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Introduction

Abductive diagnosis (Brusoni et al. 1998) consists in finding
explanations for given observations by using rules of infer-
ence based on the causal dependences of the system. Time
is important for abductive diagnosis (Hamscher and Davis
1984), (Hamscher, Console, and Kleer 1992). There are
few works in litterature handling temporal diagnosis (Kautz
1999). They differ in the expressiveness of the temporal
knowledge.

We propose a new approach for Temporal Diagnosis
Problems. This approach is an extension of Bouzid and
Ligeza’s method for temporal diagnosis problems. In this
latter work, the authors define a Temporal Causal Graph
(TCG) where time delays are expressed as temporal instants.
We extend the TCG by including two quantitative relations
in order to handle temporal intervals. We call ExTCG this
new model. Solving a temporal diagnosis problem repre-
sented by the ExTCG consists of finding all possible expla-
nations. It is performed using a backtrack search algorithm.

Extended Temporal Causal Graph

The language of temporal representation

We suppose that we are in a frame where time is linear and
discrete. The ontology of time considers both the instant
and the interval. First, we extend the TCG by introducing
the notion of episode.

Definition 1. An episode is defined by a pair (s, i) where s
is a symptom. i is an interval or an instant. A symptom rep-
resents some phenomenon reflecting an occurence of partial
characteristic of the system.

We are interested in the truth value of s over time. An
episode can have dates of beginning noted start date or of
end noted end date . The diagnosis is based on the analysis
of several observations spaced out in a unpredictable way in
time.

Relations

We keep the causal relation and the logical relations
({AND, OR, NOT }) defined in (Bouzid and Ligeza 2000).
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Temporal relations. RT = {rql(∂t) | rql ∈ RQL}, where
∂t is a positif integer indicating the delay and RQL the
set of two temporal relations (after end, after start).
after end represents that the effect is after the end of the
cause. after start represents that the effect is after the
beginning of the cause. These relations are transformed
into equations and inequalities allowing to refer to an in-
stant or to locate two episodes one to another. In a more
precise way; we have e, c1 and c2 three episodes. If the
relation is after start with a delay d1 between c1 and
e then start time(c1 ) = start time(e) − d1 . If the rela-
tion is after end with a delay d2 between c2 and e then
end time(c2 ) = start time(e) − d2 .

Let us note by R the set of relations proposed in our ap-
proach. R = {(rt, rc) | rt ∈ RT , rc ∈ RC} where:
RC defines all the causal relations and RT defines all the
temporal relations.

Extension of a TCG

An extended temporal causal graph noted ExTCG is a TCG
where nodes are episodes, and edges are the relations de-
fined above.

Definition 2. An Extended Temporal Causal Graph
(ExTCG) is a structure G = (E, F, R), where:

• E : set of episodes.

• F = {(n, f, [n1, . . . , nk])} denotes the set of logical con-
nections such that f ∈ {AND, OR, NOT }, n1, . . . , nk

are the input nodes and n the output node.

• R : set of causal and temporal relations between
episodes.

Solving Method

A temporal diagnosis problem is defined by an ExTCG and
a set of observations.

Definition 3. A Temporal diagnostic problem P is defined
by an ExTCG and a set of observations OBS as follows:
{ExTCG, OBS = ((o1, io1

), . . . , (on, ion
))},

where the ExTCG represents the theoretical domain and
OBS the set of observations ok at the instants iok

.

Solving a Temporal Diagnostic Problem consists of find-
ing all the episodes explaining the given observations and
placing them in time.
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Definition 4. Let us consider a temporal diagnostic problem
P = {ExTCG, OBS}. A solution S to P is defined by a set
of pairs of initial nodes: {(e1, ie1

), . . . , (en, ien
)}, where iej

can be an interval or an instant, such that:
ExTCG ∪ S |= OBS and S is consistent.

To solve a temporal abductif diagnostic problem, we pro-
pose an algorithm of temporal propagation in the ExTCG,
in order to find all possible explanations. We proceed in the
following two steps.

Step 1 : Abduction and Propagation

For the sake of the presented approach abduction is consid-
ered as a backward search procedure.

It allows to generate all sets of explanations as well
as the equations and inequalites corresponding to tem-
poral information. A solution, noted sol is a couple
(explanation, {equations/inequalities}). Let us note
by Solsolve, all the solutions sol generated in this step.
Given an observation o, we visit the ExTCG using a depth-
first strategy, moving backward from o to non abductibles
episodes. In every step of abduction, we replace a node by
its possible cause. Every temporal relation is converted into
equation and inequality. In a more formal way :

• At abductive step k, o is an AND node, caused by
{c1, c2, . . . , cn} so : for each ci, we convert rt (rt tempo-
ral relation between ci and o) in equations and ineqalities,
and o is replaced by {c1, c2, . . . , cn}.

• At abductive step k, o is an OR node, caused by
{c1, c2, . . . , cn} so : we select one by one the causes of
o. For the number of causes, we duplicate the solution sol
for every ci, so we have one solci

by node ci. We replace
o by every cause ci and we do the same thing. Finally, we
add every solci

to Solsolve.

• At abductive step k, o is a NOT node, caused by c. The
steps are the same as for the link AND. Furthermore, it is
necessary to modify the truth value of c; if the truth value
of o is true (resp. false) then we set c to false (resp. true).

If in a step one node is not abductible, it is considered to be
explaining o. It will be added to the explanation correspond-
ing to sol. This step generates the set Solsolve.

Step 2 : Resolution

This step consists in solving equations and inequalities gen-
erated in the first step. The intention is to locate the explana-
tion temporally. We consider these equations and inequali-
ties as numeric temporal constraints. For this reason we use
Simple Temporal Problem (STP) (Planken, de Weerdt, and
van der Krogt 2008). To see how an STP can be used to find
the ansewer to our question, we first consider :

• the set of temporal variables V = {x1, . . . , x2n}
representing the start and the end of n episodes
(xi =start date or end date),

• the domain : N
+,

• and the set C of eqautions and inequalities.

Then we define the relation of precedence between two
episodes E1 and E2 as :

• start date(E2 )− start date(E1 ) ∈ [d , +∞[ and,

• start date(E2 )− end date(E1 ) ∈ [d , +∞[,

where d is a positif integer indicating the delay. We use
STP in order to verify the coherence of the given temporal
information and to solve equations/inequalities.

To solve the formed STPs we use the P3C algorihtm pre-
sented in (Planken, de Weerdt, and van der Krogt 2008).

Conclusion and Future Work

We have extended the TCG (Bouzid and Ligeza 2000) by in-
cluding two qualitative relations in order to manipulate time
intervals.

We have developed search algorithms for solving the
ExTCG. These algorithms consist in a backward search by
propagating temporal information. Temporal information is
considered as constraints. Thus, we formalize a set of con-
straints associated to each possible explanation as an STP.
To solve an STP we use the P3C algorithm.

One possible improvement to this work is to integrate
more powerfull models into the ExTCG in order to manipu-
late the causality as weights expressing preferences. These
models can be qualitative such as CP-nets (Boutilier et al.
2004) or quantitative such as c-semiring (BISTARELLI,
MONTANARI, and ROSSI 1997).
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1998. A spectrum of definitions for temporal model-based
diagnosis. Artificial Intelligence 102(1):39–79.

Hamscher, W., and Davis, R. 1984. Diagnosing circuit with
state : an inherently underconstrained problem. 142–147.
AAAI 84.

Hamscher, W.; Console, L.; and Kleer, J. D. 1992. Read-
ings in Model-Based Diagnosis.

Kautz, H. 1999. Temporal reasoning. MIT Encyclopedia
of Cognitive Science http://www.research.

Planken, L.; de Weerdt, M.; and van der Krogt, R. 2008.
P3c : A new algorithm for the simple temporal problem. In
ICAPS 2008 : Proceedings of the Eighteenth International
Conference on Automated Planning and Scheduling, 256–
263.

138




