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Abstract 
 
      Ensuring the consistency and completeness of Semantic 

Web ontologies is practically impossible, because of their 
scale and highly dynamic nature. Many web applications, 
therefore, must deal with vague, incomplete and even 
inconsistent knowledge. Rules were shown to be very 
effective in processing such knowledge, and future web 
services are expected to depend heavily on them. RuleML, 
which is the earliest effort to define a normalized markup 
for representing and exchanging rules on the web, is 
currently limited to Horn rules. Significant research 
efforts are underway to extend RuleML with more flexible 
representation and reasoning capabilities. This paper 
presents an extension of the current rule format intended 
to accommodate uncertain and/or inconsistent knowledge, 
and shows how one truth maintenance logic can be 
adapted and extended to support such rules.  

Introduction 
Semantic Web is envisioned to extend and dramatically 
improve current web services by creating and supporting a 
universal medium for information exchange accessible to 
people and machines alike. Current web, although a huge 
success,  is nothing more than just a collection of human-
readable pages which people, helped by web browsers, 
navigate to find, share and combine information. Often this 
process is slow, tedious, and inefficient. Consider, for 
example, business-to-consumer e-commerce. To buy a 
product, a consumer visits several online shops to compare 
(manually) their prices, special offers, etc. with no 
guarantee that the “best deal” will be found because of the 
limited search involved. Compare this ad-hoc approach to 
the following scenario. The customer enters desired 
product specifications and leaves the rest of the search to 
his computer. The latter autonomously navigates through 
online retailers offering the product, collects and evaluates 
_____________________________ 
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offers, and returns one or several best offers to the 
customer for final decision. To implement this scenario, we 
must ensure the following:  
 
1. The domain navigated by the computer is represented 

in a machine-understandable form.  
2. An inference engine able to process incomplete, 

uncertain and possibly inconsistent knowledge in order 
to adequately match customer specifications to product 
descriptions found on the web is in place.  

 
In the past decade, a lot of research coordinated by the 
World Wide Web Consortium (W3C) (http://www.w3.org/) 
was devoted to addressing the first challenge. A number of 
ontology languages for the Semantic Web were introduced; 
RDF, RDFS and OWL are among the best known ones.  
RDF and RDFS target simple typed ontologies where data 
is completely and consistently specified. OWL, which was 
recently recommended by W3C as a standard web ontology 
language, provides more expressive representation, but its 
inference capabilities are limited to satisfiability, 
subsumption, equivalence and disjointness. Composition of 
properties cannot be expressed in OWL, thus making it 
inadequate to tackle the second challenge above.  

As the size of ontologies and the complexity of applications 
grow, uncertainty, incompleteness and inconsistency are 
becoming common properties of ontological knowledge.  
Rules were shown to be very effective in processing such 
knowledge, and future Semantic Web services are expected 
to depend heavily on them. The RuleML initiative 
(http://www.ruleml.org/) is the earliest effort to define a 
normalized markup for representing and exchanging rules 
on the Semantic Web. Current RuleML is limited to Horn 
rules, but significant research efforts are underway to 
extend it with more flexible representation and reasoning 
capabilities (Lukasiewicz 2008; Damasio et al. 2007).  
Most of this research is based on non-classical logics 
(probabilistic, fuzzy, possibilistic, etc.) which are primarily 
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concerned with uncertainty and incompleteness of 
knowledge, assuming its consistency.  Semantic Web, 
being an open and highly dynamic environment, will 
inevitably contain inconsistencies. The importance of their 
adequate processing in order to maintain the validity of 
ontological knowledge has been widely acknowledged by 
the Semantic Web community, but little work has been 
done so far to develop techniques and tools for reasoning 
with inconsistent knowledge ((Huang, van Harmelen, and 
ten Teije 2006) and (Schobach and Corner 2003) are 
notable exceptions). 

In this paper, we argue that ensuring the consistency of 
large Semantic Web ontologies “composed of concepts 
which are to some extend valid in a domain, relations that 
hold to some degree of certainty, and rules that apply only 
in some cases” (Davis et al. 2006) is practically impossible; 
inconsistencies will be an intrinsic part of ontological 
knowledge and must be treated as first class citizens. That 
is, the inference procedure must be able to identify and 
maintain inconsistencies preserving at the same time the 
validity of the inference and the meaningfulness of derived 
knowledge. We show how the truth maintenance logic 
introduced in (Popchev, Zlatareva, and Mircheva 1990) can 
be adapted and extended to carry out this task. But first, we 
discuss some of the limitations of the current RuleML 
syntax to justify the need for more expressive rule 
representation format.  
 

RuleML limitations: a practical way to 
address them 

 
Consider the following example inspired by (Antoniou and 
van Harmelen 2007). 
 
“Carlos is looking for an apartment of at least 45 sq m with 
at least 2 bedrooms. Carlos is willing to pay $300 for a 
centrally located 45 sq m apartment, but $250 for a similar 
one in the suburbs. He will pay extra for a larger apartment 
or an apartment with a garden. Carlos does not want to pay 
more than $400, but if the apartment is centrally located, 
offers a swimming pool, and have other desired features, he 
may consider a higher rent.  If the apartment is on the third 
floor or higher, the building must have an elevator. Pets 
must be allowed, because Carlos cannot leave his dog 
behind. Given a choice, the price will be Carlos’ first 
priority, but amenities (swimming pool, garden) will also 
play a role in Carlos’ final decision.” 
 
Some of Carlos’ requirements are quite vague (location, 
swimming pool, garden), while others are very specific and 
firm (pet friendliness, number of bedrooms, size). Firm 
requirements can be easily expressed in RuleML.  For 
example, “Carlos is looking for an apartment of at least 45 
sq m” can be represented as follows:   
 
<Implies> 
    <Body> 

         <And> 
             <Atom> 
        <Rel>size</Rel> 
        <Var>Apartment</Var> 
        <Var>X</Var> 
     </Atom> 
               <Atom> 
          <Rel>GreaterThan</Rel> 
          <Var>X</Var> 
          <Ind>45 sq m</Ind> 
      </Atom> 
            </And> 
     </Body> 
     <Head> 
             <Atom> 
        <Rel>consider</Rel> 
        <Var>Apartment</Var> 
     </Atom> 
     </Head> 
</Implies> 
 
Representing statements, such as “an apartment may be OK 
with or without a garden”, however, is not straightforward 
without enforcing some change in the meaning of the 
statement. What we need in order to adequately match such 
“relaxed” statements to rule premises, is to allow for 
“relaxed” premises as well.  For example, to say that Carlos 
will consider an apartment which costs less than $400 
despite of its location or availability of a garden, the 
following rule will do: 
 
If          A:  size > 45 and bedroom > 1 and pets-allowed 
             IN SPITE garden or location = Central 
Then     A: consider  
 
According to this rule, A will be considered if Carlos’ firm 
requirements (size > 45, bedroom > 1, pets-allowed) are 
met. But if the apartment is centrally located and/or has a 
garden, it will be “even better”.  
 
To represent and process rules of this type, we need more 
than a simple Horn-style syntax and classical forward or 
backward chaining.  Non-monotonic logics will also not 
work in this case, because their non-monotonic premises 
have a very different semantics – they serve as exceptions 
to the rule’s conclusion. However, various possibilistic 
logics (probabilistic, fuzzy, etc.) intended to handle 
uncertain knowledge do have means to represent rules with 
“relaxed” (uncertain) premises by associating a “degree of 
uncertainly” with each premise and employing “combining 
functions” to maintain the  uncertainty during the reasoning 
process.  There are two main problems with these logics, 
though: (i) combining functions are application-dependent, 
and (ii) it is difficult to provide a reasonable interpretation 
for numerical values of uncertainty. Truth maintenance 
logics address these difficulties by providing explicit 
justifications for derived statements instead of numerical 
values.  
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Next, we briefly review one truth maintenance logic 
(Popchev, Zlatareva, and Mircheva 1990) (we shall refer to 
it as TM-logic for brevity), which was originally introduced 
as an alternative to Doyle’s non-monotonic Truth 
Maintenance System (Doyle 1979) in order to support 
inconsistency maintenance, rather than inconsistency 
resolution. We argue that the TM-logic is a good candidate 
for implementing the Logic and Proof layer of the Semantic 
Web because of its expressiveness, computational 
efficiency, and ability to explicitly maintain inconsistencies 
during the reasoning process. The latter, as pointed out in 
(Huang, van Harmelen, and ten Teije 2006), is the better 
alternative for Semantic Web applications, where resolving 
inconsistencies may be an impossible task.  
 

Context-dependent rules: basic definitions 
and notation 

 
To represent and process rules with “relaxed” premises we 
need a logic that is: 
 
� Expressive enough to accommodate uncertain, 

incomplete, and inconsistent statements. 
� Flexible enough to “adapt” to the current domain 

specifications by implementing appropriate belief 
revision whenever necessary.  

� Computationally efficient to process large scale web 
applications. 

 
We show next that the TM-logic is a good candidate for the 
job. We outline some of its representation and reasoning 
properties, and discuss how they can be adapted to the 
needs of our intended application (for more details on the 
TM-logic, see (Popchev, Zlatareva, and Mircheva 1990)). 
 
The TM-logic addresses the first of the above requirements 
by defining a family of closely related languages intended 
to capture different domain concepts: 
 
1. L, which consists of statements (literals) A, ¬A,  B, 

¬B, etc. 
 

2. Le, which consists of “endorsed formulas” (e-formulas) 
explicitly defining contexts where elements from L 
hold. The general form of e-formulas is ALV:   
(T1,...,Tn)(P1,...,Pm). Here A � L and ¬A � {T1,...,Tn};  
LV is the logical value of A which can be T (logically 
true), T* (evidentially true), or U (uncertain, depends 
on the context); T1,...,Tn, are firm arguments (T-
premises) for A, while P1,...,Pm represent additional 
evidence for A related to its truth value.   
 

3. L+ = L � {CA, CB, …}, where CA = {A, ¬A},             
CB = {B, ¬B}, etc. 

 
4. Le

+ = Le � {CA
U: (A, ¬A)(CA), CB

U: (B, ¬B) (CB), 
etc.},  where  {AT:  (T1,..,Tn)( ), ¬AT:  (Tp,..,Ts)( )}, 
{BT:  (T1,...,Tn)( ), ¬BT:  (Tp,...,Ts)( )}, etc.  � Le 

The TM-logic employs two types of inference rules: 
 
�    Firm (monotonic) rules or T-rules. These have the 

form (T1,...,Tn)( ) � AT, and require that all T-
premises match logically or evidentially true e-
formulas for the rule to fire. 

 
�    Plausible rules or P-rules. These have the form 

(T1,...,Tn)(P1,...,Pm) � AU. The truth value of 
conclusion A depends on the context where it is 
derived. The minimal context is defined by the rule’s 
T-premises. The truth value of the conclusion 
increases with the number of satisfied P-premises.  

 
To illustrate the notion of the context, consider the 
following rule: 
 

(size > 45, bedroom > 1, pets-allowed)  
         (garden, location = Central) � considerU 

 
The conclusion, consider, can be derived in the following 
three contexts: 
 
1.   All T-premises hold, but none of the P-premises hold. 

This defines the minimal context, and therefore the 
degree of certainty associated with the conclusion is 
nominal. 

 
2.    All T-premises and all P-premises hold. This defines 

the maximal context, and therefore the degree of 
certainty associated with the conclusion is the highest. 

 
3.    All T-premises and some of the P-premises hold 

(either A has a garden, or A is centrally located). T-
premises, along with the satisfied P-premises, define 
the context in which the conclusion holds, and its 
degree of certainty depends on the number of satisfied 
P-premises.   

 
To formalize the idea of “context-dependent inference”, the 
following duplicate rules are created for each P-rule:  
 
� (T1,...,Tn, P1,...,Pm) ( ) � AT*.  This rule, called the T-

duplicate of the original P-rule, captures the case 
where all relevant evidence for A holds. It is important 
to note that T-duplicates are not logically equivalent to 
T-rules, because they may not define the complete 
evidence for A.  

 
� For any {i1,...,ik} � {1,...,m}, (T1,...,Tn, Pi1,..., Pik) 

({P1,..., Pm} \ {Pi1,...,Pik}) � AU. These are called P-
duplicates of the original P-rule, and they define all 
possible contexts in which A holds with different 
degree of certainty. 

 
A pair <E-set, R-set>, where E-set is a set of e-formulas, 
and R-set is a set of T- and P-rules, and T- and P- 
duplicates defines a TM-theory.   
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If  AT : (T1,...,Ti) ( ) � E-set and ¬AT : (Tj,...,Tk) ( ) � E-
set, then the set {AT : (T1,...,Ti) ( ), ¬AT : (Tj,...,Tk) ( )} 
defines a contradiction and requires CA

U: (A, ¬A) (CA) � 
Le

+ to be added to the current E-set to represent it.   
 
Contradictions are handled by the TM-logic the same way 
as other e-formulas. However, to ensure the soundness of 
the inference relation and the meaningfulness of generated 
conclusions, the following revisions of current R- and E-
sets take place anytime a new contradiction is detected. 
 
Revision of the R-set   For each CX

U: (X, ¬X) ( CX) � E-
set, the following transformations take place: 
 
� (X, T1,...,Ti)( ) � AT �  (X, T1,...,Ti)(CX) � AU  
� (�X, Tj,...,Tn)( ) � AT �  (�X, Tj,...,Tn)(CX) � AU  
� (X, T1,...,Ti)(P1,...,Pm) � AU  �                                         

�    (X, T1,...,Ti)(P1,...,Pm, CX) � AU 
� (�X, Tj,...,Tn)(P1,...,Pm) � AU  �                              

�    (�X, Tj,...,Tn)(P1,...,Pm, CX) � AU  
 
Notice that uncertainty associated the conclusions of 
revised rules increases. Moreover, these conclusions cannot 
be further matched to T-premises of other rules, which 
blocks the latter from firing. 
 
Revision of the E-set   For each CX

U: (X, ¬X) ( CX) � E-
set, the following transformations take place: 
 
� AT : (X, T1,...,Ti) ( ) �  AU : (X, T1,...,Ti) (CX)   
� AT : (¬X, Tj,...,Tn) ( ) �  AU : (¬X, Tj,...,Tn) (CX)   
� AU : (X, T1,...,Ti) ( P1,...,Pm ) �                                  

�AU : (X, T1,...,Ti) ( P1,...,Pm, CX)   
� AU : (¬X, Tj,...,Tn) ( P1,...,Pm) �                                  

�AU : (¬X, Tj,...,Tn) ( P1,...,Pm, CX)   
 
Given a TM-theory, <E-set0, R-set0>, the inference process 
is carried out as follows:  
 
1.    E-set0 is checked for contradiction, and if such are 

found do: 
a) For each contradiction, augment E-set0 with that 

contradiction matching e-formula from Le
+.  

b) Revise R-set0 and E-set0 as described. 
2.    The new E-set is computed by augmenting the current 

one with the conclusions of all applicable rules from 
the current R-set. 

3.   Newly derived E-set is checked for new contradictions, 
and if such are found do:   
a) For each contradiction, augment E-set with 

contradiction’s matching e-formula from Le
+. 

b) Revise the current R- and E-sets.  Go to 2. 
4.    If the current E-set does not contain new 

contradictions, and no more rules from the current R-
set can fire, stop.  

It is easy to see that this process will always terminate, 
resulting in a unique stable extension, SE, provided that 
initial E- and R-sets are finite.  
 

Carlos example continued 
 
To illustrate the applicability of the TM-logic to our 
intended application, consider the following set of rules 
derived from Carlos’ specification: 
 
 Rule1:    If    A: size > 45, bedroom > 1, pets-allowed 
               Then    A: consider  
 
Rule2:    If     A:  consider, price < = 250, floor < 3 
              Then    A: make-offer 
 
Rule3:    If     A:  consider, price < = 300  
                     IN SPITE garden, lift, location = Central 
              Then    A: make-offer 
 
Rule4:    If    A:  consider, price < = 400, location = Central 
                   IN SPITE garden, lift  
           Then   A: make-offer  
 
Rule5:    If   A:  consider, price > 400  
            Then     A: stop 
 
Rule6:    If    A: location = Central, swimming-pool  
              Then    A: �stop  
 
Rule7:    If     A: consider, floor < 3, �stop 
                     IN SPITE garden 
            Then    A: make-offer  
 
Rule8:    If      A: consider 
              IN SPITE  �floor < 3,  �lift 
            Then    A: �make-offer 
 
Assume further that apartment ads do not come in a 
predefined format. Some features, such as price, size, 
number of bedrooms, and pet-friendliness are likely to be 
mentioned, while others such as location or floor number 
may be omitted. Here are a few likely apartment ads: 
 
A1:  price = 450, bedrooms = 2, size = 50, location =   
central, pets-allowed, swimming-pool, floor = 2, garden.  

A2:  price = 280, bedrooms = 3, size = 65, floor = 4, pets-
allowed, lift. 

A3:  price = 330, bedrooms = 2, size = 55, location = 
central, swimming-pool, lift, garden. 

A4:  price = 350, bedrooms = 3, size = 55, location = 
central, pets-allowed, garden, lift. 

A5:  price = 235, bedrooms = 2, size = 45, pets-allowed, 
garden, floor = 2. 

For brevity, we show below only a small part of the 
resulting TM-theory: 
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R-set0 = {… r2[(consider, price<=250, floor<3) ( )  
                                                  � make-offerT],  
                     r3[(consider, price<=300) (garden, lift,  
                                     location=Central) � make-offerU], 
                     r3T[(consider, price<=300, garden, lift,  
                                 location=Central) ( ) � make-offerT*], 
                     r3P1[(consider, price<=300, garden)  
                              (lift,location=Central) � make-offerU], 
                     r3P2[(consider, price<=300, garden, lift) 
                               (location=Central) � make-offerU],…} 
 
E-set0  = {A1[price=450, bedrooms=2, size=50,  

location=Central, garden pets-allowed, 
swimming-pool,  floor = 2],  
 

       A2[price=280,  bedrooms=3, size=65, floor=4,  
             pets, lift], … } 

 
The stable extension, SE, of this theory is the following: 
 
{A1[considerT: (size>45, bedroom>1, pets-allowed) ( ),  
        stopT: (consider, price>400), 
        ¬stopT: (location=Central, swimming-pool),  
       Cstop,¬stop

U: (stop, ¬stop) (Cstop,¬stop), 
       make-offerU: (consider, floor<3, ¬stop, garden)  

                            (Cstop,¬stop), 
       ¬make-offerU: (consider)  (¬floor<3, ¬lift)], 

 
 A2[considerT: (size>45, bedroom>1, pets-allowed) ( ),  
        make-offerU: (consider, price<300, lift)  

                           (garden, location=Central),   
        ¬make-offerU: (consider)  (¬floor<3, ¬lift)], 

 
  A4[considerT: (size>45, bedroom>1, pets-allowed) ( ),  
         make-offerT*: (consider, price<300, lift, garden, 

                location=Central) ( ),  
         ¬make-offerU: (consider)  (¬floor<3, ¬lift)], 

 
  A5[considerT: (size>45, bedroom>1, pets-allowed) ( ),  
         make-offerT: (consider, price<250, floor<3) ( ),  
         make-offerU: (consider, price<300, garden)  

                              (lift, location=Central),  
          ¬make-offerU: (consider)  (¬floor<3, ¬lift)] } 

 
 

Identification of admissible conclusions 
 
Notice that the stable extension in Carlos example contains 
multiple e-formulas associated with the same statement or 
its negation. Each of these e-formulas describes a specific 
context with respect to which the truth value of a statement 
is defined. Consider, for example, A5: make-offer and A5: 
¬make-offer. There are two different contexts associated 
with the former, and one associated with the latter. If we 
can order these contexts with respect to their “plausibility”, 
we can filter out e-formulas defining less plausible contexts 

and leave only the most plausible ones.  We call such e-
formulas admissible conclusions, and they comprise the set 
of admissible conclusions, SAC, of the TM-theory.  
 
Definition   SAC � SE such that: 
 
a) If {AT : (T1,...,Ti)( ),  AT* : (Tj,...,Tn)( )} � SE and 

{Tj,...,Tn}  �  {T1,...,Ti}, then only AT : (T1,...,Ti)( ) � 
SAC. 

b) If {AT* : (Tj,...,Tn)( ), AU : (T1,...,Ti)(P1,...,Pi)} � SE, 
and {T1,...,Ti} �  {Tj,...,Tn}, then only                      
AT* : (T1,...,Ti)( ) � SAC. 

c) If {AT : (T1,...,Ti)( ),  ¬AT : (Tj,...,Tn)( )} � SE, then 
{AT : (T1,...,Ti)( ),  ¬AT : (Tj,...,Tn)( )} � SAC. 

d) If {AT : (T1,...,Ti)( ),  AU : (Tj,...,Tn)(P1,...,Pm)} � SE 
and {Tj,...,Tn} �  {T1,...,Ti}, then only                      
AT : (T1,...,Ti)( ) � SAC. 

e) If {AU : (T1,...,Ti)(P1,...,Pi),  AU : (Tj,...,Tn)(Pj,...,Pn)} � 
SE, and {T1,...,Ti} � {Tj,...,Tn}, then   only               
AU : (Tj,...,Tn)( Pj,...,Pn) � SAC. 

f) If {¬AU : (T1,...,Ti)(P1,...,Pi),  AU : (Tj,...,Tn)(Pj,...,Pn)} 
� SE   and {T1,...,Ti} � {Tj,...,Tn} and some Pk (k=1,i) 
= ¬Tl (l = j,n), then  only AU : (Tj,...,Tn)( Pj,...,Pn) � 
SAC. 

g) If {¬AU : (T1,...,Ti)(P1,...,Pm),  AT : (Tj,...,Tn)( )} � SE, 
and some Px (x = 1,m) � {Tj,...,Tn}, then only            
AT : (Tj,...,Tn)( ) � SAC. 

 
To get the final answer to Carlos’ query, we proceed in two 
steps. 
 
Step 1  Compute the set of admissible conclusions 
associated with each of the possible choices, A1, A2, A4, 
and A5: 
 
{A1[considerT: (size>45, bedroom>1, pets-allowed) ( ),  
         stopT: (consider, price>400), 
         ¬stopT: (location=Central, swimming-pool),  
         Cstop,¬stop

U: (stop, ¬stop) (Cstop,¬stop), 
         make-offerU: (consider, floor<3, ¬stop, garden)  

                                 (Cstop,¬stop)], 
 

  A2[considerT: (size>45, bedroom>1, pets-allowed) ( ), 
         make-offerU: (consider, price<300, lift)  

                          (garden, location=Central)], 
 

  A4[considerT: (size>45, bedroom>1, pets-allowed) ( ),  
         make-offerT*: (consider, price<300,  

                 lift, garden, location=Central) ( )], 
 

  A5[considerT: (size>45, bedroom>1, pets-allowed) ( ),  
         make-offerT: (consider, price<250, floor<3) ( )] } 
 
Notice that e-formulas in SAC explicate the highest degree 
of “desirability” for each possible choice, but say nothing 
about how these choices compare between themselves.  
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Step 2  Compare the “desirability” of possible choices to 
identify one or several “best” choices. For that: (i) 
explicate the support evidence (we call it the grounded 
justification) for each choice by computing the transitive 
closure of its T-premises, and (ii) order grounded 
justifications as defined above, thus further restricting the 
SAC with respect to the choices themselves. Here are the 
grounded justifications for all possible choices: 
 
A1[make-offerU: (size>45, bedroom>1, pets-allowed,   
      floor<3, location=Central, swimming-pool, garden)  

                                 (Cstop,¬stop)] 
A2[make-offerU: (size>45, bedroom>1, pets-allowed, 
       price<300, lift)  (garden, location=Central)] 
A4[make-offerT*: (size>45, bedroom>1, pets-allowed,  
       price<300, lift, garden, location=Central) ( )] 
A5[make-offerT: (size>45, bedroom>1, pets-allowed,    
       price<250, floor<3) ( )] 
 
Notice that A5: make-offerT , satisfies all firm requirements 
and is derived with the highest degree of certainty, T. 
However, it does not dominate A4: make-offerT*, because 
according to our definition (item a) (size>45, bedroom>1, 
pets-allowed, price<300, lift, garden, location=Central) 	 
(size>45, bedroom>1, pets-allowed, price<250, floor<3). 
Therefore, A4 must remain in SAC. On the other hand, A2: 
make-offerU is dominated by A4 according to our definition 
(item b), because (size>45, bedroom>1, pets-allowed, 
price<300, lift) 
 (size>45, bedroom>1, pets-allowed, 
price<300, lift, garden, location=Central). Therefore, A2 
can be eliminated from the SAC. Finally, A1 which was 
derived as a possible choice regardless the explicit 
contradiction originated by the price, should also remain in 
SAC because according to our definition (item d) (size > 
45, bedroom > 1, pets-allowed, floor < 3, location=Central, 
swimming-pool, garden) 	 (size > 45, bedroom > 1, pets-
allowed, price < 250, floor < 3). 
 
Here is the final answer to Carlos query: 
 
� Best choice: Apartment 5, because size > 45, bedroom 

> 1, pets-allowed, price < 250, floor < 3. 
� Second best choice: Apartment 4, because size > 45, 

bedroom > 1, pets-allowed, price < 300, lift, garden,  
location = Central. 

� Possible choice: Apartment 1, because size > 45, 
bedroom > 1, pets-allowed, location = Central, 
swimming-pool, garden, but price > 400. 

 
Now, it is up to Carlos to decide which of the presented 
choices he likes the most. 
 

Conclusion 
 
In this paper, we argued that ensuring the completeness and 
consistency of large Semantic Web ontologies is practically 
impossible and therefore uncertainty, incompleteness and 

inconsistency must be adequately represented and 
maintained. To address this need, we have proposed an 
extension to the current RuleML format which makes it 
possible to define “relaxed” premises. We have shown how 
such “context-dependent” rules can be handled by one truth 
maintenance logic, the TM-logic, originally introduced in 
(Popchev, Zlatareva, and Mircheva 1990). We have also 
discussed how this logic can be adapted and extended to 
better address the needs of Semantic Web applications. To 
justify and illustrate our ideas, a detailed example was 
discussed throughout the paper.    
 
In our future work, we intend to address the integration of 
the proposed rule representation format into the current 
Rule Interchange Format recommended by W3C. 
 
Acknowledgements  Many thanks to anonymous referees for 
their thoughtful comments and suggestions. 
 
 

References 
 
Antoniou, G., and van Harmelen, F. 2007.  A Semantic 
Web Primer. MIT Press. 

Damasio, C., Pan, J., Stoilos, G., and Straccia, U., 2007. 
Representing Uncertainty in RuleML. Fundamenta 
Informaticae: 1 – 24, IOS Press. 

Davis, J., Studer, R., and Warren, P., 2006.  Conclusion 
and Outlook (page 305). In Davis, Studer, and Warren 
(eds.) Semantic Web Technologies: Trends and Research 
in Ontology-Based Systems. John Wiley & Sons, Ltd. 

Doyle, J., 1979. A Truth Maintenance System. Artificial 
Intelligence, 12: 231 – 272. 

Huang, Z., van Harmelen, F., and ten Teije, A., 2006.  
Reasoning with Inconsistent Ontologies: Framework, 
Prototype, and Experiment. Semantic Web Technologies: 
Trends and Research in Ontology-Based Systems (eds. 
John Davies, Rudi Studer, Paul Warren), John Wiley & 
Sons, Ltd. 

Lukasiewicz, T., 2008. Expressive Probabilistic 
Description Logics.  Artificial Intelligence, 172, (6-7): 852 
-- 888. 

Popchev I., Zlatareva, N., and Mircheva, M., 1990. A 
Truth Maintenance Theory: An Alternative Approach. In 
Proc. 9th European Conference on Artificial Intelligence 
(ECAI’90). 

Schobach, S., and Corner, R. 2003. Non-standard 
Reasoning Services for the Debugging of Description 
Logic Terminologies. In Proc. International Joint 
Conferences on Artificial Intelligence’2003. 

 

413




