
Lifting the Limitations in a Rule-based Policy Language

Alan Lindsay, Maria Fox, Derek Long
University of Strathclyde, Glasgow, Scotland

Abstract

The predicates that are used to encode a planning domain in
PDDL often do not include concepts that are important for
effectively reasoning about problems in the domain. In par-
ticular, the effectiveness of rule-based policies in a domain
depend on the concepts that can be expressed in the language
used to capture those policies. In this work we investigate
complimenting planning domain descriptions with abstract
concepts and methods for making distinctions between sim-
ilar objects. We present an architecture that allows a rule-
based policy to reason with these additional concepts, using
them to reason over structures that the rules would not be able
to reason over without support. We demonstrate that this is
sufficient to allow a rule-based policy to provide control in
benchmark domains with interesting structures and we argue
that our architecture could allow control knowledge learners
to learn policies that provide control in these domains.

1. Introduction

The standard language for modelling planning domains,
PDDL Fox & Long (2003), is an action-centred language.
Predicates are used to model relationships between objects
in problem instances and actions are modelled in terms of
the propositional formulae that must hold before applica-
tion and the update effects that follow after application.
These models are good for capturing state-transition systems
cleanly and simply, but are not ideal for expressing certain
kinds of meta-structures that are relevant to them. In par-
ticular, concepts that influence choices of actions in particu-
lar problems are often dependent on richer language than is
available in the domain descriptions themselves. This obser-
vation has inspired some researchers to explore ways to au-
tomatically extend the collection of concepts in a planning
domain Martin & Geffner (2000), while others have used
hand-crafted concepts to extend the descriptions of specific
domains Nau et al. (2003); Bacchus & Kabanza (2000); Do-
herty & Kvarnström (2001).

Control rules are one example of such extended concepts
and the success of TLPlan and TALPlanner has demon-
strated that they offer an effective approach to efficient plan-
ning. TLPlan provides a very rich control rule language,
extending the expressiveness of the action encodings them-
selves to include modal formulae that constrain the trajec-

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tories plans can follow. This rich language allows abstract
concepts and methods of comparison to be constructed and
used within the framework of the planning domain descrip-
tion. Unfortunately, encoding control rules demands a thor-
ough understanding of the dynamics of the system being
controlled and a challenge for domain-independent planning
is to construct similar control knowledge automatically.

There are several approaches for learning control
rules Levine & Humphreys (2003); Khardon (1999); Martin
& Geffner (2000) and the inclusion of a domain knowledge
learning track in the 2008 international planning competition
indicates the level of interest in this area within the planning
community. Fern et al. Fern, Yoon, & Givan (2006) present
a variant of approximate policy iteration and show that it is
a generally applicable learning approach. Khardon Khardon
(1999) used an iterative rule learning approach and Martin
and Geffner Martin & Geffner (2000) used the same learn-
ing approach, solving some of the expressive limitations by
using a description logic. L2Plan is another policy learner
and can learn extremely high quality policies for two do-
mains: the blocksworld and briefcase domains Levine &
Humphreys (2003). Their approach uses a genetic algo-
rithm to evolve generalised policy and their policies com-
pare favourably in terms of readability and generalisability.
However current learning systems are severely constrained
by the limitations of the concepts captured in typical plan-
ning domain description. The effectiveness of learned rules
is greatly affected by the domain encoding. In this paper
we examine the limitations of the domain descriptions and
explore how the concepts available to learners might be ex-
tended automatically.

We identify certain situations where there is a require-
ment for enhancing the level of reasoning or for making dis-
tinctions between objects, focussing on situations that fre-
quently occur in the benchmark domains. We develop spe-
cial purpose solvers to provide the concepts that the rules
need to reason in these situations and we present our archi-
tecture that utilises these solvers during planning. In the last
sections we present the results of our experiments, conclude
and propose future work.

2. Background

A classical planning problem involves producing a list of ac-
tions that progress the initial state to a state satisfying a goal
condition. A state is represented as a set of propositional

63

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

variables that hold in the state and any variable that is not
in the current state is considered false. Forward-chaining
planners explore the possible states starting from the initial
state and constructing new states by applying actions whose
preconditions are satisfied. The key to effective planning us-
ing this strategy is in the selection of the specific action by
which to progress to the next state and continue the search —
the planner must backtrack if it reaches a state from which
progress is impossible and might return to reconsider earlier
states if it judges its current trajectory to be a less promising
route to the goal.

2.1 Policies

A policy is a complete mapping from states to actions that
can be used to direct an executive in a planning domain. The
executive simply looks up the action for its current state and
applies it, repeating this loop until it reaches a goal state.

Definition 2..1 A policy π, is a total map, π: States → Ac-
tions. A policy is intended to achieve a single goal.

In any state the policy determines an action: an appropriate
policy will lead the executive by a short path through the
state space to a state satisfying the goal that the policy ad-
dresses. Application of a policy requires no search and no
intelligence on the part of the executive.

One way to view planning is as the problem of producing
a policy. While a complete policy provides a total mapping
from states to actions, this is not always required. Often only
a small subset of states will be visited and a partial policy
could suffice to direct the executive to the goal. A plan for
a classical planning problem can be seen as a partial policy
that determines actions only for precisely the states on the
trajectory from the initial state to the goal. In situations with
uncertainty, however, a fuller mapping is required as the set
of states that might be visited is much larger.

In practice it is not always desirable to have a separate
policy for each goal. A generalised policy is not specific to
a particular goal. Using a generalised policy the action that
is selected at each step is not only dependent on the state,
but also on the goal that is to be achieved.

Definition 2..2 A generalised policy π, is a total map π:
States × Goals → Actions.

A generalised policy is intended to solve arbitrary problem
instances in a planning domain, exploiting explicit knowl-
edge of the goals to direct the actions to achieve them. Of
course, a specific problem instance will contain its own col-
lection of particular objects and, therefore, its own set of
states and possible goals and actions. A generalised policy
for a domain is therefore parameterised by object parame-
ters and it is the appropriate instantiation of these parameters
that represents the generalised policy applicable to a par-
ticular problem instance. In many problems, the structure
of initial states and of goals is limited by implicit conven-
tions attached to the domain (for example, in Blocks World
problems no blocks ever start off in two places at the same
time, although there is nothing to prevent this in the syntax
of the domain description; similarly, Logistics problems are
always specified with goals requiring packages to be at given
destinations, rather than vehicles). These constraints mean

(:rule MoveBriefcaseToDropoff
:condition (and (at ?bc ?from)

(in ?obj ?bc))
:goalCondition (and (at ?obj ?to))
:action movebriefcase ?bc ?from ?to)

Figure 1: An example rule-based policy in L2Plan syntax.
The rule conditions are simple lists of predicates. This rule
moves a briefcase to a location if it holds a package that must
be delivered there.

that it is often possible to consider using a partial mapping
from states and goals to actions.
Definition 2..3 A partial generalised policy, π, is a partial
map π: States × Goals → Actions.
We use policy to mean partial generalised policy in the rest
of this paper.

To use policies effectively in planning their representa-
tion must be computable and efficient. A representation that
has been used successfully in previous work is to capture
a policy as an ordered list of rules Khardon (1999); Mar-
tin & Geffner (2000); Fern, Yoon, & Givan (2006); Levine
& Humphreys (2003). Each rule in the ordered list has
two conditions and a corresponding action, in the form:
ifφ ∧Gψ then do A where φ is a formula that is checked in
the current state, while ψ is a formula that is checked against
the goal conditions of the problem and A is an action. In this
paper we focus on this rule-based policy representation and,
in particular, the rule language of the L2Plan learning sys-
tem Levine & Humphreys (2003). In this language, the for-
mulae φ and ψ are simply conjunctions of literals, although
TLPlan and TALPlanner support much richer forms.

In practice, the efficient representation of a policy requires
that parameters be bound by need rather than as a single
step a priori. This means that, when represented as rules,
a policy will be captured by a collection of parameterised
rules and a rule will be applied by determining a particular
instantiation of the parameters that satisfies the precondition,
φ ∧ Gψ. The rules in a policy are tried in order until one is
found for which there is a satisfying parameter binding in
the current state and goals. If there are several bindings for
the first satisfied rule, L2Plan returns all of the bindings. For
example, in a transportation problem there may be a rule
that moves a truck to drop off a package, (Figure 1). If there
are several packages in the truck, then there will be several
bindings and the policy will map to the move actions for
each of the package destinations. This can be interpreted as
an efficient compression of a sequence of policy applications
that generates this collection of actions.

3. Domain and Problem Abstraction

Restricting the language in which the rules preconditions
can be expressed to the literals that are defined in a partic-
ular planning domain imposes a very tight constraint on the
policies that can be described. Several of the control rule
descriptions used by TLPlan in the 2002 planning competi-
tion Long & Fox (2003), used some form of abstraction in
order to allow control rules to form their decision process,
where the abstractions used concepts that were not present

64

in the original domain descriptions. An example is the con-
cept of commitment of a particular resource to a task —
once committed, the resource is then tied to the task un-
til it is complete. This concept is typically not part of the
domain description, since the actions allow resources to be
freely switched between tasks. Introducing this concept al-
lows policies to be described in which the allocation is de-
cided and then tasks followed through to completion before
the resources are switched to new tasks.

An analysis of benchmark domains shows that many of
them rely on similar concepts that occur across many do-
mains. Since domains are described in terms of relational
properties, it is unsurprising that graphs underly many of
these common concepts. For example, a spatial structure
can be encoded as a graph where (p n1 n2) holds precisely
for connected pairs of nodes, n1 and n2. To use the spatial
relationship between two objects at n and n′ in the graph,
the planner must reason across all of the connecting pred-
icates (p nn1), ..., (p nm n′). Unfortunately, the number of
edges between two nodes depends on the structure defined in
a particular problem, so this chain of predicates could be of
any length. This makes it impossible to express policy rules
that depend on extended spatial relations in such a graph.
We now consider how concepts can be added to the under-
lying domain language to make it possible to build policies
that exploit paths through graphs.

3.1 Moving Around in Graphs

Moving an object in a static graph involves the start node of
an object and at least one destination node. If we abstract
the graph completely by providing macro move operations
between all pairs of nodes in the graph, with corresponding
linking predicates, then rules can be constructed to exploit
the paths in the graph. This idea is related to exploiting tran-
sitive closures that appears in Martin & Geffner (2000).

The problem with macro actions that allow an object to
move directly to its destination is that the policy is not ap-
plied at the intermediate nodes in the path. In some cases a
useful action could be applied at an intermediate node, but
with macros this possibility is lost. To overcome this prob-
lem, we propose to allow the policy to generate the action
to move directly to a destination, but then to mediate this
request and only make the first step along the shortest path
towards the destination. The policy can then be reapplied at
all of the intermediate nodes, typically regenerating the ac-
tion to move directly to the destination at each point, but be-
ing given the opportunity to exploit a visit to an intermediate
location when it arises. This process complicates the way in
which a policy directs activity. A policy can be formed from
rules that depend on an extended language in the precondi-
tions, but in addition the set of actions that are available is
extended. The policy can therefore be seen as operating on
an extended state and mapping to an extended set of actions.
However, any action that does not appear in the original do-
main description can be interpreted, by an intermediate pro-
cess (such as path finding for the extended move action), as
a request for a specific action from the original domain.

This idea can be extended to treat dynamic graphs, where
accessibility between nodes can change during execution of
the plan. In this case, the key concept of a path is supple-

mented with the concept of blocked paths and the nearest
blockage along each path. Making this concept explicit al-
lows a policy to choose actions in reaction to the blockages
it encounters along paths.

3.2 Transportation in Graphs

In transportation problems, it is sometimes useful to bring
loads to central areas, and then reallocate the transporting re-
sources to loads with similar destinations. The central areas
are nodes in a graph that could be effective as redistribution
points. Making this concept explicit in the domain language
can allow a policy to exploit it.

There are two possible methods for finding the structural
components to support the concept. The first is to look at the
graph structure in isolation, solving a node centrality prob-
lem to identify candidate distribution centres. The second
approach is to consider the delivery information in the do-
main and to select hubs that are relevant to this. Discovering
node centrality is a well-researched field, but the parts of a
graph that are relevant to an actual problem might be a small
subset of the entire graph. To be useful, hubs should be de-
cided based on the deliveries that are to be made. A graph
can be analysed by clustering based on the starting and des-
tination locations of objects in the problem. Identifying de-
livery paths through these clusters can then be used to assist
the identification of useful hubs.

4. Special Purpose Solvers

Creating abstractions for specialised concepts can allow pol-
icy rules to make distinctions between classes of objects that
they otherwise could not identify. However, it does not al-
low the rules to compare objects within these classes. This
requires a comparative analysis of the objects which is diffi-
cult to support in policies. In this section we introduce spe-
cial purpose solvers and discuss how they can be used both
to provide the abstractions presented in the previous section
and also to allow comparisons between objects. We show
how special purpose solvers can be used with a policy to
tackle problems in two benchmark planning domains.

4.1 Special Purpose Solvers

A special purpose solver is a component that provides a so-
lution to a particular problem in a specific situation. Special
purpose solvers are similar to the integrated sub-solvers in
STAN4 Fox & Long (2001), but the communication between
planner and solver is not restricted to heuristic information.
We restrict the input of the solvers to the current state and
a set of actions provided by the policy and give them ac-
cess to domain analysis and allow them to make requests
of other solvers. The output of a solver will be an action,
but the action might be an original action from the domain
or an extended, or abstract action, which can modify parts
of the extended state encoding. This allows, for example,
an extended state language to encode the assignment of re-
sources to tasks and an extended action to update the ex-
tended state to show what commitments have been made.
The exploitation of specialised solvers is by the selection of
extended actions in the policy. Thus, a policy, faced with a
goal to achieve that requires a resource to be committed to

65

an appropriate task and no current commitment, can select
an action that assigns a resource to the task. This abstract ac-
tion can then trigger the use of a specialised solver to make
this allocation. The requirement for a solver is identified by
analysing the domain and problem.

4.2 Graph Abstraction

A solver can be used to implement the graph abstraction
described in section 3.. A graph structure can be identified
within a problem and the graph traversal actions identified.
The policy can map to an abstract action that actually re-
quires several edges of the graph to be traversed. To realise
this action, a specialised solver can compute the shortest
path between the two nodes and record the first node along
that path. The action for this first step can then be invoked.
If this action attempts to move to a blocked node, the solver
can update the extended state with the information that the
path is blocked and identify the closest blocked node.

4.3 Resource Management

Resource management involves allocating resources to con-
sumers or users. There are many ways in which a resource
can be used, for example, the resource could be destroyed,
or the resource might be freed at some later point. The dif-
ficulty in making good resource allocation choices is that it
depends on several factors, including constraints, such as a
door can only be unlocked by a particular subtype of key,
and efficient use of resources.

The policy can ensure many of the hard constraints are
satisfied directly in the action selection. This means that
a resource management solver can concentrate on decid-
ing between different resource bindings based on efficiency.
If the resource and consumer are bound in a one-to-one
relationship, then the resources should be spread between
consumers as much as possible. If the consumer can-
not act without a resource being allocated to it, it makes
sense to consider how close the consumer and resource are
in the goal as well as the initial state. In circumstances
where a resource can be allocated to several consumers
at once, then the closest resource should be chosen. The
solvers can acquire knowledge from each other and where
there is a relevant graph structure, the graph abstraction
solver can provide a measure of distance. When an explicit
graph is not involved the implicit Domain Transition Graph
(DTG) Helmert (2006) can be used. A resource manage-
ment solver can respond to a special action that indicates
that a consumer requires a resource to be allocated, and the
solver can update the state with an appropriate resource al-
location. This allows the policy to control when allocations
are made.

4.4 Case Studies

Driverlog is a transportation domain that involves redis-
tributing packages amongst locations using trucks. The lo-
cations are linked by two directed graphs, representing paths
walked by drivers and roads driven by trucks. These are en-
coded using a link predicate for each edge in the graphs. If
there is a package in a truck, we may want to move the truck

Feature
Inference

Policy

Solvers

JavaFF

Abstract
Action Filter

Internal
State

Current
State

Domain
& Problem

Abstract
Language

Figure 2: The abstraction architecture.

to the package destination. The graph abstraction solver al-
lows the policy to reason about moving to this destination,
even if it is several transitions away.

In Driverlog problems, trucks must have a driver before
they can move, so drivers must be allocated to trucks before
delivering packages. The resource management solver can
be used to allocate drivers to trucks and trucks to packages.
A policy rule can request a resource allocation for a truck
or a package and use the allocation provided in the state.
The graph structures are identified, so these can be used to
provide a distance estimate between the objects.

The GoldMiner domain was introduced for the learning
track of the 2008 planning competition 1. The problems
have locations connected in a grid and a gold miner, a laser,
a bomb and some gold. The locations can be blocked by
rocks. The goal is for the miner to have the gold which is
achieved by clearing a path through the rock using the bomb
and laser. The laser will destroy the gold if it is fired at it
and the bomb can only be used once. The idea is to move
to a square adjacent to the gold using the laser, and then use
the bomb to free the gold.

A graph abstraction solver can be used with this domain
to allow the policy to move the miner several steps in one
action and also to report blocked nodes to the policy. The
solver identifies that the fire laser and detonate bomb ac-
tions open nodes on the graph and that the move miner ac-
tion makes a graph transition. The solver will be informed
when the graph changes and can keep the graph up to date.
When the policy attempts to move the miner to a blocked
node, the information that the path is blocked and the first
blocked node in that direction is provided in the state.

5. Utilising the Solvers in Planning

In the previous section we introduced special purpose
solvers that can be used to support the reasoning of a pol-
icy. In this section we describe our architecture that uses
these solvers to support their use in combination with a pol-
icy during planning.

5.1 The Architecture

Our planner exploits partial policies, coupled with a general
purpose planner to resolve the action choice when the policy
does not offer an action choice. JavaFF Coles et al. (2008)
is a Java implementation of the successful FF planning sys-
tem Hoffmann & Nebel (2001). In our architecture (Fig-
ure 2), the filter that supplies the possible actions to JavaFF
is replaced with an abstract action filter. This filter queries

1http://eecs.oregonstate.edu/ipc-learn/

66

the policy for actions. If the action it returns is associated
with a specialised solver, the solver is invoked and it will ei-
ther provide a domain action to be passed to JavaFF or it will
modify the extended state. In the latter case, the filter will
continue to query the policy until a domain language action
is obtained.

5.2 Feature Inference

To select which solvers to use, our system analyses the do-
main for specific features. TIM Fox & Long (1998), a static
analysis tool, uncovers information from a domain and prob-
lem file, including a set of property spaces that show the
transitions that an object can make between sets of prop-
erties and also identifies static relationships. We have ex-
tended the analysis to infer a special type of enabling rela-
tionship. This is when a property in a property space enables
the transition of another object. This information is vital for
inferring whether a particular solver can be used with a do-
main.

The special enabling relationship is used to flag the need
for resource management in a domain. We identify the allo-
cation and deallocation actions to be registered with the fil-
ter and we also identify what effect the allocation has on the
resource. A loop transition in a property space means that
the object holds the same relationships after a transition, but
with different objects. We define a graph move action as a
loop from a single binary relationship. If the other object in
the relationship doesn’t feature in a property space then this
would identify a static graph. The enabler to the move action
may include several restrictions, these can be divided by the
objects that they involve. A static binary predicate with the
two graph nodes enforces a static graph structure on move-
ment. A dynamic singleton relationship with a node allows
the node to be locked and defining a dynamic graph.

5.3 Policy Language

The special purpose solvers applicable in a domain can be
inferred by feature analysis. Each of these solvers may ex-
tend the domain language or action set for the policy: the
solver may offer abstract actions that the policy can use to
communicate with the solver, or provide new predicates that
allow the solver to convey some concept to the policy. As
rule-based policies are domain-dependent, the policy can be
formed knowing the solvers that are appropriate and there-
fore the additional actions and predicates available. The
condition of a rule can include an extended predicate that
is added by a solver and a rule can select an abstract action.

6. Results

Our experiments are intended to determine whether the ex-
tended language and abstract actions are adequate for sup-
porting policies expressed as simple rules to solve inter-
esting benchmark problems. We used two domains: the
Driverlog and GoldMiner domains. In these experiments
we use handwritten policies. We believe that the limited
language used to express these policies would allow policy
learners to generate similar policies automatically Levine &
Humphreys (2003). Three special purpose solvers were pro-
vided: a resource manager, a static graph and a dynamic

1. Package in truck and truck at package destination then dropoff.
2. Misplaced package and bound to truck then load into truck.
3. Allocate a truck to a misplaced package.
4. Move to pickup misplaced package, if package bound to truck.
5. Move to dropoff a package in this truck.
6. Move truck home.
7. Board a driver into its allocated truck.
8. Allocate a driver to a truck, if a misplaced package has been

bound to the truck , or if the truck must move to go home.
9. Walk to board a driver onto its allocated truck.

10. Disembark to get driver home.
11. Disembark from truck.

Figure 3: A hand written policy for Driverlog problems.

graph solver. Feature inference was used to determine the
applicable solvers automatically during each problem run.

6.1 Driverlog Experiment

The policy, outlined in Figure 3, was used in this experiment.
The order reflects the priority of the rules and does not define
a list of steps, so the order of execution is not obvious. In
Driverlog, package delivery is enabled by trucks and trucks
are enabled by drivers. Therefore, although we give priority
to the package transitions, such as load and unload, these
rules will not be applicable until trucks are in place.

The policy utilises the two types of solver required in this
domain: static graph and resource management. The static
graph solver allows the policy to make actions that move
several steps. The solver translates these abstract actions
into a single move in the appropriate direction, allowing the
policy to make a new decision at each step. The resource
allocations are made statically at the start, matching con-
sumers with the closest resource.

We used our system to solve the Driverlog problems from
the 2002 planning competition. The results for time, Fig-
ure 4 and quality, Figure 5, are plotted for two different pol-
icy executions, TLPlan and JavaFF for each problem file.

The plot labelled ‘policy with backup’ shows the case
where JavaFF is used when the partial policy offers no ac-
tion. Where there is any choice between alternative actions,
the FF heuristic is used to make the selection. Without this
backup, the policy selects between alternatives randomly.
Our policy was complete enough to solve all of the problems

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18 20

Tim
e(

s)

PFile

JavaFF
TLPlan

Policy With Backup
Policy With No Backup

30 mins

Figure 4: Time taken for Driverlog pfiles1-20.

67

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18 20

Qu
ali

ty(
St

ep
s)

PFile

JavaFF
TLPlan

Policy With Backup
Policy With No Backup

Figure 5: Number of steps made for Driverlog pfiles1-20.

and the solvers only offered choice in the order that pack-
ages were loaded and unloaded. The time JavaFF takes to
ground actions at the beginning and to compute the heuristic
at each step makes a considerable difference in larger prob-
lems. However, a policy learner might not manage to find a
complete policy, so this cost might be unavoidable.

The results show that we can solve all the problems in this
set, comparing favourably to JavaFF on the problems that it
can solve, and that our plan quality is comparable with both
of the other planners. The initial problem analysis prevents
us from being competitive with TLPlan.

6.2 Gold Miner Domain

The GoldMiner domain, described in subsection 4.4, was used
in the learning track of the planning competition. For this
experiment we have modified the domain to make the im-
plicit miner object explicit. We used the example set of
problems that was distributed before the competition.

In GoldMiner rocks can be cleared from locations, allow-
ing the miner to move through them. This requires a dy-
namic graph solver to monitor the changes to the graph and
to report on paths that cannot be travelled along. If the loca-
tion is not connected, then the solver sets this path to blocked
in the extended state. The underlying connection matrix is
used to get the shortest path between the two locations and
the first blocked location along this is identified as the clos-
est blocked location.

Even with this naive solver for dynamic graphs, our pol-

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30

Ti
m

e(
s)

PFile

Policy
LPG-td speed
LPG-td quality

Figure 6: Time taken for Gold Miner problems.

icy solved all of the problems. The time taken to solve the
problems by our system and the speed and quality config-
urations of LPG-td are presented in Figure 6. We compare
favourably with LPG-td speed for time and the quality of the
solutions is comparable with LPG-td quality.

7. Conclusion
The use of control knowledge in planning has been shown
to greatly reduce search. Unfortunately the current control
knowledge learning technology is limited by the concepts in
the domain encoding to which it has access.

In this paper we have highlighted several situations where
the domain encoding makes reasoning difficult. We have
shown that by using abstraction to enhance the level of rep-
resentation and by providing methods to support compar-
ison between similar objects, a policy with a limited rule
language can reason over interesting structures.

Our investigation has demonstrated that, within our archi-
tecture, rule-based policies can solve problems in domains
with rich structure. This is an important discovery, as there
is a large collection of work using machine learning to gen-
erate policies. In the future this might allow policy learners
to learn policies for many more domains.

In future work we will focus on learning policies that use
our solvers to provide control in domains with interesting
structure, while adding new specialised solvers to handle ad-
ditional domain features.

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics to express search control

knowledge for planning. Artificial Intelligence 116:123–191.

Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008. Teaching forward-chaining
planning with javaff. In Colloquium on AI Education, Twenty-Third AAAI Confer-
ence on Artificial Intelligence.

Doherty, P., and Kvarnström, J. 2001. Talplanner: A temporal logic based planner. AI
Magazine 22(3):95–102.

Fern, A.; Yoon, S.; and Givan, R. 2006. Approximate policy iteration with a policy
language bias: Solving relational markov decision processes. Journal of Artificial
Intelligence Research 25:75–118.

Fox, M., and Long, D. 1998. The automatic inference of state variables in TIM.
Journal of Artificial Intelligence Research 9:367–421.

Fox, M., and Long, D. 2001. Stan4: A hybrid planning strategy based on subproblem
abstraction. AI Magazine 22(3):102–111.

Fox, M., and Long, D. 2003. PDDL2.1: An Extension of PDDL for Expressing
Temporal Planning Dom ains. J. Art. Int. Research 20:61–124.

Helmert, M. 2006. The Fast Downward Planning System. J. Art. Int. Res. 26:191–246.

Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast plan generation
through heuristic se arch. J. Art. Int. Res. 14:253–302.

Khardon, R. 1999. Learning action strategies for planning domains. Artificial Intelli-
gence 113(1-2):125–148.

Levine, J., and Humphreys, D. 2003. Learning action strategies for planning domains
using genetic programming. In Proceedings of the 4th European Workshop on
Scheduling and Timetabling (EvoSTIM 2003).

Long, D., and Fox, M. 2003. The 3rd international planning competition: Results and
analysis. Journal of AI Research 20:1–59.

Martin, M., and Geffner, H. 2000. Learning generalized policies in planning using
concept languages. In Proc. 7th Int. Conf. on KR and Reasoning.

Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdoch, J.; Wu, D.; and Yaman, F. 2003.
An HTN planning environment. J. AI Res. 20.

68

