the net’s parameters.

The relative behavior of these two techniques seems anal-
ogous to the way an adult achieves proficiency in a new lan-
guage far more quickly than a newborn, however, over time
the adult will have an accent, but the newborn will not.

Finally, one last set of experiments was performed,
wherein the entire prior trained net trained without reinitial-
ization of any weights. Its performance is compared with a
net that was trained from scratch in Figure 6.

Here, with extra capacity, the previously trained net main-
tains its advantage over training from scratch for slightly
longer and eventually shows the same asymptotic behavior

49

 50

 60

 70

 80

 90

 100

 1 10 100

%
 A

cc
ur

ac
y

Samples per Class (log scale)

Average Accuracies

Training (Full Net) Using Inherent Bias and Knowledge Transfer
Training (Full Net) NOT Using Inherent Bias and NOT Using Knowledge Transfer

Figure 6: Average accuracies achieved in classifying the
characters ’0’-’9’ for a ’pure transfer with full training’
learning method and a ’pure training’ learning method

as the training sets become larger.

Conclusions

The results shown are an initial attempt to use a neural net’s
inherent bias to master a set of tasks. This technique works
best when used in conjunction with knowledge transfer tech-
niques. These advantages are greatest with very small train-
ing sets. We would expect the benefits to become more ap-
parent for nets that have more knowledge to transfer and
that are required to discriminate among a larger number of
classes.

Most interestingly, these results hint at the potential for
learning new tasks without any additional training. Perhaps,
if the previously learned set of characters were larger, had a
different distribution of features or were guided to a better
internal representation it would be possible to achieve near
usable accuracies for new characters based purely upon the
net’s inherent responses to them.

Future work encompasses exploring ways of more accu-
rately characterizing the net’s inherent biases, training and
designing the net to develop a more robust internal repre-
sentation, along with learning the probability distribution of
the internal distribution of learned classes to help character-
ize and learn new classes.

Additionally, preliminary experiments indicate that when
a randomly initialized net is trained according to its inherent
bias, its asymptotic accuracy is less than that of a randomly
initialized net trained to have each output node responding
to a single input class. This implies that some target outputs
are superior to others. Future experiments will be directed
towards finding productive ways to make use of this fact.

The potential for using this technique for sequential learn-
ing with either minimal or no catastrophic forgetting needs
to be explored, along with the possibility of designing a net
that knows when to train itself. A net which sees an in-
put unlike any it has seen before, as judged by the output,

possibly could remember the unusual output and recognize
when it encounters something sufficiently similar. The re-
sults we’ve obtained using knowledge transfer in conjunc-
tion with a net’s inherent bias and no training (cf Figure 2)
are very promising in this regard.

Acknowledgements

This research was supported by the Center for Defense Sys-
tems Research and NSF Grant CNS-0454189.The views ex-
pressed here are those of the authors and should not be in-
terpreted as representing official policies or endorsements of
these agencies.

References

Baxter, J., and Bartlett, P. 1998. The canonical distor-
tion measure in feature space and 1-NN classification. In
Advances in Neural Information Processing Systems, vol-
ume 10, 245–251.
Baxter, J. 2000. A model of inductive bias learning. Jour-
nal of Artificial Intelligence Research 12:149–198.
Bromley, J.; Guyon, I.; LeCun, Y.; Sackinger, E.; and Shah,
R. 1993. Signature verification using a siamese time delay
neural network. In Advances in Neural Information Pro-
cessing Systems, volume 6. Morgan Kaufmann.
Caruana, R. 1997a. Multitask learning. Machine Learning
28(1):41–75.
Caruana, R. 1997b. Multitask Learning. Ph.D. Dissertation
in Computer Science, Carnegie-Mellon University.
Chopra, S.; Hadsell, R.; and LeCun, Y. 2005. Learn-
ing a similarity metric discriminatively, with application to
face verification. In Proc. of Computer Vision and Pattern
Recognition Conference. IEEE Press.
LeCun, Y.; Haffner, P.; Bottou, L.; and Bengio, Y. 1999.
Object recognition with gradient-based learning. In Shape,
Contour and Grouping in Computer Vision, 319–346.
Springer.
Pratt, L. Y. 1993. Discriminability-based transfer between
neural networks. In Advances in Neural Information Pro-
cessing Systems, volume 5, 204–211. Morgan Kaufmann,
San Mateo, CA.
Schultz, T., and Rivest, F. 2000. Knowledge-based cas-
cade corellation. In Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks 2000,
volume 5, V641–V646.
Silver, D., and Mercer, R. 1996. The parallel transfer of
task knowledge using dynamic learning rates based on a
measure of relatedness. Connection Science Special Issue:
Transfer in Inductive Systems 8(2):277–294.
Thrun, S. 1996. Is learning the n-th thing any easier than
learning the first? In Advances in Neural Information Pro-
cessing Systems, volume 8, 640–646.

50

