

Learning Human Behavior from Observation for Gaming Applications

Christopher Moriarty and Avelino J. Gonzalez
Intelligent Systems Laboratory

School of Electrical Engineering and Computer Science
University of Central Florida

Orlando, FL 32816-2450
USA

cmoriarty@isl.ucf.edu

Abstract
The gaming industry has reached a point where improving
graphics has only a small effect on how much a player will enjoy
a game. The focus has turned to adding more humanlike
characteristics into computer game agents. Machine learning
techniques are scarcely being used in games, although they do
offer powerful means for creating humanlike behaviors in agents.
The first person shooter (FPS), Quake 2, is an open source game
that offers a multi-agent environment in which to create game
agents (bots). The work described in this paper seeks to combine
neural networks with a modeling paradigm known as context
based reasoning (CxBR) to create a contextual game observation
(CONGO) system that produces humanlike Quake 2 bots. A
default level of intelligence is instilled into the bots through
contextual scripts to prevent the bot from being trained to be
completely useless. The results show that the humanness and
entertainment value as compared to a traditional scripted bot have
improved, although, CONGO bots usually ranked only slightly
above a novice skill level. Overall, CONGO offers the gaming
community a mode of game play that has promising
entertainment value.

 Introduction

 Game play has become the more important factor in the
design of a game, while impressive graphics are expected
as the norm (Johnson, 2001). With playability becoming a
more important factor, doors are opening to apply artificial
intelligence (AI) techniques along with other playability
enhancements.

The success of the massively multi-player online
(MMO) genre shows that gamers do enjoy playing with
other human players even if the other human players aren’t
in the same physical place. This could extend for players
appreciating realism in non-player characters (NPC),
which is any character in a game that is not controlled by a

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

player. Another playability enhancement is extensible AI,
which has been implanted in certain popular games to
allow the player to customize the AI of their enemies or
teammates. In popular first-person shooter (FPS) games
such as Half-life and Unreal, users are allowed to use a
scripting language to implement their own modifications
into the game. The FPS genre is characterized by the first-
person view in a three dimensional environment focused
on a handheld weapon. While an FPS will have sufficient
game play for a single player, many also have online
multiplayer modes in which players can compete against
other human players.

This research describes a system that allows a game
player to create customized intelligent game agents in the
Quake II environment. Such AI agents are more commonly
known as “bots” among the gaming community. A player
then starts the match and plays in a manner that they desire
their bot to perform. “Learning from observation”
techniques are used to capture the knowledge of the player.
Connectionist and symbolic AI practices are combined to
apply the captured knowledge into a fully-functional bot.
The game environment outputs a large amount of sensor
data, which can be difficult for a single machine learning
algorithm, to use in raw form (Chapman, 1999). We
created a contextual engine that uses knowledge
engineering techniques to divide and manage the captured
knowledge. Multiple neural networks are then trained for
the separate contexts to make use of the contextualized
environment data. This system is the contribution of this
research and represents a novel approach to extensible AI
in video games.

Game Engine as a Test-Bed for Research

Academic artificial intelligence research can benefit
significantly from utilizing game environment tools to
simulate synthetic agents. Laird has shown that using a
publicly released game engine such as Quake II is indeed a
practical solution for academic AI research (Laird, Assanie

439

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

and Bachelor 1999). Creating a test-bed can often take time
away from the actual research being done.
 The two most popular “good old fashioned AI”
paradigms used in FPS agents are finite state machines
(FSM) and rule-based systems (Thomas 2004). These two
techniques have proven to be effective to completely
control game agents such as bots in many games.
However, there are certain negative characteristics in bots
that make use of FSM and/or a rule-based architecture
(Rabin 2004):

• Predictability becomes apparent
• Bot AI can become too perfect
• Non-human behavior is noticeable

These three issues are directly linked to the replay value
of a game. In particular, when a bot has a rule that causes it
to be vulnerable to a certain attack, a player will exploit
this. Such exploitation can cause the bot to seem scripted
or unnatural. An exploration of modern AI techniques will
show that these problems can be solved.

Machine Learning for Gaming

The use of Neural Networks (NN) and Genetic Algorithms
(GA) has shown their usefulness in some commercial
games (Evans 2002), but are still scarcely used in the
industry. There are a several reasons for this:

• Machine learning techniques can sometimes lead
to unpredictable local maxima (Geisler 2002)

• Game Developers often stick with what they
know (Nareyek 2004)

• Feature vectors are often too complex to control
the agent with machine learning alone (Zanetti
2003)

One example of local maxima in a trained game agent
could be when observation data shows that shooting only
occurs 5% of the time, and in turn learns never to shoot
(Geisler 2002). Machine learning can add a level of
unpredictability into a game. This unpredictability is
desirable for making the agent more human-like, although
it is not desirable if it leads to unpleasant user experiences.
As game environments become more complex, the number
of features that can affect an agent in the game make it
nearly impossible to be used in raw form. Therefore, pre-
processing of data or other forms of minimizing the
amount of noise and maximizing the amount of useful data
becomes very important, but can be a formidable task
(Geisler 2002) (Zanetti 2003).

Learning by Observation

The phrase “Learning by Observation” has its roots in
biology. Studies have shown that humans fully develop
observational learning by the age of 24 months (Abravanel
1998). By that age, children can easily learn a simple task
by observing another person performing the task. Inspired

by how humans and other mammals learn by observation,
the machine learning community has developed a number
of theories on learning by observation, applied in different
areas.

Sidani created a ML system (IASKNOT) that learned
how humans implicitly react at traffic signals by observing
a human expert perform in a simulation (Sidani 1994).
IASKNOT combined neural networks and symbolic
knowledge to optimize the observation data being used to
train the networks. This paper describes an extension of
Sidani’s work that improves on the techniques he used and
applies them to a much more complex environment.

Determining when a machine learning algorithm
completes its training is a heavily investigated problem.
There have been many attempts to develop validation
techniques and stopping of training criteria. In spite of this,
there is always a chance that the network is poorly trained
in new situations. In this work, a default level of
knowledge was investigated and applied to the bot in the
event that the bot’s poor performance would hinder the
human player’s gaming experience. Accomplishing this
required elicitation of domain knowledge from an expert
player. However, this isn’t the only topic that requires
domain knowledge. Dividing the game into contexts and
establishing the rules that govern the CxBR-based bot also
required human intervention.

Problem Statement

The first problem addressed was: To create a game AI
technique that can be implemented with re-usable
characteristics. This leads to the follow-up problem being
addressed: How can an AI paradigm be created to ensure
that it preserves or improves the playability of the game.

More specifically, the problems addressed in this paper
lie in creating a more human-like game agent. Attempts
have been made to use NN’s to create human-like bots in
FPS games (Geisler 2002) (Chapman 1999). These attempts
report that the NN was unable to realize all behaviors
because of the complexity of the environment. To use
NN’s to realize a bot’s behavior, the observed environment
data must be less complex. Dividing the data into contexts
would then simplify the necessary behaviors for any one
NN to realize. This process must be done automatically in
the background while a player is demonstrating the
behaviors they would like to see their custom bot reflect. A
reasoning paradigm known as context-based reasoning
(CxBR) is the solution to the contextualization process,
although knowledge engineering techniques must be
employed to construct the contexts and transitions between
them. This poses the next two problem statements:

• Need to obtain knowledge from a game expert to
establish all contexts that a player can be in, as
well as the variables needed for the transitions to
and from these contexts.

440

• Must choose and implement the appropriate
neural networks to use for representing the
observational data of the contexts.

The first area of research that requires validation is the
humanness of the bots. Humanness can often be a
subjective matter to assess, therefore, this research will
need to determine the means to validate the humanness
factor of the created bots.

Another important factor to validate is the entertainment
value of the system. This should not only be tested by
volunteers, but should also be compared against other
games that are similar in nature. Methods to evaluate
entertainment value will be developed and used.

This section explains the approach taken to expand the
foundation of ideas that Sidani presented in his work.
Sidani’s system was applied to a basic traffic light situation
and was able to show that:
• Learning from observation is a valuable way to capture

implicit human behaviors
• Input data can be simplified by only using it when

needed per situation
• Neural Networks trained on situation-specific data can

be more effective than training on an entire data set
This research was inspired by these accomplishments, and
has implemented an extension of this work into a gaming
application.

Introduction to CONtextual Game Observation
(CONGO)
The first extension of Sidani’s work is the more complex
environment in which the system observes a human
perform. The Quake 2 environment requires more intricate
human behaviors to be learned for an agent to be
functional. The most important behaviors are strategic and
tactical, which allow the trained agent to act more human-
like.

This research implements Learning from observation
using CxBR and Neural Networks. Each of these offers
improvements to a game agent or non-player character
independently. For instance, CxBR could replace the
classical finite state machine and offer a simple transition
among hierarchically organized contexts and sentinel rules,
allowing for the modeling of an agent to be more intuitive.
Machine learning in the form of NNs, can be used to
generalize a NPC’s action to new situations. This could
allow a programmer to reduce the amount of hard-coded
actions required for the NPC.

More interestingly, the AI paradigms just mentioned
combine to synergistically create a single new method for
creating agents from observed human behavior. At the core
of CONGO, there is a CxBR engine for determining which
context a player is in by monitoring environment variables.
For example, if a player has an enemy in close range and is

firing at it, the system would gather data for the attack
context. Since the system knows that the data are only for a
specific situation, the input-output patterns are minimized
to only what is necessary to function in the current context.
When the human player is finished playing, one or more
NN’s are trained with each context’s data. The system then
uses the same CxBR engine with the newly-trained NN’s
combined with default domain knowledge to create a fully
functioning game agent.

The following sections will explain CONGO’s three
main modules: Contextual Observation Module, Network
Training Module and the Game Performance Module.

Contextual Observation Module
The contextual observation module passively collects
input-output patterns based on a human player’s actions for
the entire duration of a match. Figure 1 shows the basic
flow of the system. The Quake 2 environment passes
variables to the CxBR engine, which then outputs the data
into the currently-active context’s input/output file. The
CxBR engine’s duty for this module is only to switch in
and out of contexts and write patterns out to data files. The
engine is comprised of a set of hierarchical contexts along
with fixed rules that decide when they are active.

Figure 1 - Contextual Observation Module Diagram

The input/output (I/O) patterns are recorded for each frame
that the game server graphically produces. The exact
number of frames per second depends on the hardware
being used. Quake 2 is an older game and most current
systems can push the frame rate to 60 frames per second
with ease. Sixty frames per second also produces 60 I/O
patterns per second, which contain a large amount of
redundant patterns. These redundant data are useful in
situations where the data represent a temporal time line of
a human’s behavior. Some behaviors, such as gun
preference, are simple binary decisions carried out
instantaneously. Redundant data are not useful in such
cases and will only cause the NN’s to take longer to train.
Therefore, the redundant patterns are filtered out for
contexts such as these.

Training module
This module is used after all of the data from the
observation module are collected. The files are then
formatted in preparation to be passed to the neural network
training algorithm. Previous research using NN’s have
shown that back propagation learning algorithm was
capable of learning behaviors such as aiming, or paths
around a map [7, 12]. The RPROP training algorithm was

441

chosen along with the use of Time-Delay. These are both
explained in the next sections.

RPROP – Neural Network Training Algorithm
Resilient Propagation is a modification of back
propagation learning algorithm devised by Reidmiller and
Braun (Riedmiller and Braun 2003). The modification is a
local-learning scheme that uses an update value for each
weight to change the weight only when the sign of the
partial derivative changes. Tests show that RPROP reduces
the chance that a weight update will oscillate, allowing it to
converge more often. Furthermore, the number of steps in
the training procedure is significantly reduced from
traditional gradient descent procedure, thus making
RPROP a faster and computationally more efficient
learning algorithm.

Time Delay Neural Networks
It has been shown that creating NN’s that are purely
reactive was not effective in capturing human behaviors in
a game simulation (Geisler 2002). Through the use of time
delay neural networks (TDNN), a network can make
decisions based on more than just the current situation.
TDNN’s have a standard feed-forward structure with the
addition of memory nodes. This allows for temporal
learning, meaning that the network makes decisions not
only based on the present state, but also upon previous
ones. A sub-class of the TDNN is the input-delay neural
network.

Input-delay neural networks (IDNN) concentrate only on
the input to the network, while time-delay networks require
internal delays at every neuron. This implementation of
CONGO uses IDNN. As shown in Figure 2, along with
present input pattern, the desired amount of previous input
patterns are fed into the IDNN at the input layer. An
advantage of the IDNN is having a less complex network
than the original TDNN, but preserves the same temporal
processing capability (Clouse 2003).

Figure 2 - Input Delay Neural Network Architecture

After the training module creates and trains the NN’s, they
are exported into the gaming performance module. This is
where the agent is placed into the Quake II environment to
perform autonomously. The NN’s are combined with a
default level of intelligence realized through scripted, rule-
based AI, all of which is then inserted into the CxBR
engine’s contexts.

Performance CxBR engine
The same engine is re-used from the observation module,
with the addition of NN’s and the previously mentioned
scripted default knowledge. As seen in Figure 3, the CxBR
Engine receives input from the Quake Environment and
processes a context to choose just as the observation
module did. Then, the context executes actions based upon
outputs from a NN or from a script. One concern that
arose was how to output functional commands to the
Quake engine. Quake 2 has built-in functionality to control
agents inside of the environment. The use of this
functionality can give the bot abilities to move in ways that
a human player cannot. With NN’s controlling the output,
it can become quite easy for a bot to move and turn quite
unnaturally. More importantly, the bot could appear to
have an unfair speed or precision advantage. This is why it
was decided that the contexts should send keyboard and
mouse commands to Quake II, instead of using internal
variables.

Figure 3: Gaming Performance Diagram

There are three types of control schemes for the contexts.
The first scheme is designed for complete control from
trained NN’s. These are the contexts that require tactical or
strategic movements and may contain multiple NN’s
running concurrently. The second type of control scheme
uses a NN to make a decision and once a decision is made,
a script carries out the action. This is done to keep the
NN’s small, but preserve the humanness of the decisions
being made. For example, in the item-hunting context, the
NN decides whether or not to get a certain item when one
of its output nodes reaches a certain threshold. After
which, a script is called to navigate and pick up the item.
The third type is a completely scripted context that gives
the bot some minimal level of intelligence. One example to
illustrate this is if the bot becomes completely stuck in a
corner, a stuck context will see that the bot hasn’t moved
and is surrounded by walls. This will cause the context to
become active, and its functions will help the bot maneuver
out of the corner.

Context Breakdown
The contexts in this implementation of CONGO are
tailored for the FPS genre of game play. They are general
enough to apply to games other than Quake 2, although it
is possible to add or remove contexts if necessary. The
core CxBR engine used by the observation module only
contains the contexts that are in need of data to train the

442

NN’s. Others, such as scripted contexts, are implemented
as sub-contexts and no data need to be gathered for them.
To be clear, there are also sub-contexts that are not
scripted. The complete list of contexts and sub-contexts is
shown below. The scripted sub-contexts are italicized, and
the contexts using both a NN and a script have an asterisk.

• Item-Hunting Context*
o Wander Sub-Context
o Stuck Sub-Context

• Attack Context
o Stuck Sub-Context
o Retreat Sub-Context*
o Last Stand Sub-Context

• Run Away Sub-Context*
o Stuck Sub-Context

• Counter-Attack Context
• Enemy-In-Sight Context*

o Approach Sub-Context
o Attack Sub-Context

• Just-Saw-An-Enemy Context

Testing

This section describes a series of experiments designed to
prove the hypothesis stated earlier. There will be set of
three tests given to each volunteer tester. The main factors
that need to be validated are:

• The entertainment value of CONGO
• The humanness as compared to other bots
• The accuracy of the learned behaviors

Entertainment value is a scale that quantifies the fun-factor
of the game experience. This is a familiar parameter for
most gamers because it is how magazines and websites
gauge the quality of a game. The second factor,
humanness, can be described as how realistically the bot
reacts in situations. The most obvious situation is when
gamers are usually able detect that an agent isn’t human is
when the agent moves in ways that a human isn’t able to
do. This usually results in the player thinking that the
match is unfair, and the majority of gamers do not approve
of this in an FPS multi-player environment. The accuracy
of the learned behaviors will show how well CONGO was
able to learn behaviors that players tried to instill into the
bot.

Test subjects were assigned skill levels based on their
familiarity with the game. A skill level of ten represents an
expert Quake 2 player, while a zero represents someone
who has never played Quake 2 or any other games like it.
Questionnaires were issued for each test subject to gather
the following information:

• Behaviors that the test subject successfully trained
the bot to perform

• The entertainment value as compared to a well
known traditional scripted ACEbot (Yeager 1998)

• How human the bot acted in each context

Detailed descriptions of each test are below:
Test #1: Kill the Running Enemy: The test subjects were
asked to train a bot to kill an enemy that was running
around in a contained area. The enemy does not fire at the
player, and will not leave the area that the player is in. This
represents testing only the attack context that from
previous research, has proven to be a formidable task
(Zanetti 2003). Moreover, the attack context is controlled
completely by NN’s. Therefore, this test will be able to
show the captured behaviors without using any scripted
actions.
Test #2: Train Bot for a Real Death Match: This test
involves training a complete bot. To do this, the
observation module observes the test subject play in a
death match against another human player. Similar to the
last test, the player is asked the behaviors they intend to
instill into the bot beforehand. This time there are context-
specific behaviors that they must specify. Lastly, to have
another experience to which to relate, the player will play a
match against the ACEbot.
Test #3: Death Match against Many Human Players:
This test uses the same bot that was trained in the previous
test in a match with multiple other human players. This test
pushes the bounds of what CONGO bots were designed to
do. This implementation of CONGO was not designed to
play against multiple enemies. When an enemy is found,
the CxBR engine transfers to enemy in sight context. This
context keeps a single pointer at that enemy, therefore
when another enemy comes into sight; there is possibility
that it would be ignored. In that same situation, the bot
could also oscillate aiming between enemies. This could
cause the bot to never attack either enemy.

Results

A summary of these results are shown below in Table 1. In
this table, the five test subjects rated the questions asked
between 1 and 10, 10 being the best and 1 being the worst.
CONGO made it possible to rate individual context’s
humanness, although the ACEbot had to be rated as a
whole.

The results confirm the hypothesis, although interesting
insights were obtained regarding the entertainment value of
the CONGO system. First, Test #1 demonstrated the utility
of the attack context in a non-hostile situation. The trained
bots for all subjects were all able to kill the enemy at least
four out of the five different situations. This confirms at
the very least a basic level of competence for the CONGO
bots.

Secondly, Test #2 showed that in most cases the
humanness and entertainment value of a bot created with
CONGO was better than that of the ACEbot’s. The
interesting trend found in this test was that because of
slight aiming problems the bots created weren’t truly
competitive for the players, although the entertainment

443

value was still increased. This shows that even though the
bot only posed a small threat, watching it perform the way
you intended is entertaining it itself.

0 3 5 7 10
6 7 6 3 6.5
7 8 5 3 6
8 8 5 10 3
6 6 7 6 2
7 10 7 5 3
6 6 5 4 6
6 9 5 6 3
5 4 7 4 2
7 7 7 5 2
4 2 1 0 3
5 5 4 3 7
6 8 6 5 7

Table 1 – Summary of Results

Third, Test #3 refuted the notion that a bot made using
the CONGO implementation would perform in-humanly in
a death match with more than one enemy. The results
showed that the humanness only suffered a marginal
decrease, and was able to perform just as well as it did in a
one-on-one match. See (Moriarty 2007) for complete data
and analysis.

Further tests were conducted by sacrificing speed to try
to improve the accuracy of the NN’s. The results of these
tests showed that other approaches didn’t seem to improve
the accuracy of the bots being trained. Using RPROP keeps
the training time low, which is important to preserve the
entertainment value.

Summary

With CONGO, players are given the ability to train the AI
of their bot by playing how they expect it to act. To ensure
playability and create a more humanlike NPC, Context
Based Reasoning and Neural Networks are synergistically
combined to create a learning from observation system.
The base set of contexts was established by observing
Quake 2 expert players play the game. There were some
reactive behaviors that did not fit the normal context
specifications. These are behaviors that span for only brief
period of time. These behaviors were made to capture a
single reaction that a player has. These contexts are forced
to be active for two seconds, then they return control to the
engine.

The RPROP training algorithm was used and is a
modified back propagation technique that significantly
reduces the time it takes to train a network, without
sacrificing much accuracy. It was also shown in previous
work that humans do not make decisions based on the
current situation alone (Riedmiller and Braun). For this, time
delay neural networks are used to supply CONGO with the
ability to reason based on previous states.

The testing procedure was composed of three tests that
grow incrementally harder for the bot to perform well.

Because it is difficult to observe the bot’s behavior while
playing against it, a video is recorded from the bot’s
perspective for the test subject to watch after the match.
The tests showed that although the bots produced by
CONGO were ranked only slightly above novice skill
level, they improved the humanness and entertainment
value over a more traditionally scripted bot.

References
Johnson, J. W. D., "Computer Games with Intelligence," IEEE
Int. Fuzzy Systems Conf., pp. 1355-1358, 2001.

Chapman N., "NeuralBot," http://homepages.paradise
.net.nz/nickamy/neuralbot/index.html, 1999.

Laird, J. E., Assanie, M., and Bachelor, B., "A Test Bed for
Developing Intelligent Synthetic Characters," pp. AAAI 2002
Spring Symposium Series: Artificial Intelligence and Interactive
Entertainment., 2002.

Thomas, D., "New Paradigms in Artificial Intelligence," AI Game
Programming Wisdom 2, pp. 29-39, 2004.

Rabin, S., AI Game Programming Wisdom 2. Hingham, Mass:
Charles River Media, 2004.

Evans, R., "AI in Games: A personal View,"
http://www.gameai.com/blackandwhite.html, 2002.

Geisler, B., "An Empirical Study of Machine Learning
Algorithms Applied to Modeling Player Behavior in a "First
Person Shooter" Video Game." M.S. thesis, Dept. Computer
Science, University of Wisconsin-Madison, WI, 2002.

Nareyek, A., "AI in Computer Games," Queue, vol. 1, pp. 58-65,
2004.

Zanetti, S., "Application of Machine Learning AI to First Person
Shooter Games. MSc Dissertation," in Computer Games
Technology: Liverpool John Moores University, 2003.

Sidani, T., "Learning situational knowledge through observation
of expert performance in a simulation-based environment," vol.
Ph.D.: University of Central Florida, 1994.

Riedmiller, M. and Braun, H., "A direct adaptive method for
faster backpropagation learning: The RPROP algorithm,"
Proceedings of the IEEE International Conference on Neural
Networks, pp. 586-591, 1993.

Clouse, D. S., Giles, C. L., Horne, B. G., and Cottrell, G. W.,
"Time-delay neural networks: representation and induction
offinite-state machines," IEEE Transactions on Neural Networks,
vol. 8, pp. 1065-1070, 1997.

Moriarty, C., "Learning Human Behavior from Observation for
Gaming Applications ," M.S. thesis, University of Central
Florida, 2007.

Abravanel E., S. Ferguson “Observational learning and the use of
retrieval information during the second and third years” Journal
of Genetic Psychology; Dec 1998, v.159, 4, 455(2), 1998

Yeager S., "ACEbot: Artificial Control Experiment,"
http://www.axionfx.com/ace, 1998.

444

