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Abstract 
One of the primary issues with traditional anomaly detection 
approaches is their inability to handle complex, structural 
data.  One approach to this issue involves the detection of 
anomalies in data that is represented as a graph.  The 
advantage of graph-based anomaly detection is that the 
relationships between elements can be analyzed, as opposed 
to just the data values themselves, for structural oddities in 
what could be a complex, rich set of information.  However, 
until now, attempts at applying graph-based approaches to 
anomaly detection have encountered two issues:  (1) 
Numeric values found in the data are not incorporated into 
the analysis of the structure, which could augment and 
improve the discovery of anomalies; and (2) The anomalous 
substructure may not be a deviation of the most prevalent 
pattern, but deviates from only one of many normative 
patterns.  This paper presents enhancements to existing 
graph-based anomaly detection techniques that address 
these two issues and shows experimental results validating 
the usefulness of these enhancements. 

Introduction 
Anomaly detection involves the discovery of an 
unexpected activity or pattern from within normal 
transactions or data.  The ability to discover anomalies is a 
vital task for a wide range of organizations, such as 
businesses or national defense agencies, and involves 
diverse applications, such as fraud detection, intrusion 
detection, and insider threat detection.  Traditionally, 
methods for discovering anomalies consist of both 
supervised and unsupervised approaches using techniques 
such as classification, clustering, nearest neighbors, and 
statistics [Chandola et al. 2007].  One of the primary issues 
with these approaches is their inability to handle complex, 
structural data.  One approach to this issue involves the 
detection of anomalies in data that is represented as a 
graph.   

The advantage of graph-based anomaly detection is that 
the relationships between elements can be analyzed, as 
opposed to just the data values themselves, for structural 
oddities in what could be a complex, rich set of 
information.  However, until now, attempts at applying 
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graph-based approaches to anomaly detection have 
encountered two issues:  (1) Numeric values found in the 
data are not incorporated into the analysis of the structure, 
which could augment and improve the discovery of 
anomalies; and (2) The anomalous substructure may not be 
a deviation of the most prevalent pattern, but deviates from 
only one of many normative patterns.  This paper presents 
enhancements to existing graph-based anomaly detection 
techniques that will address these two concerns. 

The existing techniques are based on an approach called 
Graph-Based Anomaly Detection (GBAD) [Eberle and 
Holder 2007]. GBAD discovers anomalous instances of 
structural patterns in data that represent entities, 
relationships and actions. Input to GBAD is a labeled 
graph in which entities are represented by labeled vertices 
and relationships or actions are represented by labeled 
edges between entities.  Using the minimum description 
length (MDL) principle to identify the normative pattern 
that minimizes the number of bits needed to describe the 
input graph after being compressed by the pattern, GBAD 
uses algorithms for identifying the three possible changes 
to a graph:  modifications, insertions and deletions.  Each 
algorithm discovers those substructures that match the 
closest to the normative pattern without matching exactly.  
As a result, GBAD is looking for those activities that 
appear to match normal (or legitimate) transactions, but in 
fact are structurally different. However, to date, GBAD 
treats numeric data no different than string labels and 
focuses on only one normative pattern when searching for 
anomalies. 

Related Work 
Recently there has been an impetus towards analyzing 
multi-relational data using graph theoretic methods.  Not to 
be confused with the mechanisms for analyzing “spatial” 
data, graph-based data mining approaches are an attempt at 
analyzing data that can be represented as a graph (i.e., 
vertices and edges).  Yet, while there has been much 
written as it pertains to graph-based intrusion detection 
[Staniford-Chen et al. 1996], very little research has been 
accomplished in the area of graph-based anomaly 
detection. 

In 2003, Noble and Cook used the SUBDUE application 
to look at the problem of anomaly detection from both the 
anomalous substructure and anomalous subgraph 
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perspective [Noble and Cook 2003].  They were able to 
provide measurements of anomalous behavior as it applied 
to graphs from two different perspectives.  Anomalous 
substructure detection dealt with the unusual substructures 
that were found in an entire graph.  In order to distinguish 
an anomalous substructure from the other substructures, 
they created a simple measurement whereby the value 
associated with a substructure indicated a degree of 
anomaly.  They also presented the idea of anomalous 
subgraph detection which dealt with how anomalous a 
subgraph (i.e., a substructure that is part of a larger graph) 
was to other subgraphs.  The idea was that subgraphs that 
contained many common substructures were generally less 
anomalous than subgraphs that contained few common 
substructures.   In addition, they also explored the idea of 
conditional entropy and data regularity using network 
intrusion data as well as some artificially created data.   

Lin and Chalupsky [Lin and Chalupsky 2003] took the 
approach of applying what they called rarity measurements 
to the discovery of unusual links within a graph.  The 
AutoPart system presented a non-parametric approach to 
finding outliers in graph-based data [Chakrabarti 2004].  
Part of this approach was to look for outliers by analyzing 
how edges that were removed from the overall structure 
affected the minimum descriptive length (MDL) of the 
graph [Rissanen 1989].  The idea of entropy was used by 
Shetty and Adibi [Shetty and Adibi 2005] in their analysis 
of the famous Enron e-mail data set.  Using bipartite 
graphs, Sun et al. [Sun et al. 2005] presented a model for 
scoring the normality of nodes as they relate to other 
nodes.  Rattigan and Jensen went after anomalous links 
using a statistical approach [Rattigan and Jensen 2005]. 

However, none of these approaches analyze both the 
structural and numeric aspects of a graph representation of 
data, nor do they search for anomalies that are small 
deviations from normative patterns. 

Graph-Based Anomaly Detection 

Definition 
The idea behind the approach used in this work is to find 
anomalies in graph-based data where the 
anomalous substructure in a graph is part of (or attached to 
or missing from) a normative substructure.  
 
Definition: A graph substructure S’ is anomalous if it is 
not isomorphic to the graph’s normative substructure S, 
but is isomorphic to S within X%. 
 
X signifies the percentage of vertices and edges that would 
need to be changed in order for S’ to be isomorphic to S.  
The importance of this definition lies in its relationship to 
any deceptive practices that are intended to illegally obtain 
or hide information.  The United Nations Office on Drugs 
and Crime states the first fundamental law of money 
laundering as “The more successful money-laundering 
apparatus is in imitating the patterns and behavior of 

legitimate transactions, the less the likelihood of it being 
exposed” [Hampton and Levi 2009].   

There are three general categories of anomalies: 
insertions, modifications and deletions.  Insertions would 
constitute the presence of an unexpected vertex or edge. 
Modifications would consist of an unexpected label on a 
vertex or edge. Deletions would constitute the unexpected 
absence of a vertex or edge.   

Assumptions 
Many of the graph-based anomaly detection approaches up 
to now have assumed that the data exhibits a power-law 
distribution [Faloutsos et al. 1999].  The advantage of the 
approaches presented in this paper is that it does not 
assume the data consists of a power-law behavior.  In fact, 
no standard distribution model is assumed to exist.  All that 
is required is that the data is regular, which in general 
means that the data is “predictable”. While there are many 
data sets that are not regular in nature, there are also many, 
such as business processes, that exhibit regular patterns of 
behavior.  After all, that is why companies set up processes 
in the first place – to establish rules and guidelines for 
normal business activity [Harmon 2007]. 

In order to address our definition of an anomaly, we 
make the following assumptions about the data. 
Assumption 1: The majority of a graph consists of a 
normative pattern, and no more than X% of the normative 
pattern is altered in the case of an anomaly. 
Since our definition implies that an anomaly constitutes a 
minor change to the prevalent substructure, we would 
chose a small percentage (e.g., 10%) to represent the most 
a substructure would be changed in a fraudulent action. 
Assumption 2: Anomalies consist of one or more 
modifications, insertions or deletions. 
As was mentioned earlier, there are only three types of 
changes that can be made to a graph.  Therefore, anomalies 
that consist of structural changes to a graph must consist of 
one of these types. 
Assumption 3: The normative pattern is connected. 
In the real-world scenarios of business transactions and 
processes, the entities are typically linked to each other in 
some way.  Certainly, graphs could contain potential 
anomalies across disconnected substructures, but at this 
point, we are constraining our research to only connected 
anomalies. 

Approaches 
Most anomaly detection methods use a supervised 
approach, which requires some sort of baseline of 
information from which comparisons or training can be 
performed.  In general, if one has an idea what is normal 
behavior, deviations from that behavior could constitute an 
anomaly.  However, the issue with those approaches is that 
one has to have the data in advance in order to train the 

351



system, and the data has to already be labeled (e.g., normal 
employee transaction versus threatening insider activity). 

GBAD (Graph-based Anomaly Detection) [Eberle and 
Holder 2007] is an unsupervised approach, based upon the 
SUBDUE graph-based knowledge discovery method 
[Cook and Holder 2000].  Using a greedy beam search and 
Minimum Description Length (MDL) heuristic [Rissanen 
1989], each of the three anomaly detection algorithms in 
GBAD uses SUBDUE to provide the top substructure, or 
normative pattern, in an input graph.  In our 
implementation, the MDL approach is used to determine 
the best substructure(s) as the one that minimizes the 
following: 
 
     )()|(),( SDLSGDLGSM ��
 
where G is the entire graph, S is the substructure, DL(G|S) 
is the description length of G after compressing it using S, 
and DL(S) is the description length of the substructure.   

We have developed three separate algorithms:  GBAD-
MDL, GBAD-P and GBAD-MPS.  Each of these 
approaches is intended to discover all of the possible 
graph-based anomaly types as set forth earlier.  The 
following is a brief summary of each of the algorithms, 
along with some simple business process examples to help 
explain their usage.  The reader should refer to [Eberle and 
Holder 2007] for a more detailed description of the actual 
algorithms. 
Information Theoretic Algorithm (GBAD-MDL). The 
GBAD-MDL algorithm uses a Minimum Description 
Length (MDL) heuristic to discover the best substructure in 
a graph, and then subsequently examines all of the 
instances of that substructure that “look similar” to that 
pattern – or more precisely, are modifications to the 
normative pattern.  In Noble and Cook’s work on graph-
based anomaly detection [Noble and Cook 2003], they 
present an example similar to the one shown in Figure 1. 

Running the GBAD-MDL algorithm on this example 
results in the (circled) anomalous substructure.  With 
Noble and Cook’s approach, the D vertex is shown to be 
the anomaly.  While correct, the importance of the GBAD 
approach is that a larger picture is provided regarding its 
associated substructure.  In other words, not only are we 
providing the anomaly, but we are also presenting the 
context of that anomaly within the graph. 

  

Figure 1.  Example graph with normative pattern (bold 
box) and different types of anomalies (in other shapes). 

 

Probabilistic Algorithm (GBAD-P).  The GBAD-P 
algorithm uses the MDL evaluation technique to discover 
the best substructure in a graph, but instead of examining 
all instances for similarity, this approach examines all 
extensions (or insertions) to the normative substructure 
with the lowest probability.  The difference between the 
algorithms is that GBAD-MDL is looking at instances of 
substructures with the same characteristics (e.g., size), 
whereas GBAD-P is examining the probability of 
extensions to the normative pattern to determine if there is 
an instance that includes edges and vertices that are 
probabilistically less likely than other possible extensions. 

Take the same example shown in Figure 1.  After one 
iteration, the instance shown in the bold box is one of the 
instances of the best substructure.  Then, on the second 
iteration, extensions are evaluated, and the instance in the 
regular box is the resulting anomalous substructure. 
Maximum Partial Substructure (GBAD-MPS).  The 
GBAD-MPS algorithm again uses the MDL approach to 
discover the best substructure in a graph, then it examines 
all of the instances of parent (or ancestral) substructures 
that are missing various edges and vertices (i.e., deletions).  
The value associated with the parent instances represents 
the cost of transformation (i.e., how much change would 
have to take place for the instance to match the best 
substructure).  Thus, the instance with the lowest cost 
transformation is considered the anomaly, as it is closest 
(maximum) to the best substructure without being included 
on the best substructure’s instance list.  If more than one 
instance have the same value, the frequency of the 
instance’s structure will be used to break the tie if possible. 

Suppose we take one of the instances of the normative 
pattern (outlined by an octagon in Figure 1), and remove 
its edge between the B and A vertices (shown in the 
triangle). Running GBAD-MPS on the modified graph 
results in the discovery of an anomalous substructure 
similar to the normative pattern, but missing the removed 
edge. 

Multiple Normative Patterns 
One of the issues with this approach is that many data sets, 
when represented as a graph, consist of multiple normative 
patterns.  For example, a graph of telephone calls across 
multiple customers or service providers would contain 
different calling patterns.  The normative “behavior” of 
one customer would not be representative of another 
customer’s calling pattern.  For this reason, most 
telecommunications fraud detection systems use a 
“profiling” system to distinguish between different 
customer calling patterns [Cortes and Pregibon 2001].  
However, the issue with these sorts of traditional systems 
is that they are a type of supervised approach because they 
require a profile of the customer before they can detect 
anomalies. 

D

B

C A

B

C A

B

D A

D D C

B

C A

B

C A

D

The GBAD approach is unsupervised, discovering 
substructures that are the smallest deviations from the 
normative pattern (i.e., the substructure that best 
compresses the graph).  However, if we extend GBAD to 
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consider the top N normative substructures, we can then 
discover other deviations that are potentially more 
anomalous.  This results in the following change to the first 
step of each of the GBAD algorithms: 

 
Find the N normative substructures Si that have the N 
smallest values for DL(Si)+DL(G|Si). 

 
where N normative patterns are initially discovered, against 
which potentially anomalous instances are analyzed.  

 For example, suppose we have the graph in Figure 2. 
 

Figure 2.  Example of multiple normative patterns. 

In Figure 2, the best normative pattern consists of the 
substructure outlined in the big box.  Then, using that 
normative pattern, GBAD would report the two anomalous 
substructures shown in the small boxes.  However there is 
another normative pattern which is the second best 
substructure in the graph, shown outlined with an ellipse 
(in bold).  From that normative pattern, a more anomalous 
substructure is discovered (shown in a smaller ellipse, also 
in bold), as the probability of an extension to an A vertex is 
rarer than the previously reported anomalous extensions 
(Y) associated with the first normative pattern. 

In the next section, we will show a real-world example 
of this scenario and the algorithmic change to GBAD. 

Numeric Distribution 
While GBAD provides for the structural analysis of 
complex data sets, another one of the issues with this 
approach is the lack of analysis regarding the numeric 
values that are present in certain data.  GBAD has had 
success discovering anomalies regarding the relationships 
between data entities [Eberle and Holder 2007], including 
differences between node and link labels, but sometimes 
the distances between actual entity values needs to be 
considered.  Take for instance the simple example shown 
in Figure 3. 
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Figure 3.  Example of vertices labeled with numeric 
values. 
In Figure 3, each person has a name and an age.  Running 
GBAD on this simple graph results in the reporting of 4 
vertices as equally anomalous.  While each person has an 
age, because their ages have different values, they are each 
viewed as being structurally different. 

Currently, GBAD-P calculates the probability of the 
existence of an edge and/or vertex as: 
 
P(attribute=value) = P(attribute exists) 
 
where P(attribute exists) is in terms of the probability that 
it exists as an extension of the normative pattern. However, 
when we implement the following change to the GBAD-P 
algorithm: 
 
P(attribute=value) = P(attribute=value | attribute exists) * 
                                   P(attribute exists) 
 
where the probability of the data is calculated as the 
probability of the value, given that the attribute even exists, 
times the probability that it exists.  Calculating the mean 
and standard deviation for all attribute values, we can 
generate P(attribute=value | attribute exists) by using a 
Gaussian distribution: 

� �
� �
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2

2

2
1 �

�

��
	





�
x

ex  

where �  is the standard deviation and �  is the mean. 
Using the same simple example shown in Figure 3, the 

probability P(x) that each age edge exists is 0.25.  The 
mean of the age value is 37.75 and the standard deviation 
is 4.03.  When applying this revised probability P', GBAD-
P is able to correctly identify that while the structures are 
the same, with edges labeled "age", the associated vertex 
with a labeled age of "32", results in the lowest probability, 
P’(x), and thus the greater "anomalousness" (i.e. closer to 
zero): 
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Figure 4. Numeric deviation effecting anomalousness. 
 
P'(age=41) = 0.017876  P'(age=38) = 0.024694 
P'(age=40) = 0.021173  P'(age=32) = 0.008946 
 
In addition, further experimentation with using a Gaussian 
probability metric along with the structural anomalous 
metric indicates that any numeric value less than one 
standard deviation results in the anomaly not being 
reported as anomalous.  For example, Figure 4 shows how 
the anomalousness lessens as the numeric value gets closer 
to the mean, where eventually the originally anomalous 
vertex is just as anomalous as another vertex, and is even 
removed from consideration as the other vertex then 
becomes more anomalous. 

In the next section, we will show a more complex real-
world example of this scenario and the algorithmic change 
to GBAD. 

Experimental Results 
Business Process 
First, we simulated a passport application document 
processing scenario based upon the process flow depicted 
in Figure 5.We generated a graph representing the 
processing of 1,000 passport applications, consisting of 
approximately 5,000 vertices and 13,000 edges.  
Potentially, there are two types of prevalent patterns in this 
type of data:  (1) The ApprovalOfficer and CaseOfficer 
both accept a passport application, and (2) The 
ApprovalOfficer and CaseOfficer both reject an 
application.  Therefore, potentially anomalous scenarios 
could exist where the ApprovalOfficer overrides the 
accept/reject recommendation from the assigned 
CaseOfficer. 

For our testing, we used a tool called OMNeT++ 
[OMNeT] to generate a graph consisting of these two 
normative patterns, although these patterns were not 
among the top-ranked most normative substructures.  We 
then had the tool randomly insert an anomalous instance of  

Figure 5.  Depiction of application processing. 
the first type (case officer accepts, approval officer rejects) 
and two anomalous instances of the second type (case 
officer rejects, approval officer accepts). Applying the 
GBAD algorithms to this graph results in the anomalous 
instance(s) associated with only one of the normative 
patterns to be discovered.  However, when we modify the 
GBAD-P algorithm (which was the only algorithm to 
discover an anomalous instance) to analyze the top N 
normative patterns, where N is set arbitrarily to 20, all 
three anomalous examples are reported as the most 
anomalous.  Other experiments showed that the size of N 
was not important.  For instance, in this example, when we 
increase N to 100, the top three anomalies reported are still 
the same ones.  In addition, no other substructures are 
reported as anomalous along with these top three 
anomalies (i.e., no false positives). 

Financial Transactions 
We then created a more complex graph that consists of a 
bank transactions scenario.  In this case, the graph consists 
of 10 bank accounts, where each account consists of two 
deposits and two withdrawals.  Then one extra deposit was 
inserted into 3 different accounts, with 2 of the deposits 
being closer to the mean than the other deposit.  The graph 
consists of vertices labeled "account", "deposit", and 
"withdrawal", edges labeled "transaction" and "amount", 
and vertices with dollar values (e.g., "2000.0"), similar to 
what is shown in Figure 6. 

Again, in order to calculate the probability of the normal 
distribution, first the mean and standard deviation of all of 
the amount values are calculated.  Applying the GBAD-P 

 
Figure 6. Example of anomalous bank transactions. 
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algorithm, it first discovers the structural differences 
inherent in the 3 accounts that contain the extra deposits, 
then it applies the new Gaussian probability metric to 
correctly identify the account that contains the deposit with 
the largest deviation in amount.  Also, as was shown in the 
earlier example, further experimentation with using a 
Gaussian probability metric on the transaction amount, 
along with the structural anomalous metric indicates that 
any value less than one standard deviation results in the 
anomaly not being reported as anomalous. 

What makes this significant from a practical perspective, 
is that while the value of the anomalous deposit was high 
($5000 for this transaction, and $1000 and $2000 for the 
other two extra deposits), there were actually 11 
transactions of this same amount (i.e., out of 43 
transactions, over 1/4 of the transactions were at the $5000 
level) within this graph.  If one were to perform a 
traditional numerical analysis of this value in terms of all 
of the deposits (and withdrawals) that were made, the value 
of $5000 would not have been interesting.  However, when 
combined with the anomaly of the extra structure (i.e., an 
extra deposit transaction), then it becomes significant. 

Conclusions and Future Work 
Two of the issues with current graph-based anomaly 
detection approaches are their inability to use numeric 
values along with their structural analysis to aide in the 
discovery of anomalies, and their inability to discover 
anomalous substructures that are not part of the normative 
pattern.  This paper presents novel graph-based anomaly 
detection approaches that start to address these two 
concerns.  In the future, we are going to continue 
researching other numeric analysis approaches that can be 
incorporated into the structural analysis so as to further 
delineate “anomalousness”.  In addition, we will analyze 
our ability to discover an anomaly involving two different 
numeric attributes that individually are not anomalous, but 
together are rare.  We will also investigate the limitations 
involved with analyzing multiple normative patterns, 
including how well this approach scales with the size of the 
graph, number of normative patterns, and size of the 
normative patterns. 
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