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Abstract

We propose a memory-based approach to the problem
of goal-schema recognition. We use a generic episodic
memory module to perform incremental goal schema
recognition and to build the plan library. Unlike other
case-based plan recognizers it does not require com-
plete knowledge of the planning domain or the abil-
ity to record intermediate planning states. Similarity
of plans is computed incrementally using a semantic
matcher that considers the type and parameters of the
observed actions. We evaluate this approach on two
datasets and show that it is able to achieve similar or bet-
ter performance compared to a statistical approach, but
offers important advantages: plan library is acquired in-
crementally and the memory structure it builds is multi-
functional and can be used for other tasks such as plan
generation or classification.

Introduction

A large class of AI applications relies on recognizing com-
plex events: language understanding and response genera-
tion (Allen and Perrault 1986; Perrault and Allen 1980), user
interfaces (Goodman and Litman 1992), help systems (May-
field 1992), collaborative problem solving (Lesh, Rich, and
Sidner 1999), and threat detection.

The problem of recognizing such complex events and
ascribing goals, intentions and future actions to an actor
based on its observed actions is known as plan recognition
(Schmidt, Sridharan, and Goodson 1978). A subproblem of
plan recognition is goal-schema recognition where only the
type of plan being executed is recognized.

The need for domain-independent plan recognition sys-
tems has long been recognized. (Huwer, Smart, and Cairns
1995) identifies several requirements for such plan recog-
nition algorithms: efficiency, robustness, use of domain-
independent representation of actions and plans, ability to
detect and incorporate new plans into the plan library, ways
of limiting the search through the plan library, and ability
to deal with noise (i.e. erroneous actions). Domain-specific
knowledge might improve performance but has to be bal-
anced against the recognizer’s purpose of being domain-
independent.
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Plan recognition algorithms should generate incremental
predictions, after each action is observed, thus offering early
predictions and be fast at this task (e.g. faster then the next
action can take place so that the user of the recognizer sys-
tem can take counter-action).

We propose a memory-based approach to the problem of
goal schema recognition as a subtask of the keyhole plan
recognition, a type of plan recognition problem where there
is no cooperation between the agent and the recognizer (Al-
brecht et al. 1997). We use a generic episodic memory mod-
ule (Tecuci 2007) and its recognition mechanism to store and
retrieve plans. Our approach is domain-independent and ad-
dresses all the requirements listed above: the action and plan
representation are generic in nature, plan library (i.e. the
plan memory) is grown at the same time as recognition is at-
tempted, and search is limited to the most similar prior plans
through indexing. The memory module employs a flexible
matching algorithm for sequences of actions that can deal
with noise, while exhibiting desirable qualities of a memory-
based application: efficiency, retrieval of relevant items and
content-addressability.

Memory-Based Plan Recognition

A Generic Memory Module for Events

Remembering past experiences is an essential characteris-
tic of any intelligent system. Such experiences enable the
system to solve similar problems - by adapting previous so-
lutions - and to avoid unwanted behavior - by detecting po-
tential problems and trying to side-step them.

Our research addresses a long recognized need for gen-
eral tools to aid the development of knowledge-based sys-
tems (van Melle, Shortliffe, and Buchanan 1984). We pro-
pose to separate the memory functionality from the system
and build a generic memory module that can be attached to a
variety of applications in order to provide episodic memory
functionality (Tecuci 2007). Encapsulating the complexity
of such a memory into a separate subsystem should reduce
the complexity of other parts of the overall system, allowing
us to focus on the generic aspects of memory organization
and retrieval and its interaction with the external application.
Each application will use the retrieved memories differently,
depending on their task. We do not propose complete so-
lutions for problem solving in these domains as this would
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require domain specific knowledge (e.g. for adapting prior
plans); rather, the episodic memory will have a supporting
role.

General Memory Requirements

A generic memory module should be: accurate (it should re-
turn memories relevant for the situation at hand), scalable (it
should be able to accommodate a large number of episodes
without a significant decrease in performance), efficient (it
should provide efficient storage and recall), content address-
able (memory items should be addressable by their content),
and should provide flexible matching (the appropriate previ-
ous episodes should be recalled even if they only partially
match the current context).

From a software application perspective, a generic mem-
ory module for events needs to provide: a generic repre-
sentation of events that can be used with different types
of events; a flexible interface that allows various types of
queries to be formulated and provides feedback to the appli-
cation on how these queries were matched against memory,
and domain-independent organization and retrieval tech-
niques that efficiently index events.

These requirements largely overlap with those of plan
recognition algorithms.

Episode Representation

The episode is the basic unit of information that memory
operates on. The decision as to what constitutes a mean-
ingful episode is domain dependent and left to the external
application to make. In general, an episode is a sequence of
actions with a common goal, which cannot be inferred from
the individual actions taken in isolation.

Episodes are dynamic in nature, changing the state of the
world in complex ways. Besides the sequence of actions that
make up the episode, the context in which the episode hap-
pens, as well as its effect on the world, are important. We
propose that a generic episode have three dimensions: con-
text, contents and outcome. Context is the general setting
in which an episode happened; for some applications (e.g.
planning) this might be the initial state and the goal of the
episode (the desired state of the world after the episode is
executed). Contents is the ordered set of events that make
up the episode; in the case of a planner, this would be the
plan itself. The outcome of an episode is an evaluation of
the episode’s effect (e.g. if a plan was successful or not,
what failures it avoided).

The idea of having different indices for episodes based
on the different kinds of information they encode is not
new - Chef (Hammond 1986) indexed plans both by their
goals and by their failures. We extend this idea by defin-
ing three generic dimensions for episodes and show that re-
trieval along one or more of these dimensions allows the
same memory structure to be used for various tasks that re-
quire reasoning about actions. For example, a memory of
plan goals, their corresponding plans and whether or not
they were achieved by a given plan can be used for tasks
such as:

planning - given an initial state and a goal devise a plan
to accomplish the goal. In terms of our representation
this corresponds to memory retrieval using episode con-
text (i.e. initial state and goal of a planning problem) and
adapting the contents of the retrieved episodes (i.e. their
plans).

prediction - given an initial state and sequence of actions,
predict their outcome. This corresponds to retrieval based
on episode context and using the outcome of the retrieved
episodes.

explanation - given a set of observations (including ac-
tions) find the best explanation for it. An example of
this is plan recognition, where the explanation is the plan
being executed. This corresponds to retrieval based on
episode contents (i.e. observed actions) and adapting the
context of retrieved episodes.

The semantics of individual actions (i.e. their applicabil-
ity conditions and the goals they achieve), as well as knowl-
edge about the state of the world is represented using a
knowledge base - a library of about 700 general concepts
such as Transport, Communicate, Enter and 80 se-
mantic relations like agent, object, causes, size
(Barker, Porter, and Clark 2001). The underlying represen-
tation language is the Knowledge Machine (KM), an expres-
sive frame-based representation and reasoning mechanism
(Clark and Porter 2001).

Memory Organization and Retrieval

Episodes are stored in memory unchanged (i.e. no gener-
alization) and are indexed for retrieval. We have adopted a
multi-layer indexing scheme similar to MAC/FAC (Forbus,
Gentner, and Law 1995), (Börner 1994) and Protos (Porter,
Bareiss, and Holte 1990): a shallow indexing in which each
episode is indexed by all its features taken in isolation and a
deep indexing in which episodes are linked together by how
they differ structurally from one another.

During retrieval, shallow indexing will select a set of
episodes based on the number of common features be-
tween them and the stimulus. Starting from these can-
didate episodes, a hill-climbing algorithm using semantic-
matching will find the episode(s) that best match the exter-
nal stimulus. A robust memory needs to employ a flexible
matching algorithm, so that old situations are still recog-
nized under new trappings. The semantic matcher we use
(Yeh, Porter, and Barker 2003) employs taxonomic knowl-
edge, subgraph isomorphism and transformation rules in or-
der to resolve mismatches between two representations.

It is the organization of memory given by this indexing
mechanism and the search-based retrieval that sets our ap-
proach apart from those employing a flat memory struc-
ture that is searched serially (e.g. (Nuxoll and Laird 2004;
Forbus, Gentner, and Law 1995)).

Incremental Retrieval

The fact that data is presented incrementally seems to in-
crease retrieval time as memory needs to do retrieval after
the presentation of each new stimulus. However, incremen-
tal data reduces the size of each query. Humans are good at
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dealing with continuous streams of stimuli and employing
expectations to focus attention and guide recognition. The
question we address here is: can we devise such an algo-
rithm for an episodic memory?

This idea has been put forth before (Schmidt, Sridha-
ran, and Goodson 1978; Schank 1982) and has been applied
in areas like dialogue processing (Grosz and Sidner 1986;
Litman and Allen 1987) and plan recognition (Schmidt,
Sridharan, and Goodson 1978). The sequential structure
of events helps constrain the type of expectations a system
might form to just the next event(s) (its type and possibly its
description).

Algorithm 1 Incremental-retrieve algorithm

candidates ← []
observed-actions ← []
while there are observed-actions left do

curr-action ← pop (observed-actions)
new-candidates ← retrieve(current-action)
for all episode ∈ new-candidates do

// if it is not in candidate-episodes yet
if episode /∈ candidates then

// compare it to stimuli seen so far
synchronize-candidate(episode, prior-actions)

end if
end for
for all candidate ∈ candidates do

candidate-match ← match(curr-action, candidate)
// record whether it matched or not
candidates ← update-candidate(candidate-match)

end for
// re-rank candidate-episodes
candidates ← sort(candidates)
// incremental predictions are now available
prior-actions ← prior-actions ∪ current-action

end while
result ← sort(candidates)
// return final predictions
return first-n (*MAX-RETRIEVED*, result)

Our incremental retrieval algorithm functions as follows:
after an action is observed, revise the current set of hypothe-
ses so that they account for the last seen stimulus. This is
done by trying to match the stimulus against current hy-
potheses or by generating new ones. New hypotheses are
generated using the first level indexing mechanism that re-
trieves episodes that are superficially similar to the given
query. We limit the number of such new hypotheses to the
most likely N (we have experimented with N=5 and N=10).
Newly generated hypotheses need to by ‘synchronized’ (i.e.
matched) with the stimuli seen so far, which is done using
the synchronize-candidate routine. Hypotheses are then se-
mantically matched to the new stimulus and then re-ranked
according to their similarity to the plan observed so far. Mis-
matches between an observed action and the action of a prior
episode are allowed. Memory treats both as possibly super-
fluous actions. At this point, incremental predictions can be
generated based on the current set of hypotheses.

Most measures of semantic similarity compute similarity
between two objects with respect to one of them. This does
not deal well with noise, as the superfluous actions in the
reference episode decrease the overall similarity score. The
similarity metric used in this paper is defined as the product
of the two individual similarity scores when each object is
in turn the reference one.

sim(E1, E2) = semsim(E1, E2) ∗ semsim(E2, E1)

where semsim(E1, E2) is the similarity between the
episodes E1 and E2 with respect to E2:

semsim(E1, E2) =
∑

ti∈E1∼E2
match − score(ti)/|E2|

where E1 ∼ E2 represents the isomorphic mapping from E1

to E2 (computed by the semantic matcher); ti represents the
isomorphic relation between a vertex in the E1 graph and its
corresponding counterpart in E2; score(ti) measures how
well the two vertices match and is a number between 0 and
1 provided by the matcher, and |E2| is the size of E2 (i.e.
number of triples).

Retrieval Complexity The complexity of this incremen-
tal retrieval algorithm in the best case is linear in the num-
ber of actions observed (s) and the maximum number of
remindings explored for a new stimulus (N). This situation
is encountered when an identical episode is found in mem-
ory, therefore all the actions of the new episode match per-
fectly against that in memory. The worst case complexity is
O(Ns3), when, at every step, memory explores the max-
imum number of episodes allowed (N) and each of them
does not align with the observed action, so all their events
are matched against. Our experiments showed that this case
rarely occurs in practice (Tecuci 2007).

Unlike statistical approaches, the complexity is not a
function of the number of goal schemas, but only of the
number of observed actions.

Experimental Evaluation

We evaluated out approach on a plan recognition task on two
corpora: the Linux Plan Corpus (Blaylock and Allen 2004)
and the Monroe Plan Corpus (Blaylock and Allen 2005a)
and compared it to a statistical approach (Blaylock and Allen
2005b).

The Plan Corpora

The Linux plan corpus (Blaylock and Allen 2004) was
gathered from human Linux users from the University
of Rochester, Department of Computer Science. Users
were given a goal like find a file with ‘exe’

extension and were instructed to achieve it using simple
Linux commands (no pipes, no awk, etc.). All user com-
mands along with their results were recorded. For each goal,
users were also asked to assess whether they accomplished
it. The users judged 457 sessions to be successful1, involv-
ing 19 goal schemas and 48 action schemas (i.e. Linux com-
mands).

1Because some users were not able to judge this correctly, there
are still a number of failed sessions and, therefore, data is noisy.
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The Monroe corpus (Blaylock and Allen 2005a) consists
of stochastically generated plans in the domain of emer-
gency response. The plans have been randomly generated
by allowing a planner to make nondeterministic decisions
and therefore generating a diverse set of plans (in terms or
ordering of their actions) for the goal. It contains 5000 plans
with an average of 9.5 actions per plan, a total of 10 goal
schemas and 30 action schemas.

Experimental Setup

We performed a 10-fold cross-validation on each of the two
corpora by dividing the set of plan sessions into 10 equal-
sized subsets, and using 9 of them for training and the 10th
for testing. The set of test plan sessions was presented to
memory one action at a time, predictions being generated
after each action from the top 4 most similar prior episodes
retrieved by memory.

We limited the maximum number of explored remindings
generated after each action is observed to 5 for both do-
mains. All observed plans have been stored in memory, no
deletion policy being implemented.

We measured the accuracy of the recognizer in terms of
Precision (P) and Recall (R). Precision is the number of
correct predictions divided by the total number of predic-
tions (i.e. the number of times the recognizer chooses to
make a prediction), while recall is the number of correct pre-
dictions divided by the number of predictions opportunities
(i.e. the number of observed actions). They measure the
overall accuracy of the recognizer as it includes predictions
made after each new observed action.

A measure of how many plans were eventually recognized
is denoted by convergence (Conv), which is the number of
correct predictions after the last plan action was observed.
A recognition session is said to have converged if its last
prediction was correct.

An important characteristic of incremental recognizers is
the convergence point (CP) - how soon they start making
the same correct prediction in the unfolding of a plan. This
was measured both in terms of observed actions as well as
in terms of percentage with respect to the average number of
actions of converged sessions.

We compare these results against a statistical approach us-
ing a bi-gram model (Blaylock and Allen 2005b) that used
the same corpora.

Besides accuracy, we are also interested in how the mem-
ory mechanism performs in terms of efficiency of retrieval
as the memory size grows. We measured the retrieval ef-
fort for each prediction, both in terms of number of actions
matched, as well as a percentage of the total number of
stored episodes.

Experimental Results

Experimental results are reported in Figure 1. The preci-
sion and recall are the same because the memory-based ap-
proach makes predictions after each action (e.g. the num-
ber of prediction opportunities is the same as the number
of predictions made.) This is in contrast to (Blaylock and
Allen 2005b) where predictions are made only if confidence
is above a certain threshold.

Compared to the statistical approach, EM converges on
more sessions for the Linux domain (see Figure 2(a)) and on
a similar number for the Monroe domain (Figure 2(b)). Pre-
cision is slightly lower on both domains (see Figure 2(a) and
2(b)), although probably not significantly different. (Blay-
lock and Allen 2005b) does not report variance for their
data. However, recall is much higher for the memory-based
approach on both domains. An increase in precision at the
expense of recall is expected given that the statistical rec-
ognizer only makes predictions when a certain confidence
threshold was achieved.

Although we compute the similarity between the observed
plan and some prior plans and use it to rank predictions, we
chose not to implement confidence thresholds, thus generat-
ing predictions at each recognition step. The variability of
the plans in our corpora makes the similarity measure not a
good candidate for the confidence thresholds.

In terms of convergence point, EM converges with ap-
proximately the same speed as the statistical approach (after
seeing 63%, 57% and 51% of actions in sessions that con-
verged, compared to 59%, 55% and 57%), but the length of
converged session is lower (4.30, 4.14, 4.48 compared to 5.9,
7.2 and 7.2). This might be due to the fact that the statisti-
cal approach only makes predictions when above a certainty
level, for which it needs to see more actions.

Memory Performance Figure 3 plots the number of ex-
plored actions per recognition session versus the number of
total episodes observed (which is also the number of stored
episodes since all episodes are stored in memory). This
number grows fast as memory develops but at a much slower
pace after memory has matured. Please note that we mea-
sure the number of events (not of episodes) matched, since
the retrieval is incremental.

Although the theoretical complexity of the retrieval algo-
rithm is O(s3), in practice only a fraction of that are ex-
plored. After all training data has been observed in the Linux
domain memory explores about 120 events, which repre-
sents under 11% of the number of episodes predicted by the
theoretical worst case. The corresponding number for the
Monroe domain is 558 episode, about 13% of the worst case
prediction.

Extensions to the Current Approach

A logical next step is to extend our algorithm to predict also
goal schema parameters, thus achieving full plan recogni-
tion. Mappings between parameters of observed actions and
prior plans are already provided by memory as a result of the
matching process, but an adaptation step is needed to ensure
consistency. Preliminary results with parameter recognition
are encouraging (Tecuci 2007).

A mature memory should be selective in what it stores.
A good deletion policy should reduce memory size, without
negatively affecting performance. Such a policy could be
based on the similarity of a new episodes with past ones,
as well as on the success or failure when using a retrieved
episode.

In complex domains it is likely that an agent will carry on
multiple plans at the same time, interleaving their actions. A
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Linux Monroe

N-best 1 2 3 4 1 2 3 4

P, R (%) 39.05 59.55 65.58 69.13 81.53 85.94 88.19 89.66
Conv (%) 50.14 73.76 78.95 82.57 97.82 99.24 99.60 99.80

CP/AvgLen 2.7/4.30 2.37/4.14 2.28/4.48 2.16/4.60 3.04/9.44 2.56/9.49 2.29/9.49 2.11/9.54
CP/AvgLen (%) 62.79 57.24 50.89 46.95 32.2 26.97 24.13 22.21

Figure 1: Experimental results for the memory-based approach on the goal schema recognition task.
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Figure 2: Comparison between memory-based and statistical approaches on a goal schema recognition recognition
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Figure 3: Number of explored actions per recognition session.

recognizer will have to be able to deal with these different
plans unfolding at the same time and still perform recogni-
tion on such data. The proposed memory based plan recog-
nition lends itself easily to this task. Episodic-based plan
recognition is already able to entertain multiple hypotheses
at the same time.

Related Work

Related approaches include the case based plan recognition
of (Cox and Kerkez 2006) which is based on state index-
ing. To alleviate the complexity explosion of state space, the
observed actions are used to compute an abstract planning
state, which is used as an index into plan memory. Unlike

traditional plan recognizers, both this and our approach can
deal with incomplete plan libraries, growing these libraries
as recognition proceeds, effectively learning from observa-
tions. They both employ multi-level indexing schemes.

(Cox and Kerkez 2006) require that the observer has the
ability to record intermediate planning states and need a
complete model of the planning domain including conse-
quences of actions. Our approach does not require complete
domain knowledge and its matching algorithm can take ad-
vantage of as much or as little domain knowledge is avail-
able.

Another important difference compared to case-based
reasoning approaches is that memory builds a multi-
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functional plan library that can be used for tasks other than
plan recognition. For example, plans can be generated for a
given goal, goals can be classified into solvable or not, and
users proficiency at a task can be assessed by observing them
execute that task.

Conclusions

In this paper we have proposed a memory-based approach to
goal schema recognition that uses a generic memory module
to store and retrieve plans. We showed that its incremental
retrieval algorithm is efficient and scalable.

We evaluated it against a statistical approach on two do-
mains and found that it achieves similar performance, but
offers some important advantages.

Due to the generic nature of the memory module and
of the retrieval algorithm, this approach should be easily
portable to new domains. The memory structure built by the
plan recognizer as well as its retrieval algorithm are multi-
functional and can be used for other purposes like plan gen-
eration or prediction of a plan outcome.
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