
A Generalized Heuristic for Can’t Stop

James Glenn and Christian Aloi
Department of Computer Science

Loyola College in Maryland
Baltimore, Maryland, USA
{jglenn,caloi}@cs.loyola.edu

Abstract

Can’t Stop is a jeopardy stochastic game played on an
octagonal game board with four six-sided dice. Opti-
mal strategies have been computed for some simplified
versions of Can’t Stop by employing retrograde analy-
sis and value iteration combined with Newton’s method.
These computations result in databases that map game
positions to optimal moves. Solving the original game,
however, is infeasible with current techniques and tech-
nology. This paper describes the creation of heuristic
strategies for solitaire Can’t Stop by generalizing an ex-
isting heuristic and using genetic algorithms to optimize
the generalized parameters. The resulting heuristics are
easy to use and outperform the original heuristic by
19%. Results of the genetic algorithm are compared to
the known optimal results for smaller versions of Can’t
Stop, and data is presented showing the relative insen-
sitivity of the particular genetic algorithm used to the
balance between reduced noise and increased popula-
tion diversity.

Introduction

Can’t Stop is a board game for 2-4 players invented by
Sid Sackson and published by Parker Brothers in 1980 (it
is currently published by Face 2 Face Games (Sackson
2007)). Can’t Stop is one of a class of games called jeopardy
stochastic games (or jeopardy dice games when the stochas-
tic element is supplied by dice) in which each player’s turn
is a sequence of stochastic events, some of which allow the
player to make progress towards a goal, and some of which
will end the player’s turn immediately. After each incre-
mental step towards the goal, players can choose to end
their turn, in which case the progress made during the turn
is banked and cannot be lost on a later turn. Players who
press their luck and choose to continue their turns risk be-
ing forced to end their turns by an adverse outcome of the
stochastic event, in which case they lose any progress made
during the turn. Pig, Ten Thousand, and Cosmic Wimpout
are other examples of jeopardy stochastic games.

The specific rules for Can’t Stop are as follows. The game
is played on a board with columns labelled 2 through 12 (for
the possible totals of two dice). Columns 2 and 12 are three

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

spaces long, 3 and 11 are five spaces long, and so forth to
the thirteen spaces in column 7. Each player has a set of
colored markers, one for each column, with each player’s
markers having a color unique to that player. There are also
three neutral markers (white) that are used to mark players’
progress during a turn. Each turn follows these steps:

(1) the current player rolls four six-sided dice;

(2) the player groups the dice into two pairs in such a way
that progress can be made in the next step – if that is im-
possible then the turn ends immediately with the neutral
markers removed from the board and the colored markers
left as they are;

(3) a neutral marker is placed one space above the player’s
colored marker in the column corresponding to the totals
on each pair, or if there is already a neutral marker in the
column for one pair then that neutral marker is advanced
one space;

(4) the player chooses between returning to step (1) or ending
the current turn, in which case the colored markers are
moved to the position of the neutral markers.

The goal of the game is to be the first player to advance to
the top of any three columns. Progress cannot be made in a
column that has been won by a player. The player must use
both pair totals if possible, but is allowed to choose which
to use if the pairing in step (2) results in pairs such that one
or the other total can be used, but both can’t be used at the
same time (this can happen when only one neutral marker is
left).

For example, in Figure 1 the possible pair totals would be
4 and 8 or 5 and 7. In the former case the neutral marker
would be moved one space up in column 8. The 4 could
not be used because that column has been won. In the latter
case the neutral marker in column 5 would be moved up one
space and the third neutral marker would be placed at the
bottom of column 7. If the roll had been 2-2-2-2 then the
player would lose all progress because the only pair total
that could be made would be 4 but no further progress can
be made in column 4.

Solitaire Can’t Stop follows the same rules. In the soli-
taire version of the game, the goal is to minimize the number
of turns used to win the game.

421

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

7

2

3

4

5

6 8

9

10

11

12

Figure 1: A Can’t Stop position. Black squares represent
the positions of the colored markers; gray squares are the
neutral markers.

Can’t Stop, Value Iteration, and Newton’s

Method

Retrograde analysis is a common bottom-up technique used
to compute game-theoretic values of positions by starting
with the terminal positions and working backwards towards
the starting position (Ströhlein 1970). A simple form of ret-
rograde analysis can be applied to acyclic games. In such
cases the computation of game-theoretic values proceeds in
reverse order of topological sort: as each position is ex-
amined its value can be computed based on the already-
computed values of its succeeding positions. This technique
has been used to solve solitaire Yahtzee (Woodward 2003;
Glenn 2006).

Retrograde analysis in its more complex forms has been
applied to endgames for non-stochastic games including
chess (Thompson 1986; 1996), checkers (Lake, Schaeffer, &
Lu 1994; Schaeffer et al. 2004), and Chinese chess (Wu &
Beal 2001; Fang 2005a; 2005b), and has been used to solve
Nine Men’s Morris (Gasser 1996), Kalah (Irving, Donkers,
& Uiterwijk 2000), and Awari (Romein & Bal 2003).

The cyclic and stochastic nature of Can’t Stop requires a
different approach. The cycles arise from the fact that a turn
can end with no progress made. Value iteration is one ap-
proach to handling the cycles (Bellman 1957). The value it-
eration algorithm starts with estimates of the position values
of each vertex. Each vertex’s position value is then updated
(in no particular order in the most general form) based on
the estimates of its successor’s values to yield a new esti-
mated value. In this way the estimates are refined until they
converge.

The structure of Can’t Stop admits a refinement to this ap-
proach that uses retrograde analysis in two ways. The cycles
in Can’t Stop are only one turn long because progress that
has been banked can never be lost (in contrast to backgam-

mon, in which a piece that is close to being borne off can
still be hit and forced back to the bar). The game graph can
therefore be decomposed into components, where each com-
ponent consists of an anchor representing the start of a turn
and all of the positions that can be reached before the end of
that turn.

Because the components form an acyclic graph, they are
attacked in reverse order of topological sort; this is the first
application of retrograde analysis. The second application is
within the components: a copy of the anchor is made and all
incoming edges are redirected to the copy to break the cycles
within the component. An initial estimate of the anchor’s
position value is assigned to the copy and retrograde analysis
is used to propagate position values back to the anchor. We
then have the position value of the anchor as a function of
the position value of the copy: x = f(x′). Since the position
value of the copy should be the same as the position value
of the original, the position value we need is the fixed point
of f .

Topological value iteration, introduced by Dai & Gold-
smith (2007), could find the fixed point by working back-
wards through each component using the position value of
the anchor computed after one iteration as the estimate of
the position value of the copy during the next iteration (that
is, the second estimate of the copy’s position value is f(x′),
the third estimate is f(f(x′)), and so forth). However, in the
case of Can’t Stop it is possible to compute the slope f ′(x′)
which can then be used in Newton’s method to compute esti-
mates that converge more quickly to the fixed point (Glenn,
Fang, & Kruskal 2008).

Heuristic Strategies
Solitaire Can’t Stop has been solved for simplified variants
that use dice with fewer than six-sides and a board with pos-
sibly shorter columns (Glenn, Fang, & Kruskal 2008). We
will refer to these variants as (n, k) Can’t Stop where n is the
number of sides on the dice and k is the length of the shortest
column (with adjacent columns differing by 2 in length).

The most complex version of Can’t Stop that has been
solved is (5, 2) Can’t Stop. Evaluating the 17 billion posi-
tions in that game took 60 CPU days; an estimate for the
time required to solve the official game using current tech-
niques is 3000 CPU years. Heuristic strategies for the full
game are therefore still of interest. For simple games heuris-
tics may still help human players: no human can memorize
the data or mentally perform the calculations needed to repli-
cate the optimal strategy for (5, 2) Can’t Stop.

The Rule of 28

One such strategy is the Rule of 28 (Keller 1986). The Rule
of 28 is used to determine when to end a turn by assigning
a progress value to each configuration of the neutral mark-
ers. Players should end their turn when this value reaches
or exceeds 28. The progress value computation is split into
two parts: one part for measuring the progress of the neutral
markers; and one part for assessing the difficulty of making
a roll that will allow further progress.

The first part of the progress value is computed as the total
of the values for all the columns. The value for a column

422

7

2

3

4

5

6 8

9

10

11

12

Figure 2: A position where the Rule of 28 suggests rolling
again.

is equal to some constant weight assigned to that column
times one more than the number of spaces advanced in that
column. The weights are one for column 7, two for columns
6 and 8, and so forth to six for columns 2 and 12, reflecting
the fact that it is more difficult to make progress in the outer
columns, and those columns are shorter, so progress in them
is therefore more valuable. If si is the number of spaces of
progress in column i, then the total progress value is

12∑

i=2

(si + 1)(|7 − i| + 1).

Because certain combinations of columns are riskier to
be in than others, a difficulty score is added to that sum.
For example, if a roll is all evens then it is impossible to
make an odd pair total. Therefore, two points are added
to the progress value when all three neutral markers are in
odd columns. On the other hand, every roll permits at least
one even pair total, so if the neutral markers are all in even
columns, two points are subtracted from the progress value.
Additionally, four points are added when the columns are all
high (≥ 7) or all low (≤ 7).

For example, in Figure 2 the progress value for column 4
is (2 + 1) · 4 = 12, the progress value for column 6 is 8,
and the progress value for column 10 is 8. Because all three
neutral markers are in even columns, 2 points are subtracted
to get a total progress value of 12+8+8−2 = 26. The Rule
of 28 suggests rolling again.

A similar scheme can be used to determine how to pair
the dice: each column is assigned a weight and each possi-
ble move is scored according to the weights of the columns it
would make progress in. The total is called the move value;
the move with the highest move value is the one chosen.
Weighting the outer columns lower than the middle columns
(thus favoring choosing the middle columns) works better
than the opposite pattern. In order to conserve neutral mark-
ers, a penalty is subtracted for each neutral marker used. In

particular, if pi is the number of squares advanced by a move
in column i, then the total move value is

12∑

c=2

(pi(6 − |7 − i|) − 6 marker(i))

where marker is a function that evaluates to 1 if the move
places a new neutral marker in column i and 0 otherwise.
For example, in Figure 1 using the 8 has a score of 5. Using
the 5 and 7 has a score of only 4 + 6 − 6 = 4, so this rule
suggests using the 8.

When we henceforth refer to the Rule of 28 we mean the
Rule of 28 combined with the above method of choosing
how to pair the dice. This strategy averages approximately
10.74 turns to win the solitaire game.

Generalizing the Rule of 28

Any of the constants assigned to the columns can be altered,
as can the threshold and any of the difficulty values. Further-
more, the spaces within a column needn’t be assigned the
same weights. For example, to evaluate a particular move
we denote by mi the position of the neutral marker in col-
umn i (or the colored marker if there is no neutral marker)
and by ni the position the neutral marker would advance to
after the move. Assign the weight xij to space j in column
i. Then the total move value v is the sum of the weight of
the spaces that would be advanced over in the current turn if
that move was made:

v =

12∑

i=2

ni∑

j=mi+1

xij .

The same technique could be applied to progress values as
well.

A further generalization could assign a difficulty score for
each combination of columns individually rather than group-
ing them as all odds, all evens, etc. Yet another generaliza-
tion could vary the weights for spaces based on the current
positions of the colored markers so that near the end of the
game progress is valued more in columns that are near com-
pletion than in columns that are unlikely to be finished be-
fore the game is over.

Genetic Algorithm

We used a genetic algorithm to optimize the various param-
eters in the generalized heuristics. The fitness of an indi-
vidual strategy is taken to be the expected number of turns
that strategy takes to finish the solitaire game. Two different
genomes were used. There are 18 parameters encoded in the
first genome: (p2, . . . , p7, v2, . . . , v7, e, o, h, l, k, t) where

1. the pi are the progress weights for each column (with
p12 = p2, p11 = p3, etc.), the vi are the move weights
for each column;

2. e, o, h, and l are the difficulty scores for all even columns,
all odd columns, all high columns, and all low columns
respectively;

3. k is the penalty for using a marker; and

4. t is the threshold that determines when to end a turn.

423

7

2

3

4

5

6 8

9

10

11

12

7

11

15

1

2

3

4

5

2

4

6

8

10

12

2

5

8

14

17

20

23

26

1

2

3

9

4

5

6

7

8

9

10

11

4

5

6

7

8

11

10

11

12

13

14

15

16

11

15

1

2

3

4

5

2

14

6

8

10

12

2

5

14

17

20

23

26

1

2

3

4

5

7

8

10

11

Figure 3: A Can’t Stop position with linear move weights.

The column weights are encoded using three bits each (for a
range of 0-7), the difficulty scores and penalties using four
bits each (for a range of -8 to 7), and the threshold is encoded
using five bits (for a range of 0-31), for a total of 61 bits. We
will refer to this as the Constant Weights Genome.

Note that the weights are not normalized: a strategy with
genome (2, 2, . . . , 2, 28) would behave identically to one
with genome (1, 1, . . . , 1, 14). For this reason, it is expected
that some of the alleles will take on their maximum possible
values in order to maximize resolution.

The second genome allows the move weights to vary
within a column, but not in the most general way. In-
stead, the weights within a column are assumed to be a
linear function of the position within the column. Every-
thing else is as in the first genome, except that l = h so
l is not encoded separately. This second genome is then
(p2, . . . , p7, m2, ..., m7, b2, ..., b7, e, o, h, k, t) where the mi

and the bi are the slopes and intercepts respectively of the
linear function that determines the move weights within col-
umn i:

xij = �mi ·
j

li
+ bi�

where li is the length of column i. When five bits are used
to encode each slope (with the 32 possible values chosen
somewhat arbitrarily from between 0 and 64) and three for
each intercept (range 0-7), this genome uses 87 bits. We will
refer to this as the Linear Weights Genome.

For example, suppose the current game position and
weights for each square are as in Figure 3 with a penalty
of 6 for using a neutral marker. The two possible moves are
again advancing one space in column 8 or one space in both
of columns 5 and 7. The move value is 10 for the first move
and 14 + 4 − 6 = 12 for the second, so the strategy would
suggest making the second move.

Note that both genomes can encode the Rule of 28.

Results
The genetic algorithm was run using standard bit string op-
erators. In particular, we use double-point crossover and
children replace their parents. Each bit in the children is
flipped with probability 0.04. We use two-round tournament
selection to determine crossover pairs, with fitness values
estimated by simulation of several games (see below for a
discussion of how the accuracy of the estimations affects the
results).

Comparisons

We have run the genetic algorithm using the Constant
Weights Genome with many different parameters. The pa-
rameters describing the best strategy evolved can be found
in Table 1. Over 250,000 games, it averaged 9.12 turns to
finish, an 18% improvement over the Rule of 28. In compar-
ison to the Rule of 28, the progress weights increase more
slowly until column 3 and 2, where they are at the maximum
value possible in the genome. The choice weights show a
strong preference for choosing columns 2 and 12, with the
odd columns completely out of favor except for column 7.

Table 1: Overall Constant Weights Champion.

Column Progress Move

2,12 7 7
3,11 7 0
4,10 3 2
5,9 2 0
6,8 2 4
7 1 3

Difficulty Scores

odds 7
evens 1
highs 6
lows 5

marker 6

threshold 29

For the Linear Weights Genome the best strategy evolved
achieves an average score of 9.05. Its parameters are given in
Table 2. It mirrors the Constant Weights Genome champion
in assigning little value to the odd columns (again, except
for column 7) and very high value to the outer columns. It is
interesting that the progress weights are very similar to those
in the Rule of 28, suggesting that the Rule of 28 is a good
strategy for determining when to roll again or stop when it
is paired with a good strategy for choosing how to group the
dice.

We have also run the genetic algorithm using the Linear
Weights Genome for every version of Can’t Stop from the
official version ((6, 3) Can’t Stop) down to the very simpli-
fied (2, 1) Can’t Stop. Table 3 compares the best strategy
found using the genetic algorithm to the Rule of 28 (or an
analagous strategy for simplified versions) and to the opti-
mal strategy (where available).

Finally, we have run the champions found by the genetic
algorithms against each other and against the Rule of 28 in

424

Table 2: Overall Linear Weights Champion.

Column Progress Move
2,12 7 64x + 7
3,11 6 24x + 1
4,10 4 28x + 2
5,9 3 8x + 1
6,8 2 18x + 3
7 1 12x + 4

Difficulty Scores
odds 1
evens 0
highs -4
lows -4

marker 4

threshold 24

Table 3: Comparison of Can’t Stop Strategies.

(n, k) Optimal Linear Weights Rule of N N

(2, 1) 1.298 1.30 1.39 19
(2, 2) 1.347 1.37 1.56 29
(2, 3) 1.400 1.46 1.74 26
(3, 1) 1.480 1.60 1.87 26
(3, 2) 1.722 1.85 2.43 25
(3, 3) 1.890 2.12 2.83 30
(4, 1) 2.187 2.75 2.85 30
(4, 2) 2.454 3.06 3.45 35
(4, 3) 2.700 3.47 4.32 40
(5, 1) 2.791 4.37 5.03 26
(5, 2) 3.396 4.74 6.26 28
(5, 3) 6.15 7.45 27
(6, 1) 6.40 7.67 27
(6, 2) 7.15 9.38 28
(6, 3) 9.05 10.7 28

2-player games. In this setting, the strategies make decisions
without considering the positions occupied by the oppos-
ing player. Probabilities of Player 1 winning are given for
each combination of players in Table 4 (10,000 games sim-
ulated for each combination). Note that although the Linear
Weights Genome champion performs better than the Con-
stant Weights champion in the solitaire game, it performs
worse head to head.

Effect of Noise

One challenge when using evolutionary algorithms in this
context of stochastic games is that estimating the fitness val-
ues by simulation can be extremely noisy. In the case of
Can’t Stop we find that the standard deviation of the number
of turns used by the Rule of 28 is approximately 3.25 (30%
of the mean) and for the Linear Weights champion it is ap-
proximately 2.30. In addition, we suspect that the objective
function is highly multi-modal and that maintaining diver-
sity (or, in evolution strategy terms, balancing exploitation

Table 4: Head to Head Performance.

P1
P2 Rule of 28 Constant Linear

Rule of 28 - 0.74 0.71
Constant 0.36 - 0.54
Linear 0.38 0.56 -

and exploration) will be essential and difficult.

Arnold & Beyer (2003) find that evolution strategies are
more robust than other optimization algorithms in a simple
environment with high levels of noise, however, efficiency
still drops with increased noise. These results clearly sug-
gest that noise should be reduced by repeated sampling,
but this must be balanced against the extra time it takes to
obtain the additional samples. Fitzpatrick & Grefenstette
(1988) suggest that in noisy environments and given a fixed
number of function evaluations, it is better to have a larger
population with fewer evaluations than a smaller popula-
tion with more evaluations (and hence less noise). Glenn
(2007), working in a context similar to Can’t Stop (solitaire
Yahtzee), presents preliminary evidence that supports that,
although the improvement is in the average fitness of each
generation; nothing about the improvement (if any) in the
best individual is reported. However, Arnold and Beyer re-
port that for low levels of noise efficiency drops as popula-
tion size increases. Jin & Branke (2005) survey more an-
swers to this question, along with many other approaches to
dealing with noise.

We have run the genetic algorithm with different pop-
ulation sizes. In each case we modified the number of
games simulated when estimating the fitness values so that
the number of games simulated during a single generation
would remain constant. The genetic algorithm was run for
20 generations; this is a few generations past where the algo-
rithm stagnates. After the final generation, many more sam-
ples were taken to better estimate the fitnesses. The same
number of samples were used during this final estimation
regardless of the population size because we want equally
good estimates of the best individuals’ fitnesses for each run
of the genetic algorithm. In Table 5 we report the mean fit-
ness of the final population and the mean fitness of the best
individual in the final population. We also report the mean
fitness of the best individual among the first 100 arbitrarily
chosen from the final generation. This reflects the best indi-
vidual that could be found if we desired to preserve the ac-
curacy of the final estimation yet have the number of games
simulated after the final generation not vary with the popu-
lation size.

It is clear that the mean fitness of the final generation de-
creases as the population size increases. However, it is also
clear that the fitness of the best individual increases. This
is not surprising, since even if the average individual in the
larger populations is slightly worse, the fact that there are
many more of them increases the probability of an outlier.
The data for the best individual among the first 100 are less
conclusive. There appears to be no significant difference

425

Table 5: Effect of Population Size.

Final Best of Overall
Population Samples Gen. 1st 100 best

100 640 10.19 9.14 9.14
125 512 10.16 9.16 9.15
160 400 10.20 9.12 9.10
200 320 10.28 9.15 9.11
250 256 10.28 9.17 9.11
320 200 10.28 9.17 9.10
400 160 10.31 9.14 9.07
800 80 10.40 9.21 9.08

between population sizes of 100 and 400. The difference
between 400 and 800 is significant (p = 0.015); that is the
only difference between adjacent rows with p < 0.045. It is
possible (perhaps likely) that the lack of sensitivity to popu-
lation size is an effect of some of the other parameters of the
genetic algorithm. Further investigation is required.

Conclusion

We have generalized an existing heuristic for solitaire Can’t
Stop and run a genetic algorithm to optimize the parame-
ters of the generalizations. The simpler of the two genomes
yields a 18% improvement over the original heuristic. The
more expressive genome yields a further 1% improvement
in the average number of turns to complete the game. The
trade-off between reducing noise and getting more accurate
estimates of strategies’ fitnesses was examined and no ma-
jor effects were found in either direction for the particular
genetic algorithm used.

Future work will investigate even more expressive
genomes and more closely examine the effects of noise in
the evaluation function.

Acknowledgments

Christian Aloi was supported by the Hauber Fellowship pro-
gram in the College of Arts and Sciences at Loyola College
in Maryland.

References

Arnold, D., and Beyer, H.-G. 2003. A comparison of evolu-
tion strategies with other direct search methods in the pre-
sense of noise. Computational Optimization and Applica-
tions 24:135–159.

Bellman, R. E. 1957. Dynamic Programming. Princeton,
NJ, USA: Princeton University Press.

Dai, P., and Goldsmith, J. 2007. Topological value iteration
algorithm for Markov decision processes. In International
Joint Conferences on Artificial Intelligence, 1860–1865.

Fang, H. 2005a. The nature of retrograde analysis for Chi-
nese chess, part I. ICGA Journal 28(2):91–105.

Fang, H. 2005b. The nature of retrograde analysis for Chi-
nese chess, part II. ICGA Journal 28(3):140–152.

Fitzpatrick, J., and Grefenstette, J. 1988. Genetic algo-
rithms in noisy environments. Machine Learning 3:101–
120.

Gasser, R. 1996. Solving nine men’s Morris. Computa-
tional Intelligence 12:24–41.

Glenn, J.; Fang, H.; and Kruskal, C. P. 2008. Retrograde
approximate algorithms for some stochastic games. ICGA
Journal 31(2):77–96.

Glenn, J. 2006. An optimal strategy for Yahtzee. Technical
Report CS-TR-0002, Loyola College in Maryland, 4501 N.
Charles St, Baltimore MD 21210, USA.

Glenn, J. 2007. Computer strategies for solitaire Yahtzee.
In IEEE Symposium on Computational Intelligence and
Games (CIG 2007). 132–139.

Irving, G.; Donkers, J.; and Uiterwijk, J. 2000. Solving
Kalah. ICGA Journal 23(3):139–147.

Jin, Y., and Branke, J. 2005. Evolutionary optimization in
uncertain environments – a survey. IEEE Transactions on
Evolutionary Computation 9(3):303–317.

Keller, M. 1986. Can’t stop? Try the rule
of 28. World Game Review 6. See also
http://www.solitairelaboratory.com/cantstop.html last
visited Nov. 22, 2008.

Lake, R.; Schaeffer, J.; and Lu, P. 1994. Solving large ret-
rograde analysis problems using a network of workstations.
In van den Herik, H.; Herschberg, I. S.; and Uiterwijk,
J., eds., Advances in Computer Games VII. Maastricht. the
Netherlands: University of Limburg. 135–162.

Romein, J., and Bal, H. 2003. Solving the game of
Awari using parallel retrograde analysis. IEEE Computer
36(10):26–33.

Sackson, S. 2007. Can’t Stop. Providence, RI, USA: Face
2 Face Games. Boxed game set.

Schaeffer, J.; Björnsson, Y.; Burch, N.; Lake, R.; Lu, P.;
and Sutphen, S. 2004. Building the checkers 10-piece
endgame databases. In van den Herik, H.; Iida, H.; and
Heinz, E., eds., Advances in Computer Games 10. Many
Games, Many Challenges. Boston, USA: Kluwer Aca-
demic Publishers. 193–210.

Ströhlein, T. 1970. Untersuchungen über kombinatorische
Spiele. Ph.D. Dissertation, Fakultät für Allegemeine Wis-
senschaften der Technischen Hochschule München, Mu-
nich.

Thompson, K. 1986. Retrograde analysis of certain
endgames. ICCA Journal 9(3):131–139.

Thompson, K. 1996. 6-piece endgames. ICCA Journal
19(4):215–226.

Woodward, P. 2003. Yahtzee: The solution. Chance
16(1):18–22.

Wu, R., and Beal, D. 2001. Fast, memory-efficient retro-
grade algorithms. ICGA Journal 24(3):147–159.

426

