
Multiple Answer Extraction for Question Answering
with Automated Theorem Proving Systems

Geoff Sutcliffe and Aparna Yerikalapudi and Steven Trac
University of Miami, USA

Abstract

The Multiple ANSwer EXtraction system is a framework for
interpreting a conjecture with outermost existentially quanti-
fied variables as a question, and extracting multiple answers
to the question by repetitive calls to a base system that can re-
port the bindings for the variables in one proof of the conjec-
ture. This paper describes the framework and demonstrates
its use on an illustrative example.

Introduction

The use of theorem proving to implement question answer-
ing has received intermittent attention since the early days
of automated reasoning (Slagle 1965; Green 1969; Minker,
Fishman, and McSkimin 1973; Baumgartner, Furbach, and
Stolzenburg 1997; Burhans 2002; Waldinger 2007). The
standard approach is to treat a conjecture with outermost
existentially quantified variables - the answer variables -
as a question, and report the bindings for the answer vari-
ables in a proof, as an answer to the question. If multiple
proofs are available, correspondingly multiple answers are
available (although multiple proofs may return the same an-
swer if they generate the same variable bindings). If the
conjecture is used more than once in a proof, a disjunctive
answer is returned, with the bindings from each use form-
ing one alternative of the answer. Regardless of the minor
variations, the capability of returning such answers is im-
portant to users of reasoning systems, particularly for appli-
cations in common sense/knowledge based reasoning over
real world data, e.g., (Curtis, Matthews, and Baxter 2005;
Kasneci et al. 2008). The framework described in this paper
has been developed in the context of Automated Theorem
Proving (ATP) for first-order logic with equality.

Few modern ATP systems are able to return answers. Ex-
amples of systems that do are Otter (McCune 1994), the
customized version of Vampire used in the Sigma Knowl-
edge Engineering Environment (SigmaKEE) (Pease 2003),
and SNARK (Stickel URL). These systems are all capa-
ble of returning multiple answers, by searching for multi-
ple proofs. Their question answering capabilities have been
used in more complex reasoning systems, SigmaKEE in the
case of Vampire, the Amphion project (Stickel et al. 1994)

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and BioDeducta (Shrager et al. 2007) (as examples) in the
case of SNARK. Sadly Otter and the customized Vampire
are older, and now unsupported, systems.

The limited availability of question answering in mod-
ern ATP systems, and the desire to be able to use the best
state-of-the-art systems for reasoning and question answer-
ing, motivated the development of the framework described
in this paper.1 The approach taken is to provide a base sys-
tem that can return a single definite answer to a question, and
to obtain multiple such answers by repeated calls to that sys-
tem. At each iteration the conjecture is augmented to deny
previously extracted answers, so that successive answers are
different. The base system is able to use any ATP system
that returns a TPTP format proof (Sutcliffe et al. 2006) (or a
proof that can be translated into TPTP format), from which
proof analysis and further ATP system runs provide the nec-
essary single answers. The base system is thus able to lever-
age the power of many modern state-of-the-art ATP systems.

The use of a separate underlying system to return single
answers means that issues of answer completeness, answer
optimality, etc, are largely relegated to the underlying sys-
tem. Their calculi, implementation, and other properties are
important, but beyond the control of the implemented frame-
work per se. The selection of the underlying system to use in
the framework is of course within the control of the user of
the framework, and that selection can affect the performance
and properties of the framework. Investigation of these is-
sues in the context of the framework will be worthwhile.
Additionally, the implemented framework does not yet re-
turn disjunctive answer when the conjecture is used multiple
times.

Notation and a Running Example

The system framework has been developed using various
components of the TPTPWorld (Sutcliffe 2007). All logi-
cal data is written in the TPTP language (Sutcliffe and Sut-
tner URL), A TPTP annotated formula has the form lan-
guage(name,role,formula). The languages currently sup-
ported are fof - formulae in full first order form, and cnf -
formulae in clause normal form. The name identifies the for-
mula within the problem, but might not be unique (unique-

1There is scant hope that ATP system developers will add ques-
tion answering to their systems without significant inducement.

105

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

ness is not enforced to allow users of the TPTP language to
be “lazy” if they want). The role gives the user semantics of
the formula, e.g., axiom, lemma, conjecture, and hence
defines its use in an ATP system. The logical formula, in ei-
ther FOF or CNF, uses a Prolog-like syntax: variables start
with upper case letters, atoms and terms are written in prefix
notation, uninterpreted predicates and functors either start
with lower case and contain alphanumerics and underscore,
or are in ’single quotes’. The only unary connec-
tive is ∼ for negation. The binary connectives are &, |, =>,
<=, <=>, and <∼>, for conjunction, disjunction, implication,
reverse implication, equivalence, and inequivalence respec-
tively. The universal and existential quantifiers are ! and ?
respectively, with the quantified variables following in []
brackets.

Results from ATP systems are expressed using the
SZS ontology using the SZS format for reporting results
(Sutcliffe 2008). The new formula role question has
been proposed for conjectures for which answers are
required, and an SZS format extension has been pro-
posed for reporting answers.2 The “instantiated form”
of the proposed format has been used in this work, in
which an answer is given by the question formula with
the existentially quantified variables instantiated to the
answer values. Multiple answers are written as a comma
separated list of instantiated formulae, in [] brackets, e.g.,
[p(a,b),p(b,Z),p(a,c)]. (This format thus maintains
the TPTP’s Prolog compatibility.) The format for reporting
answers parallels the format for reporting results, and is
SZS answers instantiated for problem answers

For example
SZS answers instantiated for ANS001+1 [p(a,b),p(b,Z),p(a,c)]

The following problem will be used as a running example
through this paper.

fof(pab,axiom, p(a,b)).
fof(pafbc,axiom, p(a,f(b,c))).
fof(pbZ,axiom, ! [Z] : p(b,Z)).
fof(pZc,axiom, ! [Z] : p(Z,c)).
fof(a_not_b,axiom, a != b).
fof(a_is_c,axiom, a = c).
fof(pXY,question, ? [X,Y] : p(X,Y)).

One possible list of answers is
[p(a,b),p(b,Z),p(a,c)], but there are others, as
is explained in the following sections.

Basic Multiple Answer Extraction

The basic multiple answer extraction framework is built over
a base system that returns a single answer. The base system
uses an ATP system to produce a TPTP format proof for the
conjecture. The proof may be produced natively in TPTP
format by the ATP system, e.g., by EP (Schulz 2002), or
may be translated from the ATP system’s format to the TPTP
format using the TPTPWorld’s X2tstp utility, e.g., proofs
output by Vampire (Riazanov and Voronkov 2002). The
proof must include the FOF to CNF translation steps. The

2See the proposal at http://www.tptp.org/TPTP/
Proposals/AnswerExtraction.html

TPTP format proof is passed to the One Answer Extraction
System (OAESys) – a tool for extracting the bindings for
answer variables, from a TPTP format proof of the conjec-
ture.

TPTP format proofs from most ATP system do not record
the substitutions made in each inference step, as are needed
to extract the bindings for the answer variables. Therefore,
OAESys starts by reproving the conjecture using the Metis
system (Hurd 2003), from only the axioms used in the orig-
inal proof. Metis (is the only system that we know of that)
outputs TPTP format proofs with details of the substitutions
made in each inference step. Metis’ proof is analysed by
identifying the answer variables in the conjecture, tracing
the path from the conjecture to the root of the proof (a false
node, as Metis’ does proof by contradiction of the clause
normal form of the problem), and recording the variable
bindings made in each inference step on the path. The com-
position of these substitutions provides the bindings for the
answer variables.

Giving Metis only the axioms used in the original proof
(rather than all the axioms in the original problem) makes
it most probable that Metis will find a proof with the same
answer variable bindings as the original proof. If the axioms
used are a subset of the axioms that were available in the
original problem, the problem given to Metis could be sig-
nificantly easier than the original problem. OAESys also
has an option to form a potentially even easier problem for
Metis, to prove the conjecture from the axioms and lem-
mas that are side-formulae of inferences on the path from
the conjecture to the root of the original proof. Analysis of
Metis’ proof of this problem also provides the answer vari-
able bindings. It is of note that the reproving by Metis pro-
vides a level of verification for the original systems’ proof, in
the sense of semantic derivation verification (Sutcliffe 2006)
- if Metis is trusted then the ATP system that finds the orig-
inal proof need not be trusted. In the unlikely event that
Metis is unable to reprove the conjecture, the framework
capitulates, and responds as if a proof had not been found
by the original ATP system.

The ATP+OAESys base system can be replaced by any
ATP system that can return an answer by itself, e.g., one
of those mentioned in the introduction, but of those only
SNARK is currently supported and capable of returning an
answer in the SZS format.

After an answer has been found by the base system, the
multiple answer extraction framework augments the conjec-
ture to deny previously extracted answers. This can be done
in two ways. If the problem contains inequality informa-
tion, the conjecture is conjoined with inequality constraints
that require each previous answer to have an element that
is unequal to the corresponding element of the next answer.
For the running example, after the first answer p(a,b) the
question is augmented to
fof(pXY,question,

? [X,Y] :
(p(X,Y)
& (X != a | Y != b))).

This produces the second answer p(b,Z), and the ques-
tion is augmented to

106

fof(pXY,question,
? [X,Y] : ! [Z] :

(p(X,Y)
& (X != a | Y != b)
& (X != b | Y != Z))).

Note that the universally quantified variable from the sec-
ond answer is universally quantified inside the existentially
quantified variables of the question. This produces the third
answer p(a,c), and the question is augmented to

fof(pXY,question,
? [X,Y] : ! [Z] :

(p(X,Y)
& (X != a | Y != b)
& (X != b | Y != Z)
& (X != a | Y != c))).

This question cannot be proved, so the final list of an-
swers is [p(a,b),p(b,Z),p(a,c)]. In these answers a
and c are interchangeable because they are equal. Thus the
answers returned depend on the reasoning done by the base
system.

Many problems do not contain enough inequality infor-
mation to prove the augmented questions. This may be be-
cause equality is not part of the problem specification, be-
cause inequality is not necessary for finding a proof (for the
original question), or because there is an implicit or explicit
unique names assumption. In this case, rather than requiring
answer elements to be unequal, they are required to “look
different”. After each answer is extracted, axioms are added
that specify what terms look different. For each function
symbol (including constants) in the answer, new axioms are
added to specify that terms with that principle symbol look
different to terms with any other principle symbol. Addition-
ally the axiom of symmetry for looking different is provided.
The question is then conjoined with constraints that require
each previous answer to have an element that looks different
to the corresponding element of the next answer, analogous
to the inequality constraints. For the running example, after
the first answer p(a,b), the axioms

fof(ld__symmetry,axiom,
! [X,Y] :

(ld__(X,Y) => ld__(Y,X))).
fof(ld__a_b,axiom, ld__(a,b)).
fof(ld__a_c,axiom, ld__(a,c)).
fof(ld__a_f,axiom,
! [X,Y] : ld__(a,f(X,Y))).

fof(ld__b_c,axiom, ld__(b,c)).
fof(ld__b_f,axiom,
! [X,Y] : ld__(b,f(X,Y))).

are added, and the question is augmented to

fof(pXY,question,
? [X,Y] :

(p(X,Y)
& (ld__(X,a) | ld__(Y,b)))).

This results in the second answer p(a,f(b,c)), after
which the axioms

fof(ld__c_f,axiom,
! [X,Y] : ld__(c,f(X,Y))).

fof(ld__f_f,axiom,
! [X11,X12,X21,X22] :
((ld__(X11,X12) | ld__(X21,X22))
=> ld__(f(X11,X21),f(X12,X22)))).

are added, and the question is augmented to
fof(pXY,question,

? [X,Y] :
(p(X,Y)
& (ld__(X,a) | ld__(Y,b))
& (ld__(X,a) | ld__(Y,f(b,c))))).

This results in the third answer p(b,Z), etc.
The final list of answers for the running example
is [p(a,b), p(a,f(b,c)), p(b,Z), p(a,c),
p(c,c), p(f(X,Y),c)]. The first two answers are
neither equal nor unequal, the fourth and fifth are equal, and
the last is neither equal nor unequal to the fourth or fifth.

The incremental addition of the looks-different axioms af-
ter each answer is extracted is important. The number of ax-
ioms is polynomial in the number of function symbols, so
for problems with a large number of function symbols (as
is often the case in common sense/knowledge based reason-
ing) adding all the axioms in advance is likely to degrade
the performance of the base system. Only the axioms for
the function symbols in the answers extracted so far are nec-
essary at each iteration, and the number of such axioms is
linear in the number of symbols in the axioms and the num-
ber of symbols in the answers extracted so far.

The looks-different approach can run into difficulties if
used on problems that have positive equality information.
Consider the following example:
fof(pa,axiom, p(a)).
fof(pb,axiom, p(b)).
fof(a_is_b,axiom, a = b).
fof(pX,question, ? [X] : p(X)).

This problem does not have any inequality information,
which suggests use of the looks-different approach. After
the first answer p(a) has been returned, the looks-different
axioms that are added are
fof(ld__symmetry,axiom,

! [X,Y] :
(ld__(X,Y) => ld__(Y,X))).

fof(ld__a_b,axiom, ld__(a,b)).

and the question is augmented to
fof(pX,question,

? [X] : (p(X) & ld__(X,a))).

Equality reasoning between the a is b and ld a b ax-
ioms can produce the result that ld (a,a), which in turn
allows the question to be answered with p(a) again (and
again, and again). This undesirable repetition is an artifact of
using the looks-different approach due to a lack of inequal-
ity information, in the face of some equality information -
you can’t have your cake and eat it. Possible solutions are to
drop back into requiring inequality of new solutions with the
existing solution, or terminating the multiple answer extrac-
tion. The current implementation adopts the (simpler) latter
approach.

107

Within the multiple answer extraction framework, when
the base system times out because it cannot find a proof, a
model finder, e.g., Paradox (Claessen and Sorensson 2003),
Darwin (Baumgartner, Fuchs, and Tinelli 2006), Mace4
(McCune 2003), etc., or saturating ATP system, e.g., EP,
SPASS (Weidenbach et al. 2007), etc., can be used to try
show that there are no more answers. If this is successful it
assures the user that all answers have been found, either with
respect to inequality or with respect to looking different.

This approach to extracting multiple answers differs from
that of asking the ATP system to find multiple proofs, in that
it does not allow the same answer to be returned multiple
times. If looks-different constraints are added then the an-
swers must be syntactically different, and if inequality con-
straints are added the answers must additionally be semanti-
cally different. For real world question answering might be
desirable to return multiple answers that look different, even
if some of them are equal - the effect is to return synonyms
for answers. For example, it might be useful to answer
the question ? [X] : author(X,jabberwocky) with
the tuple [auther(’Lewis Carroll’,jabberwocky),
author(’Charles Dodgson’,jabberwocky)]. If such
multiple answers are required then the looks-different can
be used even if inequality information is given, but it is then
necessary to tolerate the possibile undesirable interaction de-
scribed above.

Equality Testing Looks-different Answers

The basic system described in the previous section either
uses inequality reasoning, or ignores inequality information
and uses the looks-different approach. It is possible for a
problem to have some equality and inequality information,
but not enough to use only the inequality approach. Equal-
ity testing of looks-different answers acknowledges this sit-
uation, and uses the looks-different approach followed by
equality and inequality reasoning to test whether or not each
new answer is equal or unequal to previous answers. The
tests are in the form of conjectures built from equalities and
inequalities, to be proved (by a theorem proving ATP sys-
tem) or shown unprovable (by a model finder or saturating
ATP system) from the axioms. The ATP systems used might
fail to solve the problems posed, either because the problem
is not solvable, or because the problem is too hard for the
system within the CPU limit imposed. Therefore a series of
tests of decreasing strength are available, and the extent to
which these are used is controlled by a user parameter.

After an answer has been extracted using the looks-
different approach, the first test tries to prove that the an-
swer is unequal to all previous answers. If this succeeds the
answer is accepted. For the running example, following the
first two answers p(a,b) and p(a,f(b,c)), the next an-
swer returned by the base system is p(b,Z). The conjecture
to prove is

fof(new,conjecture,
(? [Z] :

(b != a | Z != b)
& ? [Z] :

(b != a | Z != f(b,c)))).

which succeeds and the answer is accepted. Universally
quantified variables from the new answer are existentially
quantified in each conjunct of the conjecture because any in-
stantiation for the variables makes the new answer unequal
to the previous answer. Variables in previous answers would
be universally quantified inside such existential quantifica-
tion.

If the first test fails, the second test is used to try prove
that the new answer is equal to any previous answer. If this
succeeds the answer is reported to be equal to that previ-
ous answer and rejected. It’s symbols are however used for
adding looks-different axioms for the next iteration of the
framework. For the running example, this case occurs after
the first four answers p(a,b), p(a,f(b,c)), p(b,Z), and
p(a,c). The next answer returned by the base system is
p(c,c). The conjecture to prove is
fof(old,conjecture,

((c = a & c = b)
| (c = a & c = f(b,c))
| ? [Z] : (c = b & c = Z)
| (c = a & c = c))).

which succeeds because the last disjunct is true, and the
answer is rejected. Universally quantified variables from the
previous answer are existentially quantified in each disjunct
of the conjecture because any instantiation for the variables
makes the previous answer equal to the new answer. Vari-
ables in the new answer would be universally quantified out-
side such existential quantification.

If the second test fails and the user has not specified use
of weak tests, the answer is rejected (with it’s symbols being
retained for adding looks-different axioms). If the user has
specified use of weak tests then the third test tries to show
that the new answer cannot be proven equal to any previous
answer. If this succeeds the answer is accepted. The con-
jecture to be shown counter-satisfiable is the same as for the
second test. For the running example, this case occurs fol-
lowing the first answer p(a,b). The next answer returned
by the base system is p(a,f(b,c)). The conjecture to be
shown counter-satisfiable is

fof(old,conjecture,
(a = a
& f(b,c) = b)).

which succeeds because the second conjunct cannot be
proved, and the answer is accepted.

If the third test fails, the fourth test is used to try show
that the new answer cannot be proven unequal to all previ-
ous answers. If this succeeds the answer is rejected. The
conjecture to be shown counter-satisfiable is the same as for
the first test. For the running example, this case could occur
following the first three answers p(a,b), p(a,f(b,c)),
and p(b,Z). The next answer returned by the base system
is p(a,c). This answer is in fact accepted by the third test,
but imagine it’s not for the sake of illustration. The conjec-
ture to be shown counter-satisfiable would be
fof(new,conjecture,

((a != a | c != b)
& (a != a | c != f(b,c))
& ! [Z] : (a != b | c != Z))).

108

which succeeds, and the new answer is rejected.
If the fourth test fails the new answer is accepted.

Conclusion

Figure 1 shows the overall flow of the framework. The
framework has been implemented in perl, and is avail-
able for use through the SystemOnTPTP interface at http:
//www.tptp.org/SystemOnTPTP. The implementation
has additional features that allow the user to control the iter-
ative loop of the framework, to ask for, e.g., all answers, all
answers until a specified answer is found, all answers while
a specified answer has not been found, etc. The user can also
perform basic set operations on answer lists, e.g., asking if a
particular answer is an element of the list, whether the list is
a subset, equal set, or superset of a provided list, etc.

The basic framework has also been implemented in Java
within the Sigma Knowledge Engineering Environment
(SigmaKEE) (Pease 2003; Trac, Sutcliffe, and Pease 2008).
SigmaKEE is used primarily for interacting with the Sug-
gested Upper Merged Ontology (SUMO) (Niles and Pease
2001), in particular for reasoning and question answering
over the SUMO. Previously SigmaKEE relied on a cus-
tomized version of Vampire to answer user’s questions. The
integration of the basic framework has provided SigmaKEE
with more powerful options for question answering. In the
SigmaKEE context the answers are linked back into the
knowledge base that forms the axioms for the user’s queries.
This means that both the answer and the proof that produced
the answer are needed for presentation to the user. To pro-
vide both in a form consistent with the user’s original ques-
tion, the base system has been extended to remove the con-
jecture augmentations done for the second and subsequent
iterations, as follows. After each answer has been extracted
by OAESys, the answer variables in the original conjecture,
i.e., the conjecture without the augmentations, are instanti-
ated with the answer. This instantiated conjecture and just
the axioms used in the proof found by the ATP system are
passed to that ATP system. This additional ATP system run
finds a proof of the (instantiated form of the) original con-
jecture, rather than of the augmented conjecture. This exten-
sion also adds another level to the verification notion men-
tioned in the section describing basic multiple answer ex-
traction - now the original system may be trusted rather than
Metis.

Future work includes extending the framework to dis-
junctive answers, and studying to what extent the properties
of the underlying system (returning the single answers) are
transferred to the multiple answer extraction framework.

Acknowledgment: Thanks to Mark Stickel for his helpful
input, and adaptation of SNARK to the proposed SZS ques-
tion answering standards.

References

Baumgartner, P.; Fuchs, A.; and Tinelli, C. 2006. Im-
plementing the Model Evolution Calculus. International
Journal on Artificial Intelligence Tools 15(1):21–52.
Baumgartner, P.; Furbach, U.; and Stolzenburg, F. 1997.

Computing Answers with Model Elimination. Artificial In-
telligence 90:135–176.
Burhans, D. 2002. A Question Answering Interpretation
of Resolution Refutation. Technical Report Technical Re-
port 2002-03, Department of Computer Science and Engi-
neering, State University of New York at Buffalo, Buffalo,
USA.
Claessen, K., and Sorensson, N. 2003. New Techniques
that Improve MACE-style Finite Model Finding. In Baum-
gartner, P., and Fermueller, C., eds., Proceedings of the
CADE-19 Workshop: Model Computation - Principles, Al-
gorithms, Applications.
Curtis, J.; Matthews, G.; and Baxter, D. 2005. On the Ef-
fective Use of Cyc in a Question Answering System. In
Benamara, F.; Moens, M.; and Saint-Dizier, P., eds., Pro-
ceedings of the Workshop on Knowledge and Reasoning for
Answering Questions, 19th International Joint Conference
on Artificial Intelligence, 61–70.
Green, C. 1969. Theorem Proving as a Basis for Question-
answering Systems. Machine Intelligence 4:183–205.
Hurd, J. 2003. First-Order Proof Tactics in Higher-Order
Logic Theorem Provers. In Archer, M.; Di Vito, B.;
and Munoz, C., eds., Proceedings of the 1st International
Workshop on Design and Application of Strategies/Tactics
in Higher Order Logics, number NASA/CP-2003-212448
in NASA Technical Reports, 56–68.
Kasneci, G.; Suchanek, F.; Ifrim, G.; Ramanath, M.; and
Weikum, G. 2008. NAGA: Searching and Ranking Knowl-
edge. In Alonso, G.; Blakeley, J.; and Chen, A., eds., Pro-
ceedings of the 24th International Conference on Data En-
gineering, 697–706.
McCune, W. 1994. Otter 3.0 Reference Manual and Guide.
Technical Report ANL-94/6, Argonne National Labora-
tory, Argonne, USA.
McCune, W. 2003. Mace4 Reference Manual and Guide.
Technical Report ANL/MCS-TM-264, Argonne National
Laboratory, Argonne, USA.
Minker, J.; Fishman, D.; and McSkimin, J. 1973. The Q*
Algorithm - A Search Strategy for a Deductive Question-
Answering System. Artificial Intelligence 4:225–243.
Niles, I., and Pease, A. 2001. Towards A Standard Upper
Ontology. In Welty, C., and Smith, B., eds., Proceedings
of the 2nd International Conference on Formal Ontology in
Information Systems, 2–9.
Pease, A. 2003. The Sigma Ontology Development En-
vironment. In Giunchiglia, F.; Gomez-Perez, A.; Pease,
A.; Stuckenschmidt, H.; Sure, Y.; and Willmott, S., eds.,
Proceedings of the IJCAI-03 Workshop on Ontologies and
Distributed Systems, number 71 in CEUR Workshop Pro-
ceedings.
Riazanov, A., and Voronkov, A. 2002. The Design and Im-
plementation of Vampire. AI Communications 15(2-3):91–
110.
Schulz, S. 2002. E: A Brainiac Theorem Prover. AI Com-
munications 15(2-3):111–126.

109

Success

Weak

tests?

Equality present?

Prove answer

!= all previous

Prove answer

= any previous

Add != constraints.

Run base system

Show cannot

prove answer

= any previous

Show cannot

prove answer

!= all previous

Add ld__ axioms and constraints

Run base system

Equality testing?

Force ld__ mode?

Answer

Answer

FailFail

Fail

FailSuccess

No

NoYes

Yes

Yes

Yes

No

No

Reject answer,�

keep symbols

Accept

answer

Report = to previous

Stop. Check if�

all answers found

Fail

Fail

Start

Success Success

Figure 1: Multiple ANSwer Extraction framework

Shrager, J.; Waldinger, R.; Stickel, M.; and Massar, P.
2007. Deductive Biocomputing. PLoS ONE 2(4).
Slagle, J. 1965. A Proposed Preference Strategy using
Sufficiency Resolution for Answering Questions. Techni-
cal Report UCRL-14361, Lawrence Radiation Laboratory,
Livermore, USA.
Stickel, M.; Waldinger, R.; Lowry, M.; Pressburger, T.; and
Underwood, I. 1994. Deductive Composition of Astro-
nomical Software from Subroutine Libraries. In Bundy,
A., ed., Proceedings of the 12th International Conference
on Automated Deduction, number 814 in Lecture Notes in
Artificial Intelligence, 341–355. Springer-Verlag.
Stickel, M. URL. SNARK - SRI’s New Automated Rea-
soning Kit. http://www.ai.sri.com/ stickel/snark.html.
Sutcliffe, G., and Suttner, C. URL. The TPTP Problem
Library. http://www.TPTP.org.
Sutcliffe, G.; Schulz, S.; Claessen, K.; and Van Gelder, A.
2006. Using the TPTP Language for Writing Derivations
and Finite Interpretations. In Furbach, U., and Shankar, N.,
eds., Proceedings of the 3rd International Joint Conference
on Automated Reasoning, number 4130 in Lecture Notes in
Artificial Intelligence, 67–81.
Sutcliffe, G. 2006. Semantic Derivation Verifica-
tion. International Journal on Artificial Intelligence Tools
15(6):1053–1070.
Sutcliffe, G. 2007. TPTP, TSTP, CASC, etc. In Diekert,
V.; Volkov, M.; and Voronkov, A., eds., Proceedings of the
2nd International Computer Science Symposium in Russia,
number 4649 in Lecture Notes in Computer Science, 7–23.
Springer-Verlag.
Sutcliffe, G. 2008. The SZS Ontologies for Auto-
mated Reasoning Software. In Sutcliffe, G.; Rudnicki, P.;
Schmidt, R.; Konev, B.; and Schulz, S., eds., Proceedings
of the LPAR Workshops: Knowledge Exchange: Automated
Provers and Proof Assistants, and The 7th International

Workshop on the Implementation of Logics, number 418 in
CEUR Workshop Proceedings, 38–49.
Trac, S.; Sutcliffe, G.; and Pease, A. 2008. Integra-
tion of the TPTPWorld into SigmaKEE. In Schmidt, R.;
Konev, B.; and Schulz, S., eds., Proceedings of the Work-
shop on Practical Aspects of Automated Reasoning, 4th
International Joint Conference on Automated Reasoning,
Accepted.
Waldinger, R. 2007. Whatever Happened to Deuctive
Question Answering? In Dershowitz, N., and Voronkov,
A., eds., Proceedings of the 14th International Confer-
ence on Logic for Programming, Artificial Intelligence, and
Reasoning, number 4790 in Lecture Notes in Artificial In-
telligence, 15–16.
Weidenbach, C.; Schmidt, R.; Hillenbrand, T.; Rusev, R.;
and Topic, D. 2007. SPASS Version 3.0. In Pfenning,
F., ed., Proceedings of the 21st International Conference
on Automated Deduction, number 4603 in Lecture Notes
in Artificial Intelligence, 514–520. Springer-Verlag.

110

