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Abstract

We present a modified navigation mesh generation algorithm
that allows the mesh to be dynamically altered at runtime.
We accomplish this using an extension to the existing spa-
tial decomposition algorithm ASFV (Adaptive Space Filling
Volumes) that will allow the algorithm to dynamically adapt
to changes to the underlying world geometry without having
to rebuild the entire spatial decomposition. This is accom-
plished by providing two algorithms to deal with alterations
to the world. The ability is provided to add arbitrary ob-
structions into what was negative space and then to build a
new correct spatial decomposition around the new obstruc-
tion. Functionality is also provided to remove existing ob-
structions and then to build up new decompositions to fill in
the newly created negative space. Finally, we show via an
experiment that our dynamic extensions to ASFV reduces the
cost of correcting an invalidated decomposition by 90% or
more.

Introduction
When using an embodied agent in virtual worlds one of the
first questions that must be answered is how the world will
be presented to the agent. When constructing a 3D environ-
ment for a game or simulation, usually the only areas that
are well defined are the 3D models or objects included in the
world. Rendering the world to the screen generally requires
the creation of a nicely delineated listing of the occupied or
positive space objects present in the world. In general, this
information is made available to the agent, which provides
the agent with minimal information about the world. Unfor-
tunately, this listing does not provide any information about
the open empty areas of the world that we will call negative
space.

Negative space can be presented to the agent in several
different ways. All the methods discussed here will simplify
the 3D world to a 2D footprint. This is similar to the man-
ner in which architects simplify a building to its floor plan
when creating blueprints. About half of the available meth-
ods for evaluating negative space focus on presenting a set
group of paths to the agent to aid in getting from point A
to point B and can be referred to as way-pointing methods.
This works reasonably well for providing a resource to the
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agent to aid in path planning, but does not really help the
agent break down areas of negative space in order to reason
only about relevant and local events to the the agent. Other
methods of presenting negative space to an agent work by
dividing the world in to some form of discrete regions. This
is referred to as decomposing the world or a spatial decom-
position, and the collection of discrete regions can be called
navigation meshes, navigation maps, or spatial decomposi-
tions (Tozour 2004). The ASFV (Adaptive Space Filling
Volumes) algorithm (Hale, Youngblood, & Dixit 2008) for
which we will present an extension is a spatial decompo-
sition algorithm. Once the world has been decomposed, a
graph can be constructed that shows connectivity between
the regions. Such a graph provides an excellent tool for the
agents to reason about path planning using any search algo-
rithm the developer chooses to implement.

All the methods of evaluating negative space we have dis-
cussed so far have one rather disappointing thing in com-
mon, the end product of each tends to be very static. This
is unfortunate as there is a tendency towards more interac-
tion with the world in modern games and a desire for more
realistic reactions from the environment in simulation. In
several recent game releases it has been possible to dynam-
ically alter the world in response to the players actions. For
example, in the recent title from Electronic Arts Battlefield:
Bad Company it is possible for the player to demolish walls
in structures and dramatically alter the passable areas of the
game world. The title Fracture from Lucas Arts carries this
concept of a deformable world further as it allows the player
to dynamically alter the terrain of the world. Obviously, if
the player is given the total freedom to alter the world it
will be impossible to predict the state of the world at any
given point in the game and the existing solution of having a
pre-built spatial decomposition or set of way points for ev-
ery possible world state cannot hope to adapt to this level of
variability. In response, there is a need to upgrade and ex-
pand the spatial decomposition techniques in order to deal
with this random alteration of the world.

We propose a solution for this problem that involves an
extension of the existing algorithm Adaptive Space Filling
Volumes in order to allow it to dynamically rebuild and re-
link damaged areas, such that even with dramatic changes
to the world the decomposition is still valid. This exten-
sion comes in two distinct parts. The first part allows for
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addition of negative space into regions that were formerly
positive space obstructions (or the removal of positive space
regions). Imagine a helicopter takes off leaving an empty
field, this field can now be walked through freely and the
decomposition will need to be updated to reflect this. The
second extension allows for addition of positive space re-
gions into areas that were formerly walkable. For example,
imagine a building collapsing into a plaza area. This will
render the plaza partially or completely unnavigable and ob-
viously require an extensive change to the navigation maps.
Both of these extensions are natural progressions from the
core concepts of the ASFV algorithm which are: providing a
fast effective way of generating a world decomposition, pro-
viding a high coverage decomposition, yielding good qual-
ity decompositions for navigation, and providing decompo-
sitions based around quads or higher order polygons rather
than triangles allowing for better information compartmen-
talization.

Related Work
Space Filling Volumes (SFV) is the parent technique of our
Adaptive Space Filling Volume technique (Tozour 2004). It
does provide a decomposition of the world on which a nav-
igation mesh could be built, but it tends to provide less than
optimal decompositions. SFV works by seeding the world
initially with geometric quads and growing them until they
hit an obstruction. This works well for worlds composed
solely of axis aligned rectangular obstructions, but on worlds
containing arbitrary obstructions SFV tends to leave large
gaps of un-decomposed space. These gaps can force agents
to take longer paths to traverse the world and large areas of
the world could potentially be unreachable. Since SFV is
the parent technique of the ASFV the extensions to ASFV
we present here would be applicable to it as well.

Navigation Meshes can also be generated via the Hertel-
Mehlhorn (Hertel & Mehlhorn 1983) algorithm or with De-
launay Triangulations (de Berg et al. 1998). Both these
methods focus on connecting vertices of obstructing geom-
etry to generate a collection of regions. Hertel-Mehlhorn
focuses on generating the minimum number of regions that
provides complete coverage and can produce high order
polygons, while Delaunay Triangulations produce a purely
triangular decomposition with a focus on producing the most
uniform triangles possible. Both these algorithms generate
excellent coverage decompositions that work well for navi-
gation, but can create problem areas of very small triangles
that cause problems with localizing objects to a single area.
Level designers also conduct by-hand decompositions that
loosely adhere to one of these two algorithms to generate
specific decompositions that better reflect the intended uses
of the world. Obviously, by-hand decompositions cannot
be used to dynamically update navigation meshes and these
other two algorithms take too long to rebuild a decomposi-
tion in response to change in the world. However, the exten-
sions presented to ASFV could be applied to initial decom-
positions from by-hand decompositions, Hertel-Mehlhorn,
or Delaunay Triangulations to properly adjust to dynamic
worlds.

Recently, work has been conducted to create navigation

meshes using a rendering based approach called Render-
Generate (Axelrod 2008). This approach works by itera-
tively rendering depth maps of the world, and using these
maps to calculate the locations of the floors and ceilings
along with the positions of any obstacles. Using the slopes
and obstructions present in these depth maps it is possible
to find areas the agent is capable of standing inside. By
connecting adjacent standable areas a walkability map can
be generated. This algorithm is capable of decomposing a
complex environment in seconds.However, decompositions
generated by this algorithm are limited to constant cell sizes,
which are generally defined as the size of the agent to nav-
igate the world, and no simplification is done on the result-
ing graph. This tends to produce graphs in which relatively
small areas have a large number of regions, which slows
down most path finding algorithms.

There are many non-spatial decomposition forms of
generating simple navigation data such as Probablistic
Roadmaps, Voroni Graphs, Waypoints, and so forth (Rus-
sell & Norvig 2003). Work has been conducted to allow
these systems to dynamically adapt to changes in the envi-
ronment. Most of this work is focused on ways to reduce the
number of regions that need to be replaced, and on limiting
the amount of geometry that needs to be considered during
the rebuild. A good example of this is the technique pre-
sented by Marden and Smith (Marden & Smith 2008) for
minimizing changes to a waypoint system due to dynamic
objects. However, none of these provide useful secondary
services such as information compartmentalization or colli-
sion detection.

Methodology
The primary contribution of this paper is an extension for
the existing ASFV algorithm that allows it to dynamically
adapt to changes in the underlying geometry of the world at
run time. This extension is provided by two algorithms that
allow for the addition of negative space into existing positive
space locations or the addition of positive space into existing
negative space. We refer to the enhanced version of ASFV
as Dynamic Adaptive Space Filling Volumes (DASFV).

Adaptive Space Filling Volumes
The Adaptive Space Filling Volumes (ASFV) algorithm,
which serves as the basis of our dynamic decomposition re-
pair system, is a straight forward algorithm. First, the ASFV
calls for the placement of a grid of unit sized quads into the
world to be decomposed. These quads then provided an it-
erative chance to expand in every direction. At this point,
the algorithm is very similar to the classic SFV algorithm
we discussed earlier and the algorithm draws its inspiration
from that work. The first difference and reason for the Adap-
tive in this algorithm’s name occurs when one of the growing
vertices of a quad hits a piece of obstructing geometry. Un-
like Space Filling Volumes, when ASFV encounters an ob-
struction it has the ability to dynamically increase the order
of its growing quads into more complex polygons—though
it will ensure that each polygon is still convex. After all the
polygons have grown to the maximum possible extent, the

428



algorithm will attempt to reseed the world with more unit
sized quads that are then provided with the ability to grow.
This cycle of grow and seed continues until no more seeds
can be placed at which point the world will be fully decom-
posed. Using this algorithm it is possible to generate a high
quality decomposition of the environment that can be ap-
plied to multiple uses in a game or simulation world

Figure 1: A time step progression of the addition of positive
space. The negative spaces are shown in light grey. Positive
spaces are shown in dark grey. The positive space that is
added to the world is shown with a gradient and it has the
dotted outline. The second time step shows the removal of
affected negative space regions and the addition of seeds to
grow new negative space regions. The final time step shows
the repaired decomposition.

Using this algorithm it is possible to generate spatial
decompositions that can be shown experimentally to pro-
duce better navigation paths that other spatial decomposition
techniques such as Hertel-Mehlhorn or conventional Space
Filling Volumes (Hale, Youngblood, & Dixit 2008). In addi-
tion, this algorithm can be shown to run in time O(nc) where
c is between 0 and 1 (typically 0.5) and n represents the size
of the area in question to be decomposed (Hale & Young-
blood 2009). More complex geometry tends to increase c
while a denser initial seeding tends to decrease it.

Adding Positive Space
Let us first examine the case where the building collapses
into the plaza. First, the negative space regions that used to
compose the plaza need to be removed. These are found by

Algorithm 1 Place Positive Space
//We will assume that the area was fully decomposed
HandlePositiveAddition(List oldNegatives, List oldPositives,
newPositives)
//Locate all areas that need to be removed
for all NegativeSpaces neg in oldNegatives do

//Run intersection check against each new region
for all PositiveSpaces pos in newPositives do

if neg.intersects(pos) then
neg.remove()
if connectivityKnown is true then

//set adjacent regions to seed
neg.setNeighborsSeeding(true)
//otherwise do nothing

end if
end if

end for
if connectivityKnown is false then

neg.ResetSeeding()
end if

end for
//All conflicting regions will have been removed
//Assume the implementation of ASFV contains
//a method to start seeding
ASFV.seed()
//Also assume that the ASFV implementation
//contains a method to grow placed seeds
ASFV.run()
//Once the ASFV algorithm concludes the decomposition
//will be complete again

performing a series of intersection tests on the existing neg-
ative space regions and the newly added region. Since all of
the negative space regions are convex and the newly added
positive space regions are required to be convex, the inter-
section test between them can be performed very quickly
with a point in convex polygon algorithm (Schneider &
Eberly 1998). Once a list of negative spaces to be removed
has been established, the algorithm will branch into two di-
rections depending on what information is available. If con-
nectivity information is available between regions then the
neighbors of the regions to be removed should be reset so
that they will attempt to seed as per the ASFV algorithm.
If connectivity information is not available then all nega-
tive space regions not being removed should be reset to seed
again. At this point the ASFV algorithm will be started at
the seeding stage of the algorithm. ASFV will run until the
newly changed region is fully decomposed at which point it
will stop as per the original algorithm. Sample code is pro-
vided for this case in Algorithm 1 and an illustration of this
algorithm in action is provided in Figure 1.

Adding Negative Space
The addition of negative space regions works similar to the
addition of positive space regions. To continue the example
of the helicopter taking off from a field we need to quickly
determine how to divide up the field it vacates for naviga-
tion. First, the listing of all of the positive space regions to
be removed is compiled. Once this has been compiled the
algorithm will again branch depending on whether or not
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Figure 2: A time step progression of the addition of negative
space. The negative spaces are shown in light grey. Posi-
tive spaces are shown in dark grey. The positive space to be
removed is marked in a gradient. In the second time step
the targeted positive space has been removed along with its
neighboring negative spaces. In the third time step a seed
has been added to the decomposition. In the final time step
the decomposition has been fully repaired.

connectivity information is available. If connectivity infor-
mation is known between regions then the neighbors of the
affected positive space regions can easily be located. Other-
wise the neighbors have to be located algorithmically. This
is accomplished by taking the affected positive space regions
increasing their size by 0.1 percent, and then determining
what negative space regions they intersect. Since the de-
composed regions perfectly border against the obstructions
this small size increase to a positive space region will force
it to intersect all their neighboring negative space regions.
Once the targeted positive space regions and neighboring
negative space regions have been identified they can then
be removed. Seeds are then placed at the former centroids
of the removed positive space regions to provide a starting
point for the re-initialization of the ASFV algorithm. Again,
once ASFV completes the newly exposed free space will be
fully decomposed into high order convex polygons. The pre-
sentation of this algorithm can be seen in Algorithm 2. An
illustration of this algorithm running can be seen in Figure 2

In the case of the removal of a positive space region it may
seem strange and counter intuitive to remove the negative
space regions adjacent to it when they do not appear to be di-

Algorithm 2 Add negative space to existing positive space
regions

//We will assume that the area was fully decomposed
removePositive(List oldNegatives, List oldPositives, List toRe-
move)
// Locate all areas that need to be removed
for all PositiveSpaces oldPos in oldPositives do

// Run a simple equality check to find regions to remove
for all PositiveSpaces posRemove in newPositives do

if oldPos.equals(posRemove) then
//Found a region to remove locate its neighbors
//Assume we possess a function
//to find neighbors of a given region
List neighbors = oldPos.getNeighbors()
for all NegativeSpace neighbor in neighbors do

//Remove the negative space neighbor
neighbor.remove()

end for
oldPos.remove()

end if
end for

end for
//All conflicting regions have been removed
//Assume the implementation of ASFV contains a
//method to start seeding
ASFV.seed()
//Also assume the ASFV implementation contains a
//method to grow placed seeds
ASFV.run()
//Once the ASFV algorithm concludes the
//decomposition will be finished

rectly affected by the removal, but there are several reasons
for doing so. The primary reason for removing neighboring
negative space regions is related to the concept of informa-
tion compartmentalization, so let us take a moment to con-
sider how the shape of regions affects this quality. As long as
we are just using these decompositions for agent navigation
from point-to-point along some kind of connectivity graph
and the decomposition completely covers the free space and
is well connected, the ability of the decomposition to com-
partmentalize information is not of great importance to the
agent. However, when we move beyond using the decom-
positions for just navigation we encounter issues with trian-
gular based decompositions such as those generated using
the Hertel-Mehlhorn algorithm (Hertel & Mehlhorn 1983)
or Delaunay Triangulations (de Berg et al. 1998). Decom-
positions of environments can also be used for the encoding
and storage of relevant spatial details for the game or simu-
lation. For example, objects and events can be localized to
regions. This means that the agent moving around the world
can reduce the amount of things it needs to reason about
to those objects in its region and perhaps neighboring re-
gions. Localized dynamic object collision detection can also
vastly reduce the amount of collision tests per frame by only
considering possible collision cases for objects that occupy
the agent’s region or neighboring regions. It is in situations
like this that the triangular decomposition methods begin to
have problems. There is no limit to the number of triangles
that can come together at a point so any given triangle could
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have a huge number of potential neighbors. Furthermore,
since triangles by their nature tend to be long and skinny
in these decompositions it is harder to say that objects can
be contained in only one or two regions. Reasonably sized
dynamic objects in a game might span the narrow edges of
many triangles or even worse might sit at the convergence
point of dozens of triangles. This high overlap potential can
drastically reduce potential computational savings of using
decompositions of the world to reduce and localize the num-
ber of expensive computations that must be performed.

By its very nature the ASFV algorithm can only produce
negative space regions that intersect each other in two ways.
The first intersection type occurs when axis aligned paral-
lel edges meet each other, in this case there can obviously
only be at most two regions involved in the collision. The
other possibility occurs when the right angle corners of three
or four growing regions meet at a single point. This in ef-
fect limits the number of regions meeting at a single point to
four, which is obviously far lower than the unbounded worst
case for triangular decomposition methods. As such, ASFV-
based decompositions tend to lend themselves more towards
applications beyond navigation which depend on good infor-
mation compartmentalization. However, in order to ensure
this is the case when we remove positive space regions we
need to ensure that we do not expose non-axis aligned edges
of any negative space regions. Doing so would potentially
introduce all of the problems associated with allowing for
the possible intersection of more than 4 regions at a single
point. This is the primary reason that our algorithm calls
for the removal of neighboring negative space areas when a
positive space region is removed. Also, since information
compartmentalization tends to work better on larger regions
it benefits us to clear out any neighboring regions to ensure
that we get the largest regions possible. The problems that
could be caused by just removing positive space regions and
not their negative space neighbors can be seen in Figure 3.
Despite starting from the same initial configuration, the de-
composition of the world in Figure 3 is is clearly worse than
Figure 2 since it contains 5 malformed regions rather than 2
axis aligned regions.

After the decomposition of the world has been adapted
to fit the changes in the world’s underlying geometry the
connectivity graph between regions can be quickly rebuilt.
Instead of completely rebuilding the connectivity graph a
shortcut using only two simple steps is available. The first
step is to remove any links that are invalidated by the re-
moval of negative space regions. Then it is a simple matter
of iterating through each of the new regions that were cre-
ated during the decomposition repair phase and determine
which regions border it to rebuild the connectivity graph be-
tween each region.

Experimentation
An experiment was conducted on both aspects of dynami-
cally altering the world after a decomposition has been gen-
erated, those aspects being the addition of negative space,
and the addition of positive space. Both experiments were
conducted on the same computer using the DEACCON
(Decomposition of Environments for Automated Creation

Figure 3: This timestep illustration shows the undesired ef-
fects of adding negative space to a positive space region
without removing the neighboring negative space region as
called for in the Dynamic Space Filling Volumes algorithm.

of Convex Navigation-Meshes) tool which implements the
DASFV algorithm on a 2.13Ghz/2GB RAM computer.

The first experiment consisted of examining the effects
of adding positive space to existing areas of negative space.
This is the building collapsing into the plaza example from
above. This experiment was conducted on 10 random maps
each with a increasing amounts of geometric complexity
which represent other buildings that are present in the world.
The performance of dynamically repairing the decomposi-
tion using our new extensions to Adaptive Space Filling Vol-
umes is compared to the time it takes to completely rebuild
the decomposition in order to adapt to changes. As can be
seen in Figure 4 using our dynamic extension to generate
new decompositions for altered environments is consider-
ably faster compared to rebuilding the entire decomposition
even as the complexity of the world in which the algorithm
operates increases. These results are in accordance with our
expectations that the rebuilding a smaller area of the decom-
position is faster than rebuilding the entire decomposition.

The second experiment consisted of examining the effects
of adding negative space to existing positive space regions,
in effect removing those regions, and then decomposing the
newly created free space. Our helicopter taking off exam-
ple would fall in this experiment. Again, we compared the
time cost to decompose just the affected areas to the cost
of rebuilding the entire decomposition against a backdrop
of increasing geometric complexity. The results of this ex-
periment as shown in Figure 5 does generally show that it
is better to rework just the affected area than the entire de-
composition. However, there are some cases for very simple
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Figure 4: This graph shows a comparison between the time
costs to repair a decomposition vs rebuilding the entire de-
composition when positive space is added to the world while
the complexity of the world is increased.

worlds containing only one or two regions where the repair
takes as long or longer than rebuilding the entire decompo-
sition. A close examination of the worlds in question yields
an explanation of why this phenomenon occurs. Recall the
addition of negative space algorithm calls for the removal
of all neighboring areas of negative space in addition to the
directly affected positive space region. This means for very
simple worlds it is possible all or most of the negative space
in the world is removed along with the positive space target.
This results in the repair algorithm having to run intersec-
tion tests on every region in the world before discarding all
of them. Obviously these intersection tests will take longer
than just discarding everything to start with. However, such
simple worlds occur so infrequently that is always desirable
to perform a repair rather than a reconstruction.

Figure 5: This graph shows a comparison between the time
costs to repair a decomposition vs rebuilding the entire de-
composition when negative space is added to the world
while the complexity of the world is increased.

Conclusion
In conclusion, our Dynamic Adaptive Space Filling Volumes
algorithm provides a fast and high quality way to regenerate
invalidated spatial decomposition maps without having to
rebuild them from scratch. We have shown experimentally
that regeneration is in the vast majority of cases considerably
faster than attempting to fully rebuild the world decomposi-
tion. Other decomposition methods lack this form of dynam-
ically adapting to changes in the underlying world geometry
and, in addition, previous work has shown the navigation
meshes generated via the other are no better than ASFV in
terms of agent navigation.
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