
Query Processing and Optimization for
Logic programs with Certainty Constraints

Jinzan Lai and Nematollaah Shiri
Dept. of Computer Science and Software Engineering

Concordia University, Montreal, Quebec
Email: {la jin, shiri@cse.concordia.ca}

Abstract

Numerous logic frameworks have been proposed for mod-
eling uncertainty and reasoning with such data. While dif-
ferent in syntax, the approaches of these frameworks have
been classified into “annotation based” (AB) and “implica-
tion based” (IB). In this paper, we present a unified frame-
work which allows evaluating programs in either approach.
It extends existing query processing techniques to handle cer-
tainty constraints and uses heuristics to further improve the
performance. Our experiments indicate that the proposed
techniques yield useful tools for uncertainty reasoning.

Introduction

Uncertainty reasoning has been identified as an important
research in AI and database research (Abiteboul ; Laksh-
manan and Shiri 2001a; Shapiro 1983). Many real life appli-
cations require to represent uncertain knowledge and reason
with it efficiently. Standard logic programming and deduc-
tive databases have been a primary choice for modeling un-
certainty, which resulted in numerous frameworks. On the
basis on which uncertainty is associated with the facts and
rules in a program, the approaches of these frameworks are
classified into implication-based (IB) and annotation-based
(AB) (Lakshmanan and Shiri 2001b).

While it has been noted that in general the AB approach
is more expressive than the IB for allowing certainty anno-
tations, (Shiri 2005) establishes equivalence of the two ap-
proaches when rules are generalized and extended with cer-
tainty constraints (CC), which are essentially built-in pred-
icates of the form wt(A) θ wt(B) or wt(A) θ σ, where A

and B are atoms in the rule body, wt(A) denotes A’s cer-
tainty, σ is a certainty value, and θ is a comparison opera-
tor. This yields the so-called generalized IB (GIB) and GAB
frameworks. Transformation algorithms have also been in-
troduced between the two generalized frameworks.

In this work, we study query processing and optimiza-
tion in the context of GAB and GIB, obtained by extending
those proposed in (Shiri and Zheng 2004; 2008). We also
use heuristics to improve efficiency of handling CC’s during
query processing. We developed a running prototype and
performed experiments using different program types and/or

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

data sizes. The system prototype allows evaluating IB and
AB programs in a single environment. Our experimental re-
sults indicate the overhead of handling CC’s is negligible
compared to the overall computation.

Unified Query Processing Scheme

(Shiri 2005) introduced the notion of “certainty constraint.”
When GIB and GAB are extended with CC’s, they yield
EGIB and EGAB frameworks, resp, and their equivalence
in expressive power is established. Motivated by this result,
we propose a unified query processing scheme to evaluate
programs in these frameworks. The key point in our de-
velopment of this unified evaluation scheme is the design
of a single suitable internal representation (IR) for EGIB
and EGAB programs, which is used by the query process-
ing module.

We also developed modules to parse every EGIB or
EGAB program and transform it into its internal represen-
tation. This transformation module is shown in Figure 1. As
can be seen, there are two paths from input programs to IR:
one for EGIB programs and the other for EGAB. In addition,
this module can be used to transform an EGIB program into
its equivalent EGAB program, and vice versa. This transfor-
mation is the basis for equivalence of these two frameworks.

Query processing and unification in our context are more
complex due to presence of CC’s in rule bodies, as this re-
quires calling certainty constraint checkers, after the cer-
tainties associated with regular subgoals in the rule bod-
ies are determined. Our query processing algorithms are
obtained by extending the ones proposed in the context of
the parametric framework (Lakshmanan and Shiri 2001b;
Shiri and Zheng 2004; 2008), to handle CC’s. We introduced
certainty constraint checker (CC-Checker) in the query pro-
cessing algorithms, which as the name suggests is used for
for dealing with CC’s.

The query processing algorithm invokes the CC–Checker
on the fly while it evaluates normal subgoals in the rule body
and terminates immediately when the CC–Checker fails. We
apply the “select–before–join” principle. For every predi-
cate participating in a join, a “select” operation is performed,
which prunes useless tuples from a relation before the join
operation on consecutive subgoals. The second type of cer-
tainty constraints is verified next. The join process fails if

575

Proceedings of the Twenty-Second International FLAIRS Conference (2009)



Figure 1: EGAB and EGIB Transformation Module

the verification fails.

Figure 2: Overhead of CC-Checker evaluation

Experiments

We used two classes of EGIB programs in our experiments,
obtained from standard programs, and extended them to in-
clude CC’s. For this, we considered 9 EDB data sets: An,
Bn, Cn, Fn, Sn, Tn,m, and Un,m, in different sizes and
structures adapted from (Shiri and Zheng 2008). These
data sets were originally proposed to evaluate standard Dat-
alog programs. The results shown in Figure 2 indicate that
the overhead of handling certainty constraints is reasonable.
Figure 3 show different evaluation schemes enjoy different
efficiency gains, depending on the complexity of the data.

Figure 3: Performance of different evaluation schemes

Conclusion

We developed query processing and optimization techniques
to evaluate logic programs with certainty constraints. This
provides a unified framework for evaluating logic programs
with uncertainty in AB and IB approaches. Our results
indicate effectiveness of the proposed techniques.

Acknowledgments: This work was partially supported by
NSERC Canada and by Concordia University.

References

Abiteboul, S. et al. 2005. the lowell database research self-
assessment. Commun. ACM 48(5):111–118.

Lakshmanan, L., and Shiri, N. 2001a. Logic programming
and deductive databases with uncertainty: A survey. In
Encyclopedia of Computer Science and Technology, Vol.
45, pp 155–176, Marcel Dekker, Inc., New York.

Lakshmanan, L., and Shiri, N. 2001b. A parametric
approach to deductive databases with uncertainty. IEEE
Trans. on Knowledge and Data Engineerin 13(4):554–574.

Shapiro, E. 1983. Logic programs with uncertainties: a
tool for implementing expert systems. In Proc. IJCAI’83,
529–532,William Kaufmann.

Shiri, N., and Zheng, Z. 2004. Challenges in fixpoint com-
putation with multisets. In Proc. 3rd Int’l Symp. Founda-
tions of Info. and Knowledge Sys., LNCS 2942, 273–290.

Shiri, N., and Zheng, Z. 2008. Optimizing fixpoint evalu-
ation of logic programs with uncertainty. In Proc. 13 CSI
Int’l Comp. Conf. (CSICC), Comm. in Computer and Infor-
mation Science, Elsevier, Kish, Persian Gulf, Iran.

Shiri, N. 2005. Expressive power of logic frameworks
with certainty constraints. In 18th Int’l FLAIRS Confer-
ence, Special Track on Uncertainty Reasoning, 759–765.

576




