
Robot Defense: Using the Java Instructional Game Engine in the Artificial
Intelligence Classroom

Scott A. Wallace
School of Eng. and Computer Science

Washington State University Vancouver
Vancouver, WA 98686

wallaces@vancouver.wsu.edu

Ingrid Russell
Department of Computer Science

University of Hartford
West Hartford, CT 06117

irussell@hartford.edu

Abstract

In this paper, we examine Robot Defense, a computer game
that serves as a pedagogical platform for students to explore
methods typically covered in an Introductory Artificial Intel-
ligence course. Robot Defense is the synergistic outcome of
two NSF funded Course, Curriculum, and Laboratory Im-
provement (CCLI) projects and was first presented in (Wal-
lace, Russell, & Markov 2008). The primary contribution
of this paper is to discuss the implementation of the Robot
Defense platform and the outcome of its first use in the class-
room.

Introduction
We believe, and research supports the notion, that students
will be more engaged in their studies if their coursework
focuses on interesting and relevant challenges (Renninger,
Hidi, & Krapp 1992). This paper describes two Course, Cur-
riculum, and Laboratory Improvement projects that share
the goal of building compelling curriculum to teach tradi-
tional Computer Science course objectives.

The Java Instructional Game (JIG) Project (Wallace &
Nierman 2006), began in 2006 as a collaboration between
Washington State University Vancouver and the University
of Puget Sound. The goals of the project are twofold. First,
we aim to create a Java based game library that can be used
throughout all four years of an undergraduate Computer Sci-
ence program. Second, we aim to create a set of small
projects that use JIG to teach traditional Computer Science
learning objectives with games as the vehicle. The first ver-
sion of JIG was developed in Summer of 2007 and used in
the classroom later that year.

Project MLeXAI (Russell, Markov, & Coleman 2007;
Kumar, Kumar, & Russell 2006) began in 2004 as a collabo-
ration between University of Hartford, Central Connecticut
State University and Gettysburg College. In this first phase,
PIs at each of these institutions developed adaptable course
curriculum and hands-on laboratory projects that could be
closely integrated into traditional undergraduate Artificial
Intelligence courses. Project MLeXAI’s second phase be-
gan in fall of 2007 and involves 20 faculty members from
around the country.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In the following sections of this paper, we begin by de-
scribing Robot Defense, the platform upon which our curric-
ula is based. Next, we describe the planned first use of Robot
Defense including a brief synopsis of three major projects.
Not surprisingly, the actual use of Robot Defense differed
from initial expectations in a few important ways; our dis-
cussion explores the actual assigned projects and the reasons
for diverging from the planned syllabus. Finally, we summa-
rize students’ evaluation of the projects and compare the re-
sults to similar projects in MLeXAI. We conclude the paper
with potential avenues for future work.

Robot Defense
Games are a conducive vehicle for Artificial Intelligence ed-
ucation; Youngblood, for example, documented that over
80% of the students in his AI for Interactive Computer
Games Course were drawn in specifically due to the relation-
ship with games (Youngblood 2007). With similar expecta-
tions that games may help increase student interest in Artifi-
cial Intelligence, Scott Wallace began implementing Robot
Defense in late 2007 as JIG was being tested for the first
time in the classroom. The Robot Defense platform consists
of a simple real-time strategy game similar to the popular
flash game Desktop Tower Defense. In the game, insects
move across a tile-based map from a fixed source location
to one or more destinations. Different types of terrain make
this task more complicated as do the placement of special
fan and vacuum towers that can influence the path of the
insects—possibly preventing them from reaching their des-
tination. Fans and vacuums, of course, require power; and
power in this game is a resource that must be procured by
collecting crystals that appear randomly on the map. Robots
travel over the terrain subject to the same constraints as the
insects and these robots are tasked with gathering the crys-
tals which power the fans and vacuums. Thus, the game en-
tities can be viewed as two opposing teams: on one hand
the insects trying to traverse the map; on the other hand
the robots and towers trying to prevent this from happen-
ing. While the game bears some similarities to the classic
Wumpus World (Russell & Norvig 2003) its multi-agent,
dynamic, and fully observable characteristics are all critical
differences from the standpoint of agent design.

Robot Defense is implemented in Java. In Java, ob-
jects are discovered and loaded at runtime, and this makes

166

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

it relatively straightforward to create applications in which
some of the requisite objects only become available after
the application has been distributed. Robot Defense (as
well as a number of other JIG projects) leverages this prop-
erty through the Java Service Provider Interface (Seacord &
Wrage 2002). Under this model, the application (here the
Robot Defense game) defines one or more interfaces or ab-
stract classes which serve to declare the signature of a par-
ticular service. A path planning service, for example, may
simply be described by a single method which takes three
arguments: a graph; a starting node; and an ending node.
The method may then be declared to return a list of edges,
which when traversed in order will move a visitor from the
start node to the end node. With such an interface, one could
then define specific search service providers (implementa-
tions) which perform depth first search, A* search, etc.

The beauty of the Service Provider approach is that the ap-
plication can be designed, implemented, and then distributed
as a jar archive using only the interfaces to describe the ser-
vices. The assumption is that when run, one or more service
providers will be identified that allow the application to per-
form its necessary function. Robot Defense is compiled with
a variety of service definitions. Each service corresponds di-
rectly to an assignment (such as path planning) that the stu-
dent will later implement. When run, Robot Defense looks
for the student’s implementation and dynamically loads it
into the game. The student need not rebuild the game or the
jar. However, the student’s service providers must be rec-
ognized by the Java runtime. The standard method of reg-
istration relies on a set of text files stored in a META-INF
directory located on the class path. Simply by modifying
the contents of these text files, student can incorporated their
own program segments into the Robot Defense game.

Figure 1 illustrates a typical directory structure for
a Robot Defense distribution. The jar archive sits
at the same level as the student’s code (here named
StudentAStar.class) and at the same level as a
META-INF directory that contains an entry for the
jig.rd.Pathing service. This text file itself contains
the full name of the service provider. The game would then
be launched by adding the current directory and the jar file
to the class path and calling the entry point associated with
the assignment (here jig.rd.PrjPathing)1.

Planned Syllabus
The anticipated project syllabus (described in (Wallace, Rus-
sell, & Markov 2008)) contained four projects built on the
Robot Defense platform. In the first two projects, students
would implement two search algorithms to provide the path
planning that would allow autonomous robots to gather ran-
domly appearing resources from the map and to exit the map
from any location. The first task would require the use of A*
search, whereas the second would be accomplished via Best
First Search/Dijkstra’s algorithm.

In the third project, students would focus on the logic used
to control the vacuum and fan towers. Using the Soar agent

1Note that the service and project names specified here are for
illustration; they have been shortened for clarity of presentation.

���������	
�����

���������

������
�

���������	
��

�����������	��

�� ��	�������!

�

"�#	���!

�	$��%���!�	��

�� ��	������

���������	
����

��������

������
�

���������	
�

�����������	�

�� ��	�������!

#	���!

�	$��%���!�	��

 ��	�����

"�#

���

java –cp RobotDefense.jar:. jig.rd.PrjPathing�

Figure 1: Directory structure (top) and Java command line
(bottom) for a typical JIG curricular distribution.

architecture (Laird, Newell, & Rosenbloom 1987), students
would create a set of rules that govern the behavior (rotation
and power level) of towers to efficiently capture insects and
thereby prevent them from reaching their goal. The task is
complicated because the way in which insects are affected
by vacuum/fan air currents is based on an internal aerody-
namic function that the agent does not know. This function
takes into account all of the air currents acting on a partic-
ular insect and translates that into a force that is applied to
redirect the insect’s motion. Thus, different aerodynamic
functions can, for example, make it more likely that the in-
sect will move: if there is more than one tower acting on the
insect; if the air currents are pulling all in the same general
direction; if the air currents are pulling in a specific direc-
tion (e.g., west); or if the insect is of a particular type (e.g,
beetle vs worm). Encoding a relatively good strategy for one
or two of the aerodynamic functions is relatively straightfor-
ward, but it is not a simple matter to encode a fixed strategy
that will work well with all possible aerodynamic functions.

The fourth assignment aimed to address the difficulties
associated with creating a strategy that would perform well
under a variety of aerodynamic functions. Instead of creat-
ing a fixed strategy using Soar, students would implement
an agent that obtained observations directly from the Robot
Defense environment and used these observations to learn a
correct response to whatever aerodynamic function was in
place at the time.

Actual Syllabus

Shortly after the Spring 2008 offering of the Introduction to
Artificial Intelligence course was under way, it became clear
that a few modifications to the original assignments would
be needed as students were not progressing through the ma-
terials as quickly as the instructor had anticipated. The ac-
tual course syllabus therefore diverged somewhat from the
initial plan. In this section, we discuss how the Robot De-
fense platform was actually used in the course and provide
the reasons behind our modifications.

167

Figure 2: Insects travel on the shortest cost route from their
source to their destination in the Robot Defense Dijkstra’s
Algorithm project.

Project 1: Dijkstra’s Algorithm
Figure 2 shows a screen capture from the first project in
which students implement Dijkstra’s algorithm. In Robot
Defense, the map is internally represented as a graph in
which each 20 by 20 pixel tile corresponds to a node and
adjacent nodes (in cardinal and diagonal directions) are con-
nected with edges. The edges themselves are weighted
based on the terrain types of the tiles to which they are con-
nected. Each terrain has its own cost—the least expensive
being grass (cost 1) and the most expensive being water (in-
finite cost); sand, mud and boulders represent intermediate
costs in increasing order.

As with all of the projects built on the Robot Defense plat-
form, students implement a specified service provider that
is incorporated into the game at run time. The game pro-
vides user interface controls to switch service providers dur-
ing play. This allows students to compare two implementa-
tions with each other, or to switch between a default (stub)
implementation that is provided by the instructor and their
own fully featured implementation.

Implementation In the Dijkstra’s project, students are
provided with the Robot Defense jar archive and implement
a provider of the SDRouteMap (Single Destination Route
Map) service. The service contains three important meth-
ods: cache(Graph, List), costFrom(Node) and
directionAt(Node). The cache() method performs
a one-time calculation (here Dijkstra’s algorithm) to com-
pute the best route from any location on the graph to any one
of the destination nodes. The results of the calculation are
then stored internally in the student’s service provider and
accessed on demand by the Robot Defense game using the
two other methods (costFrom() and directionAt()
which indicate respectively the cost of the optimal path from
the current node to the destination and what edge to follow
as the next step on that path.

This first project comes with a default provider of the
SDRouteMap service that is built into the Robot Defense
jar. This stub provides no useful information; rather the
directionAt() method returns a random outgoing edge
and the costFrom() method returns -1 for all nodes in the
graph. Thus, at the onset of the assignment the insects have
no directed way of moving from their start location to their
destination. Instead they simply take a random walk without
regard to the cost of different tiles or the relative direction of
their goal. Students can switch between this service provider
and their own by clicking the Route Map button in the upper
left corner of the UI. In this manner, Robot Defense aims to
provide a source of visual feedback that both indicates why
the algorithm is useful and important and also whether the
student’s implementation is reasonable and correct.
Discussion Overall, the first assignment was well received
by the students. However, it was also clear that because the
course involved both senior-level and junior-level students
there was a wide range in programming proficiency, espe-
cially with regard to the Java language (in some cases, the
juniors may have had as little as one semester of previous
experience with the language). Based on the instructor’s ob-
servations, there seemed to be two main sources of difficulty
for the students.

The first difficulty for the students was to understand the
context in which their code was being used. Specifically, for
many junior-level students working with an external envi-
ronment such as Robot Defense is a new challenge. Unlike
tasks in which students write all the code themselves, here
students are forced to understand something about the inter-
actions between their own code and the environment in order
to make progress on their task. Of course, as Computer Sci-
entists, this is a critical skill to acquire, but it is also one that
students may not immediately appreciate as it often seems
irrelevant to the task at hand.

The second common difficulty students had was under-
standing the use of Java generics. While most of the seniors
had experience with generics, the concept and certainly the
syntax was new to many of the juniors. Although this was
probably a relatively minor hurdle, it did provide one more
obstacle for students to overcome before they could get to
the task of implementing Dijkstra’s algorithm.

In future iterations of this assignment, there are at least
two possible ways in which these hurdles may be dealt with.
Instructors wishing to focus exclusively on the AI concepts,
may wish to provide very complete documentation for how
the student’s code will be used by the system and how all
interactions will take place between the library code and the
student’s own code. This would likely alleviate many of the
issues surrounding the first difficulty. Generics could also
easily be removed from the Robot Defense service interface
either by modifying the game itself or by providing a wrap-
per for service providers. However, while some instructors
may wish to reduce these hurdles, others may opt instead for
an experience in which students have to deal with some of
the challenges associated with API programming and pro-
gramming in the large. It is our opinion that students will
be open to these challenges if the instructor identifies them

168

Figure 3: A robot plans an optimal path (indicated with red
squares) to crystal resources in the Robot Defense A* Search
project.

as important learning objectives at the beginning of the as-
signment. Otherwise, it seems likely that many students will
only view these as obstacles to the assignment’s true learn-
ing objectives.

Project 2: A* Search
The second project followed directly after the first. Here,
students implemented A* search to guide an autonomous
robot from its current location to resources that periodically
appear at random locations on the map. Figure 3 presents a
screen capture of the robot following its planned path. The
assignment was separated from Project 1 mainly because the
use of A* and Dijkstra’s algorithm within the Robot Defense
game are quite different. Whereas Dijkstra’s algorithm is
used to compute and cache path information for any location
on the map to the goal destination; A* is used dynamically
to plan point to point paths where the start and end loca-
tion change between each search. Because it does not make
sense to cache information after A* has completed, the in-
terfaces that describe the services for these two projects are
relatively different.

Implementation In the A* project, students are provided
with the Robot Defense jar archive and implement a provider
of the SearchFactory service. The service contains two
methods which follow the pseudo code outlined in (Rus-
sell & Norvig 2003): initializeProblem(Node,
Node, Graph); and aStar(SearchProblem). The
first method returns a SearchProblem instance which is
used to encapsulate the information required by any graph-
based search routine. The starting node, destination node
and the graph to be operated on are all parameters to this
method. Once packaged, the search problem instance is
then sent to a particular graph search implementation (here
aStar() which in turn returns a SearchNode object that
can be used to trace lowest cost path from start node to goal

node.

Discussion As with the Dijkstra’s implementation, a num-
ber of students struggled with basic Java concepts in this
project. The struggles were somewhat heightened be-
cause the pseudo code of Russell and Norvig requires
students to implement three objects: a SearchNode; a
SearchProblem; and a SearchFactory2. While this
design can yield highly reusable code, it was not clear how
much students valued the generality of the design when
weighed against the intellectual overhead associated with
determining how all the objects were supposed to integrate
with one another.

Many instructors (including ourselves) believe that visu-
alization can be an important learning aid. However, it is
interesting to note that even though students were given a
visual environment that provided direct feedback by dis-
playing the path returned by the A* algorithm, not all stu-
dents submitted successful solutions. Indeed, 6/17 or 35%
submitted A* implementations which were clearly broken
in that careful consideration of the visual feedback would
have alerted the astute observer that the algorithm was not
returning optimal paths. This suggests that some students
are either: 1) failing to critically analyze the feedback they
are given, even when it is visual in nature; or 2) ignoring
their analysis as a result of other factors (lack of time, etc).
Thus, an important follow up would be to ask students when
they submit their work to judge the quality of their imple-
mentation. One might then be able to compare responses on
visual and non-visual versions of the same assignment and
determine what, if any, impact the visualization had on the
students’ submissions.

Project 3: Soar Agents
In the original syllabus, students’ next project would have
been to implement control knowledge for the vacuum and
fan towers using the Soar agent architecture. This course
project was incorporated into Robot Defense as planned, but
was later removed from the syllabus. Below, we briefly dis-
cuss the motivation behind this choice.

Discussion The 2008 offering of the Introduction to AI
course was the first time that Soar was scheduled for use in
the WSUV undergraduate classroom. The original syllabus
allocated six lecture hours (two weeks) for a discussion of
Soar; this discussion was planned to finish with the Soar
agent project.

While the ideas behind Soar and other rule based systems
are conceptually simple, the execution model presents a sig-
nificant paradigm shift for students. This means that pro-
gramming even simple behavior can be quite labor intensive.
As the course developed and the lectures on Soar began, it
quickly became clear that six hours of class time and one
assignment would not be sufficient for students to make the
intellectual leap to understanding rule based systems. Af-
ter considering the students’ progress, the instructor decided

2Note that while the SearchFactory is not explicitly indi-
cated in the Russell Norvig pseudo code such an object must exist
in Java to provide the container for the actual search method.

169

Figure 4: Q-Learning modifies the Vacuum Tower’s re-
sponse function.

to make two changes: first, course time allocated to Soar
and Soar programming was extended by another week and a
half; second, students were assigned a Soar project based on
the Eaters environment instead of Robot Defense. The mo-
tivation for this second change was simple: like Robot De-
fense, Eaters is a game-like environment. However, the crit-
ical difference is that Eaters comes pre-packaged as a part
of the Soar tutorial so there were substantial learning ma-
terials and references built into the Soar documentation to
support the student’s learning process. Moreover, because
Eaters had been in active use for many years, there were less
concerns that students would be waylaid by bugs in the en-
vironment.

In the post-hoc analysis, it seems clear that for students to
have a successful experience with Soar, at least four weeks,
and perhaps as many as six weeks would need to be allo-
cated to the architecture. While we believe that students
profit greatly from familiarity with a range of different pro-
gramming paradigms, a six week commitment may not be
feasible for many instructors of the Introductory Artificial
Intelligence Course.

An alternative approach that we may pursue in our next
offering is to let students choose how to create their own
hand-coded agent. Ambitious and interested students may
use the Soar architecture while less ambitious students
would be able to use the Robot Defense agent interface
classes to implement the agent’s logic procedurally using the
Java language itself. Both methods serve to expose knowl-
edge representation issues and to lay the groundwork that
would later highlight the value of learning.

Project 3′: Q-Learning
The final Robot Defense project was given in the last third
of the semester as the course examined machine learning al-
gorithms. In this project, students implemented Q-Learning
so that Robot Defense vacuum towers could learn a response
function to capture insects regardless of what aerodynamic

function is being used by the game at runtime. Figure 4
presents a screen capture of the game with the towers being
controlled by a Q-Learning agent. Over time, the agent be-
comes more adept at capturing insects and also learns that it
is valuable to turn off power when there are no insects near
a particular tower.

Implementation In the Q-Learning project, students are
provided with the Robot Defense jar archive and the follow-
ing critical skeletal code: a StateVector implementation
that generates a usable and useful representation of the state
near any specified tower; a LearnerOne agent implemen-
tation that provides a working (but relatively uninteresting)
agent that associates states with actions. The student’s task
is three fold: 1) to assign meaningful rewards for events that
happen in the world (such as capturing insects, or using re-
sources); 2) implement Q-Learning to map states to actions;
3) ensure that the agent explores all actions that may be rel-
evant to the situations it encounters. The environment pro-
duces a log file that indicates how many insects have been
captured and how many resources have been used over the
course of the game. By comparing these files (or a graph of
their results) students can see how differences in their learn-
ing algorithm or internal representation affects the agent’s
overall performance.

Discussion The Q-Learning project required somewhat
more code than either of the two earlier Robot Defense
projects. However, the challenges faced by students were
ameliorated by two facts. First, by this point in the semester,
third year students had become increasingly adept at Java
programming and were on more equal footing with the
fourth year students. Secondly, unlike the previous projects,
the instructor provided skeletal code with this assignment
that gave students a foothold on how to begin. Given their
improved experience and the skeletal code, nearly all the
students in the class were able to create agents that success-
fully learned how to capture insects under a variety of aero-
dynamic functions...a task that would have been extremely
difficult using a solely hand coded approach. Moreover, be-
cause most students’ implementations were able to learn an
appropriate response function over the course of approxi-
mately a minute, students could easily see their agent’s per-
formance improving while they watched the game unfold.

Evaluation and Students’ Perceptions
At the end of the course, all students in the course were
asked to complete a survey regarding the Robot Defense
projects. Sixteen of the 17 students attended class the day
of the survey and submitted a response. Below, we highlight
some of the most salient questions regarding the student’s
perceptions of the learning experience.

As noted in the previous sections, from the instructor’s
perspectives, students were most challenged by two aspects
of the Robot Defense projects. The first was use of rela-
tively sophisticated Java syntax such as generics. The sec-
ond was a challenge common to any large programming
task: that students were not in complete control of the en-
tire code base, and thus had to program to an interface that

170

�������	
����	�	�������	�����	

�����	�������	 ������	�����	�	

�����������	
����	��	�����
������������ &'(�)*(���'++(�����,�

�����	�����
��������������	�
	��	��� -.(�)*(���'++(�����,�

�����	������	����������	����	������

�������������	��������������

'++(� &/(���'++(�����,�

���������	���������������������������������	���� &&(�)*(���'++(�����,�

�������������	������		�������	��������	����	��

�����	��	�������

&'(� *+(���'++(�����,�

������	�������������������������	��� ���
	����

������	�������	����	������

-.(�)'(���'++(�����,�

Figure 5: Student Perception on Robot Defense

was pre-specified and may not have been designed in a way
that was most intuitive for that particular student. These
challenges are echoed in the written comments where stu-
dents were asked what they liked least about the projects
(ten responses): 3 students found the projects generally con-
fusing; and 3 others specifically found the documentation
inadequate.

Overall, however, many students were quite positive
about the project. When asked what they liked best (nine
responses), six indicated that they found the project fun,
enjoyable, or interesting and three of these specifically in-
dicated that they valued being able to visualize the results
of their work. Students were also quite positive in their re-
sponses to Likert scale questions about the projects. Salient
responses are illustrated in Figure 5. Column 2 indicates
the percentage of the sixteen respondents marking agree or
strongly agree while the third column indicates the same per-
centage as a range over all Phase 1 MLeXAI projects (the
average value over all projects is italicized in square brack-
ets). Average student responses fall solidly within the range
reported by other MLeXAI projects. Students do, however,
seem to have had a positive experience with the Robot De-
fense projects despite their challenges. In particular, more
students agree that the project was interesting vs. the aver-
age Phase 1 MLeXAI project (row 2, 94% vs 84%), more
students agree that the project contributed to their under-
standing (row 3, 100% vs 95%) and more students indi-
cated they would like to learn more about AI (row 6, 94%
vs 85%). Interestingly, when comparing Robot Defense to
other MLeXAI Phase 1 projects and classroom experiences,
more students in the WSUV Spring 2008 course agreed
that their project (Robot Defense) was interesting (94%) but
fewer seemed to be in agreement that they had a positive
learning experience (88%). This suggests that some of the
tasks and assignments outside of Robot Defense may have
been responsible for the lower level of agreement about a
positive learning experience.

Conclusions and Future Work
We have described the current version of Robot Defense,
a game based platform for presenting a variety of topics
typically covered in an Introductory to Artificial Intelli-
gence course. The initial use of this platform was generally
well received by students and comparable to many of the
other projects built for AI coursework under Phase 1 of the

MLeXAI project. Phase 2 of the MLeXAI project, which
Robot Defense is a part of, will further investigate the im-
pact of theme and problem based learning on student out-
comes and examine whether the results of Phase 1 can be
extended and generalized by 20 faculty across the country.

The Robot Defense project described here does high-
light a few remaining interesting questions, most notably
the question of whether visualization benefits learning out-
comes. Currently, the JIG team is developing a variety of
curricular projects to be used in smaller colleges and uni-
versities across the Pacific Northwest as part of the North-
west Distributed Computer Science Department. We expect
that this community will be able to bring together enough
students and faculty to examine this question along with a
number of others.

Acknowledgments
This material is based in part upon work supported by
the National Science Foundation under Grant Numbers
DUE-0409497, DUE-0716338, DUE-0633726 and CNS-
0829651. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF.

References
Kumar, A.; Kumar, D.; and Russell, I. 2006. Non-
traditional projects in the undergraduate ai course. In Proc.
of the Annual SIGCSE Technical Symposium on Computer
Science Education.
Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar:
An architecture for general intelligence. AI 33(1):1–64.
Renninger, K. A.; Hidi, S.; and Krapp, A. 1992. The Role
of Interest in Learning and Development. New York, NY:
Lawrence Erlbaum Associates.
Russell, S., and Norvig, P. 2003. Artificial Intelligence:
A Modern Approach. Prentice-Hall, Englewood Cliffs, NJ,
2nd edition edition.
Russell, I.; Markov, Z.; and Coleman, S. 2007. Project
mlexai: Applying machine learning to web document clas-
sification. J. of Computing Sciences in Colleges 23(2).
Seacord, R., and Wrage, L. 2002. Replaceable
components and the service provider interface. Tech-
nical Report CMU/SEI-2002-TN-009, Carnegie Mellon
(http://www.sei.cmu.edu).
Wallace, S. A., and Nierman, A. 2006. Addressing the
need for a java based game curriculum. J. of Computing
Sciences in Colleges 22(2):20–26.
Wallace, S. A.; Russell, I.; and Markov, Z. 2008. Integrat-
ing games and machine learning in the undergraduate com-
puter science classroom. In Proc. of the 2008 Conference
on Game Development in Computer Science Eduation, 56–
60.
Youngblood, M. 2007. Using XNA-GSE game segments to
engage students in advanced computer science education.
In Proc. of the 2007 Conference on Game Development in
Computer Science Eduation, 70–74.

171

