
SlidesGen: Automatic Generation of Presentation Slides
for a Technical Paper Using Summarization

M. Sravanthi, C. Ravindranath Chowdary and P. Sreenivasa Kumar
Department of Computer Science and Engineering

Indian Institute of Technology Madras
Chennai, India 600 036.

{sravanti,chowdary and psk}@cse.iitm.ac.in

Abstract

Presentations are one of the most common and effective
ways of communicating the overview of a work to the
audience. Given a technical paper, automatic generation
of presentation slides reduces the effort of the presenter
and helps in creating a structured summary of the paper.
In this paper, we propose the framework of a novel sys-
tem that does this task. Any paper that has an abstract
and whose sections can be categorized under introduc-
tion, related work, model, experiments and conclusions
can be given as input. As documents in LATEX are rich
in structural and semantic information we used them as
input to our system. These documents are initially con-
verted to XML format. This XML file is parsed and
information in it is extracted. A query specific extrac-
tive summarizer has been used to generate slides. All
graphical elements from the paper are made well use of
by placing them at appropriate locations in the slides.
These slides are presented in the document order.

Introduction

Slides have been an effective and popular means of presen-
tation of information. In many conferences and meetings, a
presenter takes the aid of slides to present his work in a sys-
tematic way (pictorial). In recent years with the availability
of many software tools like Microsoft PowerPoint, Openof-
fice Presenter etc., for easy preparation of slides, their usage
has increased tremendously. But these tools help only in the
formatting of content (stylizing, bullet points etc), but not in
preparing the content itself. A user has to start from scratch
and it is a time consuming task. In this work, we propose
a tool that generates slides for the presentation with impor-
tant points and all necessary figures, tables and graphs from
a technical paper. As it is evident, such kind of a tool saves
time and reduces the effort by providing a basic presentation,
which can be further tuned/upgraded as final presentation.

Slides contain the summarized version of a technical re-
port. They contain the vital points of the report arranged
in a systematic way, including graphic elements like fig-
ures and tables for easy illustration of the idea. Given a
document, “Automatic generation of presentation slides” be-
comes a nontrivial task because of challenges like segmenta-

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion of document into multiple topics, summarizing content
of each topic and aligning these topics to one or more slides
and placing necessary graphical content like figures, graphs
and tables in appropriate slides at appropriate locations.

In this paper we concentrate on generating slides for re-
search papers that are in accordance with standards of con-
ference/journal proceedings. By and large, conference pa-
pers have an almost similar structure. They have an ab-
stract and the sections present in them can be broadly classi-
fied into presenting the introduction, the related work, actual
work (model), the experiments, the conclusions and the bib-
liography. Most of the times, the presenter preserves the
order of the paper in slides and each section is allotted one
or more slides. A slide has a title and contains some bul-
leted points which are important in that section. Observing
the similarity present between conference paper and human
written slides for the paper, we address the problem of au-
tomatic generation of presentation slides by exploiting the
structure of a conference paper. Here after we use terms
“conference paper”, “technical paper”, “document” and “re-
port” interchangeably.

Related Work

Very few papers directly address this problem of automatic
slide generation. Masao et al.(Masao & Koiti 1999) tried to
automatically generate a presentation from semantically an-
notated documents. The input documents are normal text
documents which are semi-automatically annotated with
GDA tagset1 to infer semantic relations between sentences.
The semantic relations include marking noun phrases and
verb phrases etc., grammatical relations like subject, verb
etc., thematic roles like agent, patient, recipient etc., or
rhetorical relations like cause, elaboration etc. Initially top-
ics of the document are identified and ranked. Highly ranked
topics are taken as slide headings. Relevant sentences to the
topics are extracted from documents and are processed to
prepare bullet points.

Shibata et al. in (Shibata & Kurohashi 2005) prepares
slides from raw text. Clauses and sentences are treated as
discourse units and several relations like contrast, list, ad-
ditive, topic-chaining, elaboration, cause, example etc., are
identified between them. Some clauses are identified as

1http://i-content.org/GDA/tagset.html

284

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

topic parts and others are treated as non-topic parts. These
extracted topic and non-topic parts are placed on the slides
based on the discourse structure detected. Some heuristic
rules have been proposed for generating slides from these
topic and non-topic parts. In (Yoshiaki, Masashi, & Kat-
sumi 2003; Miyamoto, Sakai, & Masuyama 2006), the au-
thors tried to analyze LATEX structure of technical document
to generate a set of slides.

Masum et al.(Masum, Ishizuka, & Islam 2005; Masum
& Ishizuka 2006) proposed a system called Auto Report to
Presentation (ARP) which prepares a text report with text
relevant to the users search query first and then a presen-
tation from the report. The query is disambiguated using
Wikipedia and a report for each sense of the query is pre-
pared. The query along with its senses is given to multiple
search engines and relevant web pages are retrieved from the
internet. Headings and text-chunks from the retrieved web
pages are extracted and the text-chunks are summarized. A
report is initialized to the headings and text chunks present
in the first link. Then contents of other documents are added
to this report if they are not similar to previously entered
contents. A presentation is built form this report by taking
a maximum of 5 lines from each head-text tuple and slides
for them are prepared. These 5 lines are randomly picked as
two lines from the top, one in the middle and two from the
end of text-chunk.

Though the approaches(Masao & Koiti 1999; Shibata &
Kurohashi 2005) presented above have been domain and
style independent, they are not language independent as
they require language specific parsers to identify the spec-
ified relations. Moreover the technical documents are differ-
ent from normal articles which are used as input in (Ma-
sum, Ishizuka, & Islam 2005; Masum & Ishizuka 2006;
Masao & Koiti 1999; Shibata & Kurohashi 2005). In (Ma-
sum, Ishizuka, & Islam 2005; Masum & Ishizuka 2006) sen-
tences are selected randomly for presentation from the re-
port, which may result in a incoherent text. In contrast to
above approaches, in this work we make use of the struc-
ture given by the author in the LATEX document and proceed
in a language and domain independent manner. We employ
a query specific text summarization system that generates a
coherent set of points by summarizing the text content under
a section/sub-section.

System Overview

Our system framework is as shown in Figure 1. Details of
each component are discussed in the following sections.

Pre-processing

Any technical document is normally divided into sections,
sub-sections, paragraphs etc. For a better structural sum-
mary we need to preserve as much structural information as
possible from the input document. There are many markup
languages like HTML, XML, etc., which can encode the
structural information of the document. LATEX is one such
document markup language that has been widely accepted
by the academic community to write a technical paper be-
cause of the quality of typesetting that can be achieved. It

Preprocessing
(Conversion to XML)

Slides
Generator

Post Processing
(Conversion to required output format)

Query Specific
Summarizer

Render Graphics

Input Document

XML Document

Selected Sentences

Presentation Slides

Section,
Keyphrase

Summary

Create
Slides

Slides Content

Figure 1: System Architecture

has a rich set of features (tags) to encode the information
related to the document structure and graphical elements
present in the document. So, we chose documents written
in LATEX format as input. These documents are converted
to XML using a publicly available LATEX to XML converter
called LaTeXML2. Appropriate converters can be used to
convert and extract the required information from any docu-
ment present in other formats like PDF, doc etc. This XML
file is used for further processing.

Configuration File Generation

Generally a technical paper contains sections that can be
broadly classified into introduction, related work, actual
model, experiments and conclusions. As each section has
different point of view and different information content and
writing style, they are treated differently in our system for
generation of slides. Initially as a first step, the sections are
categorized and then key phrases are extracted for some sec-
tions of the paper. These details are saved in a file called
“Configuration File”. Figure 2 presents the DTD of the con-
figuration file. The rules used for identifying them are as
follows.

If a section is one of the initial sections and title contains
words like “Introduction”, “Motivation”, “Background”,
“Problem Statement” etc., it is placed under “Introduction”
category. A section containing considerably large number
of <cite> </cite> tags or it’s title contains words like “Re-
lated Work”, “Literature Survey” etc. are categorized under
“Related Work” category. The sections that present the ac-
tual idea of the authors which solves the problem at hand
falls under model category. Sections not placed under any
of the remaining categories are placed under “Model” cate-
gory. If a section name contains words like “Experiments”,
“Evaluations” etc., they fall under “Experiments” category.
If a section has a title containing words like “Conclusions”,

2http://dlmf.nist.gov/LaTeXML/

285

<?xml encoding="UTF-8?>
<!DOCTYPE Configuration [
<!ELEMENT Configuration (Introduction, RelatedWork,
 Model, Experiments, Conclusions)>
<!ELEMENT Introduction (Sections)>
<!ELEMENT RelatedWork (Sections)>
<!ELEMENT Model (Sections, Keyphrases)>
<!ELEMENT Experiments (Sections, Keyphrases)>
<!ELEMENT Conclusions (Sections, Keyphrases)>
<!ELEMENT Sections (SectionNo*)
<!ELEMENT Keyphrases (Keyphrase*)
<!ELEMENT SectionNo (#PCDATA)>
<!ELEMENT Keyphrase (#PCDATA) >]>

Figure 2: DTD of Configuration File

“Future Work” etc., it is placed under “Conclusions” cate-
gory.

Extracting Key Phrases Generally most of the research
papers have associated key phrases. They help in catego-
rizing the content of the paper and contain important con-
cepts introduced in the paper. Mostly these key phrases are
related to the model and experimental sections. As these
sections are long and un-predictable in nature, we use these
key phrases in summarizing these sections. The extracted
summary contains important information relevant to the key
phrases. As key phrases indicate important information, the
sentences in the extracted summary are also important and
are put in slides.

The keywords at the beginning of the paper are added to
the model and experimental categories in the configuration
file. In addition to the keywords given in the paper, the titles
in sections present under model and experiments categories
are added as key phrases to the corresponding categories.
For conclusions, the title of the paper and a set of phrases
like “concludes”, “present”, “results”, “prove” etc., as de-
tailed in Section are used as key phrases. A user can also
edit or provide this generated configuration file to customize
the presentation as per his/her needs.

QueSTS Summarizer

In this section we present a brief overview of our query spe-
cific summarizer that has been used to summarize model, ex-
periment and conclusion sections. In QueSTS we represent
the input text in the form of an integrated graph (IG) where a
sentence is made as a node, and an edge exists between two
nodes if the sentences in them are similar. An edge weight
is calculated as cosine similarity between connecting sen-
tences. An edge having a weight above a minSimilarity
threshold is retained in the graph. Also edges between ad-
jacent sentences in the document are retained irrespective of
their edge weight. As this is a single document summary, it
is assumed that there will not be any redundant sentences.

When a key phrase is given as a query to the system, a
centrality based query specific node weight is calculated for
each node as per the following equation(Otterbacher, Erkan,

& Radev 2005).

wq(s) = d
sim(s, q)∑

m∈N sim(m, q)

+ (1 − d)
∑

v∈adj(s)

sim(s, v)∑
u∈adj(v) sim(u, v)

wq(v)

where wq(s) is node weight of node s with respect to query
term q, d is bias factor, N is the total number of nodes and
sim(si, sj) is cosine similarity between sentences si and sj .
Stop words are removed and remaining words are stemmed
before computing similarity. First part of the equation com-
putes relevancy of node to the query and second part con-
siders neighbours’ node weights. The bias factor d gives
trade-off between these two parts.

The key phrase is initially tokenized, and for each to-
ken a node weight is calculated. Thus a node has as many
node weight values as the number of tokens (other than stop
words) in the key phrase. As node weight is computed us-
ing a centrality based approach, a high weight indicates a
highly relevant sentence in the presence of highly relevant
neighbours. Though a node doesn’t has a query term, if it
is connected to a node containing query relevant informa-
tion it is relevant and gets a non zero node weight. Thus
we have query independent edge weights and query specific
node weights.

A summary is said to be good if it has good coherence
and information. Coherence is the property that determines
the readability of the text. Hence we make use of the
edge weights to preserve coherence and the node weights
to preserve query relevant information. For each query term
q, from each node r a Contextual Tree(CTreerq) is con-
structed as follows. The neighbourhood of root node r is
explored in BFS order, and at most b(= 3) nodes having
higher h value calculated as (h = αw(eij) + βwq(j)), are
selected and BFS traversal is continued from these selected
nodes. The exploration from selected prominent nodes (at
most b) is continued until a level which has a node contain-
ing a query term (anchor node) or maximum depth d is
reached.

All nodes along the path from root to anchor node, along
with their siblings are added to the CTreerq. Siblings con-
tain supporting information that is required to establish the
context. When query term is not found until maximum depth
d then CTreerq for that query term remains empty. If a
root node has the query term then root and its adjacent “b”
nodes are added to CTreerq and no further exploration is
done. Once all CTrees rooted at a node r are constructed for
each query term, they are merged (unioned) to form a sum-
mary graph (SGraphr). All nodes and edges present in all
CTrees are present in the SGraphr. These SGraphs, gen-
erated one from each node in the integrated graph are ranked
using a scoring model and the one with the highest rank is
returned as summary. A SGraph with high node and edge
weights gets high rank as per the scoring model.

For example, if we have an integrated graph as shown in
Figure 3, for finding relevant nodes for query term q1, the
neighbourhood of node h and then nodes g, d are explored.

286

e c

b

g
h

d

f

a

q1 q1

q2q2

}
h

}
g d

q1 q1

fab

h

g
q2

d
q2

ab f

h

g d

q1 q1

q2

q2

IG CTrees SGraph

Q={q1,q2}

Figure 3: Generation of CTrees and SGraphs from node h

Exploration is stopped on reaching nodes b and f which con-
tain q1. But b is found closer to d than g, so path from b to
h through d, along with siblings a, f and g are added to
CTreehq1. Similarly for the query term q2, CTree is gen-
erated. SGraph is formed by merging these two trees. The
edges shown in dark and nodes connected by them are com-
mon in both CTrees and their weights are counted twice as
per scoring model. All query terms are covered as CTrees
of all query terms are merged to form a SGraph. As the
SGraph is a connected component, we will have inter con-
nected set of sentences in the summary and hence coherence
is preserved. QueSTS summarizer is discussed in more de-
tail in (Sravanthi, Chowdary, & Kumar 2008).

Slides Generation

The XML file and the configuration file are given as input to
Slides Generator component and it generates slides for each
section and sub-section.

Generating Introduction Slides Introduction contains
background of the problem at hand, motivation and a brief
overview of the contributions. Abstract also summarizes the
complete work presented in the paper. So, each sentence
of the introduction section is compared with complete ab-
stract and sentences with high similarity are placed on the
slides. We used cosine similarity measure to compute this
similarity. For each sub-section in introduction section this
procedure is repeated and top m sentences are extracted. For
each section and sub-section, slides are created with their ti-
tle as the slide’s title. By default at most 2 slides with 4
sentences each are created for each section and sub-section
of introduction category.

Generating Related Work Slides Related work presents
the work done by the other researchers relating to the prob-
lem addressed in the paper. It contains citations to other
related works. In LATEX these citations are embedded using
\cite{keylist}. In XML file it is encoded in <cite> </cite>
tags. All sentences containing these cite tags are retrieved
from related work sections. Similarity of these sentences
with the text under introduction section is calculated and
highly similar sentences are placed in slides.

Generating Model and Experiment Slides Model and
Experiment sections are the important and long sections in
the paper. The keywords extracted as specified in Section

Configuration File Generation are used to identify and ex-
tract important sentences from these sections. We use the
query specific summarizer QueSTS(Sravanthi, Chowdary, &
Kumar 2008) described above for this purpose. The text un-
der the specified section/sub-section and extracted/given key
phrases are given as input to the QueSTS summarizer. The
key phrases are used as the queries in the summarizer. Sen-
tences of the summaries obtained for each key phrase are
combined and are placed in slides in the order in which they
appear in the paper.

Algorithm 1 Generating model/experiment slides

1: Input: Section/sub-section sec categorized under
model/experiments

2: Output: Slides presenting model/experiments
3: title = extract section title
4: Keyphrases = get key phrases for this category from

config file
5: text = text under sec
6: points = {}
7: for each keyphrase k in the Keyphrases do
8: points = points ∪ summarize(text, k)
9: end for

10: renderGraphics(sec, points)
11: createSlides(title, points){//using Algorithm 2}
12: if sec has sub-sections then
13: for each sub-section sub-sec in sec do
14: generateModelOrExperimentSlides(sub-sec)
15: end for
16: end if

Generating Conclusion Slide A conclusions section con-
cludes the paper by stating the work contributed and its con-
sequences and implications. Usually it contains words like
“contribution”, “proposed”, “conclude”, “system”, “model”,
“argue”, “present”, “experiments”, “better”, “results” etc.,
These keywords along with the title of the paper are used as
the queries and the text under this section is summarized and
slides are prepared as per Algorithm 1.

Rendering Graphics

Graphics are an important part of the presentation. All spe-
cial environments used to highlight some portion of the text
in LATEX like definitions, theorems, tables, equations, figures
etc., are treated as graphical elements and are extracted from
the document. These elements are enclosed in special tags
like <theorem>, <figure>, <equation> etc. and are ex-
tracted as they are. Normally in a paper figures, tables ap-
pear at the place where they are referred to in the text. Equa-
tions are present in-line within the text, and are referred at
later points in the document. Theorems, definitions and ex-
amples are present in-line within the text. These elements
which are present in-line within the text are called as “in-
line graphical elements”. The sentences just before these
elements, containing statements like “... is defined as fol-
lows”, “... is calculated using equation”, “For example ...”

287

etc., are also important and they provide flow in the sum-
mary. So, all sentences that either refer a graphical element
or are present before the in-line graphical elements are ex-
tracted and placed along with the element in the slides.

Aligning Sentences and Creating Slides

Once the important sentences and graphical elements are ex-
tracted, the slides can be prepared. For each section and
sub-section there is at least one dedicated slide. The order
of slides is same as the order of the sections/sub-sections
in the paper. Depending upon the number of sentences se-
lected, the number of slides is decided. These slides are as-
signed same title as their corresponding section/sub-section
title. If in a slide there is a sentence that is referring to any
graphical element, the corresponding element is displayed
next to it. As all referring sentences are present in selected
sentences, all graphical elements are captured. All sentences
in the slides are ordered as per document order and any du-
plicate occurrences of elements are avoided. Algorithm 2
presents overview of this procedure.

Algorithm 2 Creation of slides

1: Input: Slide title, Selected sentences(points)
2: Output: Sequence of slides
3: noOfSentences = |points|
4: n = maximum number of sentences per slide
5: frac = ceil(noOfSentences/n)
6: i = 0
7: order sentences in points as per document order
8: while i < frac do
9: create a new slide

10: Set title of the slide
11: for each sentence s in the points do
12: if remaining sentences in points < n/2 then
13: Add s to previous slide
14: else
15: Add s to the current slide
16: end if
17: if s refers a graphical element or is before a in-line

graphical element then
18: Add the referred element to the slide after s
19: end if
20: end for
21: append the slide to the output presentation file
22: end while

Experimental Results

We chose to do user evaluation by asking the authors of the
papers to rate the presentation generated by our system. We
collected source code(.tex file and figures) of eight papers
and generated presentations for them. They were given to
each one of the authors of the corresponding papers. The
authors were asked to answer the following questions by
giving a rating on a scale of 1 (bad) to 10 (good) for the
presentations.

Q1 : How much information is covered in the presentation?

Q2 : What is the level of coherence in the slides?

Q3 : How much do you think this presentation can be a
good starting point to prepare final presentation?

Q4 : How much of the presentation has to be changed to
prepare final presentation assuming that no information
from outside the paper is to be included in the slides?
(Ans: 100%, 80%, 60%, 40%, 20%)

Q5 : What is your overall satisfaction level with the pre-
sentation?

Table 1: Evaluation Results of Presentation
User Q1 Q2 Q3 Q4 Q5

U1 10 10 9 20% 9
U2 9 10 9 40% 8
U3 10 9 8 20% 8
U4 10 10 8 20% 8.5
U5 8 8 8 40% 8
U6 8 8 9 40% 8
U7 10 9 9 20% 8.5
U8 9 8 8 40% 8

Average 9.25 9 8.5 30% 8.25

On the whole all authors have agreed on the point that the
system indeed generates a presentation that can be a good
starting point to prepare a final presentation and it can ac-
tually be presented only with some minor changes. The re-
sults establishing the fact are shown in the Table 1. They
were all satisfied with the presentation generated. As per the
users ratings the coherence and coverage of presentations
have been good. In an informal discussion with the authors
it was found that majority of the changes required for the
presentation is to compress the sentences.

LATEX is rich, with many constructs. As of now some envi-
ronments like itemize, enumerated have not been handled in
our system. Paragraph titles have not been used. Presenta-
tions usually don’t contain algorithms. So we didn’t extract
content in algorithm and verbatim environments and foot-
notes have been discarded. The set of slides generated for
section “QueSTS Summarizer” of this paper are provided in
Appendix. As this section is part of model all section and
sub-section titles in Section “System Overview” were con-
sidered as key phrases for these slides generation.

Discussion

In total 4 slides were generated for the Section “QueSTS
Summarizer”. Most of the information from this section
is covered in slides along with the necessary equation and
figure. But the details of CTree construction are missing.
This is because we chose to use only titles of sections and
sub-section in this paper as key phrases. The most rele-
vant key phrase to this section is its title “QueSTS Summa-
rization component” and key phrase “summarizing section
content”. If the section specific keywords like “Integrated
graph”,“CTree”, “SGraph” etc., were added to the configu-
ration file, the slides would have been with complete infor-
mation. If the sections are small like Conclusions section,
almost all information appears in the slides.

288

Conclusions

In this paper we propose a system that can generate a good
quality presentation, from a technical paper given in LATEX
format. These slides provide a good starting point for the
preparation of final presentation. We make a good use of the
richness of the LATEX document markup language and gen-
erate slides using only statistical processing. Future work
includes usage of natural language processing techniques to
compress the extracted sentences and to identify appropriate
indentation structure for them so that presentation becomes
much more appealing.

References

Masao, U., and Koiti, H. 1999. Automatic slide presenta-
tion from semantically annotated documents. In Proceed-
ings of the ACL workshop on Coreference and its appli-
cations. Morristown, NJ, USA: Association for Computa-
tional Linguistics.

Masum, S. M. A., and Ishizuka, M. 2006. Making topic-
specific report and multimodal presentation automatically
by mining the web resources. In WI ’06: Proceedings
of the 2006 IEEE/WIC/ACM International Conference on
Web Intelligence, 240–246. Washington, DC, USA: IEEE
Computer Society.

Masum, S. M. A.; Ishizuka, M.; and Islam, M. T. 2005.
Auto-presentation: A multi-agent system for building au-
tomatic multi-modal presentation of a topic from world
wide web information. In IAT ’05: Proceedings of the
IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, 246–249. Washington, DC, USA: IEEE
Computer Society.

Miyamoto, M.; Sakai, H.; and Masuyama, S. 2006. Re-
search on automatic generation of presentation slides from
a latex manuscript of a paper (in Japanese). Journal of
Japan Society for Fuzzy Theory and Intelligent Informatics
18(5):752–760.

Otterbacher, J.; Erkan, G.; and Radev, D. R. 2005. Using
random walks for question-focused sentence retrieval. In
HLT ’05: Proceedings of the conference on Human Lan-
guage Technology and Empirical Methods in Natural Lan-
guage Processing, 915–922. Morristown, NJ, USA: Asso-
ciation for Computational Linguistics.

Shibata, T., and Kurohashi, S. 2005. Automatic slide gen-
eration based on discourse structure analysis. In IJCNLP,
754–766.

Sravanthi, M.; Chowdary, C. R.; and Kumar, P. S. 2008.
QueSTS: A query specific text summarization approach. In
Proceedings of the 21st International FLAIRS Conference,
219–224. Florida, USA: AAAI Press.

Yoshiaki, Y.; Masashi, T.; and Katsumi, N. 2003. A sup-
port system for making presentation slides (in Japanese).
Transactions of the Japanese Society for Artificial Intelli-
gence 18:212–22.

Sample slides

Table 2: Slides for Section
QueSTS Summarizer

• In this section we present a brief overview of our query
specific summarizer that has been used to summarize
model, experiment and conclusion sections.

• In QueSTS we represent the input text in the form of an
integrated graph (IG) where a sentence is made as a node,
and an edge exists between two nodes if the sentences in
them are similar.

• An edge weight is calculated as cosine similarity between
connecting sentences.

• Also edges between adjacent sentences in the document
are retained irrespective of their edge weight.

QueSTS Summarizer

• When a key phrase is given as a query to the system, a
centrality based query specific node weight is calculated
for each node as per the following equation[].

Equation for NWeight deleted for space constraints

• where wqs is node weight of node s with respect to query
term q, d is bias factor, N is the total number of nodes and
simsisj is cosine similarity between sentences si and sj.

• Thus we have query independent edge weights and query
specific node weights.

• Hence we make use of the edge weights to preserve co-
herence and the node weights to preserve query relevant
information.

QueSTS Summarizer

• These SGraphs, generated one from each node in the in-
tegrated graph are ranked using a scoring model and the
one with the highest rank is returned as summary.

• A SGraph with high node and edge weights gets high rank
as per the scoring model.

• For example, if we have an integrated graph as shown
in Figure , for finding relevant nodes for query term q1,
the neighbourhood of node h and then nodes g, d are ex-
plored.

Figure 3 deleted for space constraints

• Exploration is stopped on reaching nodes b and f which
contain q1.

QueSTS Summarizer

• Similarly for the query term q2, CTree is generated.

• As the SGraph is a connected component, we will have
inter connected set of sentences in the summary and hence
coherence is preserved.

• QueSTS summarizer is discussed in more detail in [].

289

