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Abstract1

This study evaluates the robustness of established 
computational indices used to assess text relatedness in user-
language. The original User-Language Paraphrase Corpus 
(ULPC) was compared to a corrected version, in which each 
paraphrase was corrected for typographical and grammatical 
errors. Error correction significantly affected values for each 
of five computational indices, indicating greater similarity of 
the target sentence to the corrected paraphrase than to the 
original paraphrase. Moreover, misspelled target words 
accounted for a large proportion of the differences. This 
study also evaluated potential effects on correlations 
between computational indices and human ratings of 
paraphrases. The corrections did not yield assessments that 
were any more or less comparable to trained human raters 
than were the original paraphrases containing typographical 
or grammatical errors. The results suggest that although 
correcting for errors may optimize certain computational 
indices, the corrections are not necessary for comparing the 
indices to expert ratings. 

Introduction  
Intelligent Tutoring Systems (ITSs) are computerized tools 
that apply systematic procedures for enhancing learning 
(e.g., Aleven and Koedinger 2002; Gertner and VanLehn 
2000). These systems engage with a user in one-on-one 
tutoring, an effective means of promoting active 
knowledge building supplemental to textbooks and 
conventional classroom environments (Bloom 1984; 
Corbett 2001). A subgroup of ITSs also employ elements 
of conversational dialogue that use computational 
linguistic algorithms to translate and respond to natural 
language input from the user by connecting the appraised 
text to particular feedback actions. Thus, the efficacy of an 
ITS relies on the supporting algorithmic architecture that 
allows the system to assess learners’ input and adaptively 
respond, so that the ITS proficiently scaffolds instruction 
for the learner (Rus et al. 2008 [a]). The accuracy of the 
ITS feedback response to the student essentially depends 
on the precision of its underlying Natural Language 
Processing (NLP) system (McCarthy et al. 2007). 
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 The last two decades have seen major advances in the 
NLP technologies that provide the backbone for ITSs 
(Jurafsky and Martin 2008). Among recent developments 
are text relatedness metrics such as Latent Semantic 
Analysis (LSA: Landauer et al. 2007), overlap indices 
(McNamara, Boonthum, et al. 2007), and entailment 
algorithms (McCarthy et al. 2007; Rus et al. 2008 [b]). 
Many of these indices are designed to evaluate natural 
language input (e.g., iSTART: McNamara, Levinstein, and 
Boonthum 2004).  

The main focus of many of these tools and indices has 
been to evaluate edited, polished texts, for which they have 
met with considerable success. By contrast, research on the 
computational assessment of textual relatedness in ITS 
user-language is relatively sparse. Thus, the focus of this 
study is on natural user-language in the context of an ITS. 

User-language is defined here as the natural raw input of 
a user interacting with an ITS. The challenge of evaluating 
these short, ill-formed sentences can be daunting 
(McCarthy and McNamara 2008). One source of problems 
in their evaluation, and the main focus of the current 
research, is user typographical errors. It is unrealistic to 
presuppose that students using ITSs will write or type 
flawlessly. In practice, student input has a high rate of 
misspellings, typographical mistakes, and dubious 
syntactic choices. Furthermore, students sometimes enter 
complaints (e.g., I don’t want to do this), gibberish (e.g., 
mustard is playing golf), or random keying (e.g., 
awerijasdfhy). Suffice it to say, such users are more likely 
to produce statements that are neither grammatically nor 
typographically correct. Conventional text relatedness tools 
may have limited accommodation for such issues. For 
instance, the general approach for assessing a misspelled 
word is to label it as a rare word that is substantially 
different from its correct form. When this occurs, similarity 
scores are negatively affected, leading to unhelpful 
feedback based on spelling rather than understanding of 
key concepts (McCarthy et al. 2007). These consequences 
are of primary concern, because many interventions have 
been shown to be of greatest benefit for low domain 
knowledge learners, who make more of these types of 
errors (McNamara 2004; VanLehn et al. 2007).  

The present research focuses on characterizing and 
evaluating the User-Language Paraphrase Corpus (ULPC; 
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McCarthy and McNamara 2008), according to the types of 
errors commonly found in typed natural user-language. 
Our goal is to appraise the robustness of computational 
indices that guide the feedback in ITSs, and to assess 
whether these indices’ association to trained human tutors 
is affected by typographical and grammatical input errors.  

 
Corpus 
The ULPC corpus comprises 1998 target-sentence/student 
response text pairs, collected in the context of a 
paraphrase-training component of iSTART (McNamara et 
al., 2004). iSTART is an ITS designed to improve 
students’ ability to use reading strategies, one of which is 
paraphrasing. As such, this corpus comprises high school 
students’ attempts to paraphrase target sentences. The 
ULPC corpus provides human ratings of the paraphrases as 
well as computational measures of relatedness that 
compare target sentence to the student paraphrase (see 
McCarthy and McNamara 2008). 

 
Error Assessment 
Two trained expert coders identified and categorized the 
errors in a subset of the ULPC corpus, and one of the raters 
completed this procedure for the full corpus. Inter-rater 
agreement was assessed for the subset of the data (i.e., 
10%; n = 200). Cohen’s Kappa for overall error 
identification was � = .70. Judgments were based on 
validated models of grammaticality (e.g., Foster and Vogel 
2004; Schneider and McCoy 1998). Each error was labeled 
according to its type and the error was corrected. The 
following revisions were made such that the corrected 
version preserved the original intent of the paraphrase to 
the best extent possible. 
 

1. Spelling – Internal (� = .770, n = 665): A 
misspelled word corresponding to a word in the target 
sentence. 
2. Spelling – External (� = .679, n = 386): A 
misspelled word that is not similar to a word in the 
target sentence was replaced by a word similar in 
spelling and contextually appropriate. 
3. Capitalization (� = .835, n = 1157): A word that 
ought to begin with a capital letter, e.g., the first word 
in the sentence, or a word that ought not to be 
capitalized. In some cases user paraphrases were 
entered in all caps. The frequency for such cases was 
coded to indicate the number of words in the sentence, 
and not every single character. 
4. Agreement (� = .683, n = 367): If the word is a 
noun, pronoun, or verb, it can be exchanged by the 
same word with a different value for an agreement 
feature, e.g. first person plural are with singular 
person am, singular dog with dogs. This error type 
also includes corrections of verb forms and auxiliaries. 
5. Spacing (� = .804, n = 174): Inappropriate spacing 

is corrected by removing, adding, or moving a space. 
As noted in McCarthy and McNamara (2008), the 
corpus was originally evaluated by replacing double 
spaces between words with single spaces. This was 
required by some computational measures to assess 
the paraphrases without error. Thus, the true frequency 
of this type of mistake is not represented. 
6. Punctuation (� = .483, n = 344): Inappropriate use 
of commas, periods, or other punctuation is corrected 
by removing, adding, or moving the punctuation mark. 
As noted in McCarthy and McNamara (2008), a 
period was added to the end of the original input if one 
did not exist previously. This was the second of two 
necessary changes to the original data. 
7. Article agreement (� = .585, n = 75): An article not 
in agreement with its noun is replaced, e.g. a elephant 
with an elephant. 
8. Preposition agreement (ns, n = 53): A preposition 
may be replaced by any other more appropriate 
preposition, e.g. for with of. 
9. Determiner agreement (� = .290, n = 59): A 
determiner may be replaced by any other more 
appropriate determiner. For the purposes of this study, 
determiner is meant as a noun modifier that expresses 
the reference of a noun or noun phrase and is not an 
article, e.g., this, that, these, those, which, etc. 
10. Conjunction agreement (ns, n = 43): If the word is 
a conjunction it may be replaced by another 
conjunction, e.g., then can be replaced by and in a 
sentence not beginning with once. 
11. Possessive agreement (� = .886, n = 71): A 
separate case error involving the incorrect use of the 
genitive case on pronouns and nouns, e.g., the 
possessive heart’s instead of the plural hearts. 
12. Extraneous word (ns, n = 72): Error corrections 
involving the deletion of a word, either because it was 
repeated or unnecessary; includes deletion of garbage 
input. 
13. Omission (� = .433, n = 98): Error corrections 
involving the addition of a word if it was needed and 
could be implied from the context of the sentence, 
restricted to content words only. Adding missing 
articles or auxiliaries are included within their own 
agreement categories. 
14. Substitution (ns, n = 60): An erroneous content 
word is replaced by a word more suitable to the 
context of the sentence. Replacement of two similarly 
spelled words, e.g., raise and rise, are categorized as a 
spelling error if the word was in the target sentence. 
 
It is worth noting that some error types did not reach 

significant agreement levels (preposition agreement, 
conjunction agreement, extraneous word, substitution). 
This lack of agreement could be attributable to the notion 
that there is often more than one correction possible for a 
given error (Foster and Vogel 2004). That is, two raters 

279



may correct the same error with different solutions that 
likely express the same meaning. Let us take conjunction 
agreement as an example, which was not significantly 
agreed upon. We observed that this disagreement owed in 
part to one coder correcting such an error by substituting a 
different conjunction, while the other coder corrected the 
same error by replacing the conjunction with a semicolon. 
We anticipated some of these disparities and attempted to 
correct them by extended training. Overall however, we 
contend that since overall agreement is established, we can 
be relatively confident that a single rater’s evaluation of 
the data is consistent and valid, even for those error types 
that did not reach significant agreement. 
 
Computational Measures 
Each of the computational indices we examined in the 
present study has been validated as a method of 
representing similarity between two bodies of text. Many 
of them employ overlap techniques, and therefore rely 
heavily on individual words and stems to be well-formed. 
Thus, we expected that the corresponding indices of the 
user-language paraphrases would be optimized when 
reanalyzed in a corrected form. For a detailed explanation 
of these indices, see McCarthy and McNamara (2008). 
Latent Semantic Analysis. LSA as a local measure 
calculates a vector cosine value between adjacent pairs of 
sentences to represent their degree of semantic overlap 
(values range from 0 to 1). Because this technique is based 
on a large corpus of well-formed text, the values of the 
revised paraphrases should increase in comparison to their 
ill-formed counterparts. Also, spelling errors, which 
account for a large proportion of the total observed errors 
(n = 665), should contribute largely to this improvement. 
Overlap indices. Stem-overlap judges two sentences as 
overlapping if a common stem of a content word occurs in 
both sentences (McNamara et al. 2006). The exact measure 
in this corpus is binary, so it is difficult to predict the 
degree to which these values would change.  
Minimal Edit Distances (MED). MED indices assess 
differences between any two sentences in terms of the 
words and the position of the words in their respective 
sentences. The final MED value gives a range of 0 to 1, 0 
indicating greater similarity and 1 indicating greater 
difference. Although we can expect some change in the 
values, this change would not be large, because syntax 
errors were less frequent and we aimed to preserve 
sentences as close to their original structure as possible.  
Type Token Ratio. TTR is a shallow NLP approach, 
where each unique word in a text is a word type, and how 
frequently it occurs is a token (Graesser et al. 2004). In the 
ULPC version, TTR counts only for content words. TTR is 
derived by dividing the number of unique words (types) by 
the number of total words (tokens). The 0 to 1 ratio in 
comparing paraphrases to target sentences indicates that a 
lower value represents greater similarity. We might expect 

this measure to see the largest improvement, because 
identifying the words that co-occur is likely to yield a 
higher number of matched tokens, and thus a lower value. 
The Entailer. Entailer indices are based on a lexico-
syntactic approach to sentence similarity and are used to 
evaluate the degree to which one text is entailed by another 
text (Rus et al. 2008). The scores are the weighted sum of 
one lexical and one syntactic component. These 
components utilize the Charniak probabilistic parser 
(2000), which is robust because it is trained on a large 
body of data where no precise distinction is made between 
the grammatical and the ungrammatical. Therefore, one 
might expect this measure to be more robust to ill-formed 
input. However, it is quite possible that the range of errors 
in the present corpus is not represented in the data in which 
the parser was trained. So we expect that this measure will 
be improved, but to what degree is uncertain.  

One primary goal in evaluating the User-language 
Paraphrase Corpus is so that ITSs may provide users with 
assessment and feedback comparable to human raters. For 
the second round of hypotheses in this study, the 
computational measures are to be compared to the human 
gold standard paraphrase dimensions. The degree to which 
the computational measures of the original paraphrase 
corpus correlate with the human dimensions varies from 
weak to strong. Specific predictions on how these 
correlations might improve are difficult to formulate, but in 
general we predicted that computational measures that 
currently exhibit strong correlations with the human coded 
dimensions would improve. However, we cannot predict 
that the improvements would be large because the 
computational measures may only represent a proportion 
of overall quality as humans would rate them.  

Results 
First, we examined the effect of typographical and 
grammatical errors on computational measures of textual 
relatedness. Paired-samples t-tests were conducted to 
evaluate the impact of error correction on five 
computational measures provided in the ULPC (LSA, Stem 
overlap, MED, TTR, and Entailer). 

Table 1: Computational index means of original and edited 
user-language in the complete ULPC 

  

Original 
�(�) 

Corrected 
�(�) r t part. �2

LSA .642 (.271) .694 (.266) .915 -20.828 .178 
Stem  .915 (.274) .921 (.268) .942 -2.774 .004 
TTR  .747 (.125) .720 (.129) .929 -25.094 .240 
MED .746 (.237) .721 (.251) .959 -15.813 .111 
Entailer .442 (.222) .494 (.232) .931 27.017 .268 
N = 1998; p < .01 for all    

280



As predicted, all of the measures improved significantly 
as a function of correcting typographical and grammatical 
errors. Note that some indices increased in value whereas 
others decreased. String-matching approaches (i.e., TTR, 
MED) emphasize differences rather than similarity, and 
thus the lower MED and TTR values indicate greater 
similarity to the target sentence. By contrast, greater 
similarity is indicated by higher values for LSA, Stem 
overlap, and Entailment. However, somewhat contrary to 
our predictions, Entailer values showed the most 
significant change, followed by TTR, LSA, MED, and 
Stem overlap. 

The second goal of our study was to evaluate which 
amongst our error correction rules effected these changes 
in values. We conducted linear regressions of each index 
for two-thirds of the data, in which the original and 
corrected version values were regressed onto error type. 
Because the indices rely on matching principles and a large 
proportion of our corrections were typographical in nature, 
we expected spelling to contribute most. Table 2 indicates  

that several of the error categories predicted a significant 
and large variance of these difference scores. 

Of the 14 error types, and as predicted, Spelling-Internal 
was the most influential, accounting for nearly 70% of the 
predictive power for the MED regression model and over 
90% for each of the three other measures. Assessments of 
Stem-overlap could not be appropriately evaluated, 
because the value changed for only 13 of the 1332 cases. 
This finding (or lack thereof) is consistent with the 
measure itself, given that stem-overlap assigns a value of 0 
or 1 by judging two sentences as overlapping if a common 
stem of a content word appears in both sentences 
(McNamara et al. 2006). When comparing a paraphrase to 
its target sentence, chances are high that at least one stem 
will overlap. Therefore, we would not expect these values 
to change because we can be confident that the revised 
scores would be repeatedly equal to the original scores. 

Cross-validation. We cross-validated the regression 
models by generating predicted difference scores for the 
remaining 33% of the cases. Difference scores were 

        
Table 2: Effects of Error Type on Computational Indices of Text Relatedness       
Index Predictor (Error Type) Adjusted R2 �R2 F Change ß b (SEb) P 
LSA Spelling (Internal) 0.35 0.35 716.141 -0.576 -.081 (.003) <.001 
F(4, 1362) = 216.42* Spelling (External) 0.384 0.035 75.688 -0.174 -.034 (.004) <.001 
  Punctuation 0.389 0.005 11.643 -0.077 -.017 (.005) <.001 
  Spacing 0.393 0.004 9.722 -0.022 -.022 (.007) 0.002 
MED Spelling (Internal) 0.166 0.166 265.462 0.392 .037 (.002) <.001 
F(9, 1321) = 47.41* Spacing 0.193 0.028 45.928 0.173 .038 (.005) <.001 
  Omission 0.19 0.02 34.421 0.128 .030 (.006) <.001 
  Subject-Verb Agreement 0.221 0.009 14.816 0.085 .012 (.003) <.001 
  Spelling (External) 0.226 0.006 10.02 -0.08 -.011 (.003) 0.001 
  Capitalization 0.23 0.004 7.748 0.067 .003 (.001) 0.006 
  Article Agreement 0.234 0.004 7.185 0.06 -.022 (.009) 0.013 
  Preposition Agreement 0.237 0.004 6.289 0.06 .029 (.012) 0.012 
  Extraneous Word 0.239 0.003 4.697 0.052 .011 (.005) 0.03 
TTR Spelling (Internal) 0.459 0.459 1129.876 0.664 .043 (.001) <.001 
F(6, 1324) = 222.33* Spacing 0.475 0.017 42.282 0.131 .020 (.003) <.001 
  Subject-Verb Agreement 0.491 0.016 41.003 0.122 .012 (.002) <.001 
  Possessive Agreement 0.496 0.005 14.458 0.075 .019 (.005) <.001 
  Article Agreement 0.498 0.002 6.244 0.049 .012 (.005) 0.012 
  Spelling (External) 0.5 0.002 5.707 0.047 .004 (.002) 0.017 
Entailer Spelling (Internal) 0.451 0.451 1092.418 0.655 .074 (.002) <.001 
F (8, 1322) =158.25* Spacing 0.469 0.019 47.67 0.142 .038 (.005) <.001 
  Subject-Verb Agreement 0.475 0.007 16.494 0.072 .012 (.003) <.001 
  Article Agreement 0.479 0.004 9.53 0.061 .027 (.009) <.002 
  Capitalization 0.481 0.003 6.873 0.05 .003 (.001) 0.012 
  Omission 0.483 0.003 6.473 0.05 .014 (.006) 0.012 
  Punctuation 0.485 0.002 5.132 0.04 .007 (.004) 0.041 
 Determiner Agreement 0.486 0.002 4.099 0.04 .022 (.011) 0.043 
Note: * p < .001       
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computed by using the coefficients in the regression 
equations by the true values for each case. These predicted 
scores were then correlated with the actual calculated 
differences between the original and revised paraphrases. 
There was a significant correlation between predicted and 
verified values of the validation set for each of the four 
computational measures: LSA, r (666) = .625, p < .001; 
MED, Pearson r (666) = .393, p < .001; TTR, Pearson r 
(666) = .695, p < .001; Entailer, Pearson r (666) = .675, p < 
.001. Our results indicate that the regression models 
reliably predict differences in the computational measures. 
Human ratings. The second purpose of this study was to 
assess whether changed computational values improved the 
ability to predict human gold standards of 10 paraphrase 
dimensions. Provided in the ULPC (McCarthy and 
McNamara 2008), correlations assessed the degree to 
which the computational approaches correlated with 
human raters. Fisher’s r to z transformations were 
performed to identify the significant differences between 
the correlations for the corrected and original paraphrases. 
Two dimensions, garbage and frozen expressions, were 
excluded from analysis because neither is independently 
applicable as assessments of text relatedness. 

As shown in Table 3, several of the correlations between 
the computational measures and the human evaluations 
saw non-significant improvement. The only significant 
difference between any two correlations were LSA to 
Lexical Similarity (z = 2.37, p = .018, 2-tailed) and TTR to 
Lexical Similarity (z = -2.44, p = .014, 2-tailed). Taken 
together, these results indicate that although correcting ill-
formed user input yields stronger computational scores, the 
changes do not significantly improve the paraphrase 
scores’ comparisons to human ratings. 

Discussion 
In this study, 1998 user-language paraphrases were 
corrected for errors, to examine potential effects of errors 
on computational measures of text relatedness. Our results 
suggest that computational measures generally improve  

 
when errors are corrected, therefore also improving their 
potential application to ITSs. Our results demonstrate that 
misspelled words that are from the target sentence (i.e., 
internal spellings) had the largest influence in the 
improvements, presumably because the algorithms’ string 
matching principals are not tuned for minor spelling errors 
of the type examined here. Spacing and agreement errors 
also consistently affected the indices, although their 
contribution was smaller. The largest changes were 
observed for the Entailer, presumably because the lexico- 
syntactic index was improved by both spelling and 
grammatical corrections. Moreover, the results seem to 
reflect the sensitivity of each measure to error correction. 
 A second finding of this research is that correcting for 
errors does not significantly increase correlations between 
computational measures and human ratings of paraphrases. 
Only the dimension Lexical Similarity saw a significant 
difference, the effect of internal spellings appearing to 
account for this change. This result supports the construct 
underlying this dimension, because correcting a misspelled 
word would make it easier for a human rater to identify it, 
which would facilitate the rater’s ability to determine word 
commonality of the text pair.  

Plagiarism detection and automated essay rating are two 
related areas of study that could potentially draw 
implications from these results. For instance, FindFraud 
(Xi et al. 2003) is a compression-based software that 
detects similarity between documents, but does not use 
pre-processing. We speculate that a similar study on 
plagiarism detection may yield similar results. However, 
most essays and academic documents that would be 
relevant for such a system would probably have been 
doctored in a word processor prior to assessment. 

Overall, the majority of differences between the indices 
and human ratings were not significant, indicating that the 
computational measures for the original paraphrases are 
sufficient to assess their relationship to human rated 
dimensions of paraphrase. For that reason, the laborious 
process of identifying and correcting erroneous input may 
be unnecessary in future studies of natural user-language 

Table 3: Original vs. Corrected Paraphrases on Correlations between Computational Indices and Human-Rated Dimensions 

Dependent Variable LSA mean Stem TTR MED Entailer 
Irrelevant -0.473 (-0.438)* -0.502 (-0.497)* 0.350 (0.326)* 0.205 (0.198)* -0.390 (-0.361)* 
Elaboration -0.170 (-0.175)* 0.027 (0.022) 0.176 (0.178)* 0.150 (0.145)* -0.219 (-0.213)* 
Semantic Completeness 0.570 (0.555)* 0.457 (0.461)* -0.538 (-0.529)* 0.396 (0.397)* 0.434 (0.430)* 
Entailment 0.548 (0.535)* 0.483 (0.49)* -0.507 (-0.497)* -0.359 (-0.360)* 0.429 (0.427)* 
Syntactic Similarity 0.475 (0.465)* 0.316 (0.325)* -0.540 (-0.513)* -0.750 (-0.739)* 0.487 (0.465)* 
Lexical Similarity 0.829 (0.804)** 0.608 (0.614)* -0.773 (-0.740)** -0.592 (-0.578)* 0.731 (0.710)* 
Paraphrase Quality 0.422 (0.41)* 0.421 (0.427)* -0.312 (-0.313)* -0.053 (-0.059) 0.245 (0.245)* 
Writing Quality 0.495 (0.498)* 0.534 (0.536)* -0.398 (-0.410)* -0.262 (-0.281)* 0.370 (0.392)* 
Note: All computational measures of original and edited paraphrases correlate at r >.9, p<.001  
Pearson r for original paraphrases appear in parentheses; N=1998 for all correlations; * p <.001  
** for Fisher's z to r transformation of significant differences, p<.05    
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paraphrase evaluation. In sum, preprocessing of natural 
user-language may not be necessary because the indices 
are just as comparable to human ratings despite the errors. 
Nonetheless, future research will examine the 
computational expense of correcting internal errors to 
assess whether feedback to users may change.  

In summary, the responsibility of interpreting a student’s 
input to respond appropriately falls upon NLP within ITSs. 
Inappropriate responses can affect users’ learning and 
motivation. Indeed, assessing user input to determine 
appropriate responses is essential to establish intelligent 
human-computer dialogue. Thus, established ITSs are 
expected to be sufficiently robust. However, contemporary 
NLP systems are far from perfect, and each ITS system 
may employ different types of preprocessing techniques 
along with its own unique algorithmic architecture. While 
much work in this area still lies ahead, this study is a major 
step forward in evaluating the potential sturdiness of ITSs 
that evaluate user-language and developing the field of 
natural language assessment and understanding. 
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