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Abstract 
The gaming industry has reached a point where improving 
graphics has only a small effect on how much a player will enjoy 
a game. The focus has turned to adding more humanlike 
characteristics into computer game agents. Machine learning 
techniques are scarcely being used in games, although they do 
offer powerful means for creating humanlike behaviors in agents. 
The first person shooter (FPS), Quake 2, is an open source game 
that offers a multi-agent environment in which to create game 
agents (bots). The work described in this paper seeks to combine 
neural networks with a modeling paradigm known as context 
based reasoning (CxBR) to create a contextual game observation 
(CONGO) system that produces humanlike Quake 2 bots. A 
default level of intelligence is instilled into the bots through 
contextual scripts to prevent the bot from being trained to be 
completely useless. The results show that the humanness and 
entertainment value as compared to a traditional scripted bot have 
improved, although, CONGO bots usually ranked only slightly 
above a novice skill level. Overall, CONGO offers the gaming 
community a mode of game play that has promising 
entertainment value.  

 Introduction  

 Game play has become the more important factor in the 
design of a game, while impressive graphics are expected 
as the norm (Johnson, 2001). With playability becoming a 
more important factor, doors are opening to apply artificial 
intelligence (AI) techniques along with other playability 
enhancements. 

The success of the massively multi-player online 
(MMO) genre shows that gamers do enjoy playing with 
other human players even if the other human players aren’t 
in the same physical place. This could extend for players 
appreciating realism in non-player characters (NPC), 
which is any character in a game that is not controlled by a 

                                                 
Copyright © 2009, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

player. Another playability enhancement is extensible AI, 
which has been implanted in certain popular games to 
allow the player to customize the AI of their enemies or 
teammates. In popular first-person shooter (FPS) games 
such as Half-life and Unreal, users are allowed to use a 
scripting language to implement their own modifications 
into the game. The FPS genre is characterized by the first-
person view in a three dimensional environment focused 
on a handheld weapon. While an FPS will have sufficient 
game play for a single player, many also have online 
multiplayer modes in which players can compete against 
other human players.  

This research describes a system that allows a game 
player to create customized intelligent game agents in the 
Quake II environment. Such AI agents are more commonly 
known as “bots” among the gaming community. A player 
then starts the match and plays in a manner that they desire 
their bot to perform. “Learning from observation” 
techniques are used to capture the knowledge of the player. 
Connectionist and symbolic AI practices are combined to 
apply the captured knowledge into a fully-functional bot. 
The game environment outputs a large amount of sensor 
data, which can be difficult for a single machine learning 
algorithm, to use in raw form (Chapman, 1999). We 
created a contextual engine that uses knowledge 
engineering techniques to divide and manage the captured 
knowledge. Multiple neural networks are then trained for 
the separate contexts to make use of the contextualized 
environment data. This system is the contribution of this 
research and represents a novel approach to extensible AI 
in video games. 

Game Engine as a Test-Bed for Research 

Academic artificial intelligence research can benefit 
significantly from utilizing game environment tools to 
simulate synthetic agents. Laird has shown that using a 
publicly released game engine such as Quake II is indeed a 
practical solution for academic AI research (Laird, Assanie 
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and Bachelor 1999). Creating a test-bed can often take time 
away from the actual research being done.  
 The two most popular “good old fashioned AI” 
paradigms used in FPS agents are finite state machines 
(FSM) and rule-based systems (Thomas 2004). These two 
techniques have proven to be effective to completely 
control game agents such as bots in many games. 
However, there are certain negative characteristics in bots 
that make use of FSM and/or a rule-based architecture 
(Rabin 2004):  

• Predictability becomes apparent  
• Bot AI can become too perfect  
• Non-human behavior is noticeable  

These three issues are directly linked to the replay value 
of a game. In particular, when a bot has a rule that causes it 
to be vulnerable to a certain attack, a player will exploit 
this. Such exploitation can cause the bot to seem scripted 
or unnatural. An exploration of modern AI techniques will 
show that these problems can be solved. 

Machine Learning for Gaming 

The use of Neural Networks (NN) and Genetic Algorithms 
(GA) has shown their usefulness in some commercial 
games (Evans 2002), but are still scarcely used in the 
industry. There are a several reasons for this:  

• Machine learning techniques can sometimes lead 
to unpredictable local maxima (Geisler 2002)  

• Game Developers often stick with what they 
know (Nareyek 2004)  

• Feature vectors are often too complex to control 
the agent with machine learning alone (Zanetti 
2003)  

One example of local maxima in a trained game agent 
could be when observation data shows that shooting only 
occurs 5% of the time, and in turn learns never to shoot 
(Geisler 2002).  Machine learning can add a level of 
unpredictability into a game. This unpredictability is 
desirable for making the agent more human-like, although 
it is not desirable if it leads to unpleasant user experiences. 
As game environments become more complex, the number 
of features that can affect an agent in the game make it 
nearly impossible to be used in raw form. Therefore, pre-
processing of data or other forms of minimizing the 
amount of noise and maximizing the amount of useful data 
becomes very important, but can be a formidable task 
(Geisler 2002) (Zanetti 2003).  

Learning by Observation 

The phrase “Learning by Observation” has its roots in 
biology. Studies have shown that humans fully develop 
observational learning by the age of 24 months (Abravanel 
1998). By that age, children can easily learn a simple task 
by observing another person performing the task.  Inspired 

by how humans and other mammals learn by observation, 
the machine learning community has developed a number 
of theories on learning by observation, applied in different 
areas.  

Sidani created a ML system (IASKNOT) that learned 
how humans implicitly react at traffic signals by observing 
a human expert perform in a simulation (Sidani 1994). 
IASKNOT combined neural networks and symbolic 
knowledge to optimize the observation data being used to 
train the networks.  This paper describes an extension of 
Sidani’s work that improves on the techniques he used and 
applies them to a much more complex environment.  

Determining when a machine learning algorithm 
completes its training is a heavily investigated problem. 
There have been many attempts to develop validation 
techniques and stopping of training criteria. In spite of this, 
there is always a chance that the network is poorly trained 
in new situations. In this work, a default level of 
knowledge was investigated and applied to the bot in the 
event that the bot’s poor performance would hinder the 
human player’s gaming experience. Accomplishing this 
required elicitation of domain knowledge from an expert 
player. However, this isn’t the only topic that requires 
domain knowledge. Dividing the game into contexts and 
establishing the rules that govern the CxBR-based bot also 
required human intervention.  

Problem Statement 

The first problem addressed was:  To create a game AI 
technique that can be implemented with re-usable 
characteristics. This leads to the follow-up problem being 
addressed:  How can an AI paradigm be created to ensure 
that it preserves or improves the playability of the game.  

More specifically, the problems addressed in this paper 
lie in creating a more human-like game agent. Attempts 
have been made to use NN’s to create human-like bots in 
FPS games (Geisler 2002) (Chapman 1999). These attempts 
report that the NN was unable to realize all behaviors 
because of the complexity of the environment. To use 
NN’s to realize a bot’s behavior, the observed environment 
data must be less complex. Dividing the data into contexts 
would then simplify the necessary behaviors for any one 
NN to realize. This process must be done automatically in 
the background while a player is demonstrating the 
behaviors they would like to see their custom bot reflect. A 
reasoning paradigm known as context-based reasoning 
(CxBR) is the solution to the contextualization process, 
although knowledge engineering techniques must be 
employed to construct the contexts and transitions between 
them. This poses the next two problem statements:  

• Need to obtain knowledge from a game expert to 
establish all contexts that a player can be in, as 
well as the variables needed for the transitions to 
and from these contexts.  
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• Must choose and implement the appropriate 
neural networks to use for representing the 
observational data of the contexts.  

The first area of research that requires validation is the 
humanness of the bots. Humanness can often be a 
subjective matter to assess, therefore, this research will 
need to determine the means to validate the humanness 
factor of the created bots.  

Another important factor to validate is the entertainment 
value of the system. This should not only be tested by 
volunteers, but should also be compared against other 
games that are similar in nature. Methods to evaluate 
entertainment value will be developed and used. 

This section explains the approach taken to expand the 
foundation of ideas that Sidani presented in his work. 
Sidani’s system was applied to a basic traffic light situation 
and was able to show that:  
•  Learning from observation is a valuable way to capture 

implicit human behaviors  
• Input data can be simplified by only using it when 

needed per situation  
• Neural Networks trained on situation-specific data can 

be more effective than training on an entire data set  
This research was inspired by these accomplishments, and 
has implemented an extension of this work into a gaming 
application.  

Introduction to CONtextual Game Observation 
(CONGO)  
The first extension of Sidani’s work is the more complex 
environment in which the system observes a human 
perform. The Quake 2 environment requires more intricate 
human behaviors to be learned for an agent to be 
functional. The most important behaviors are strategic and 
tactical, which allow the trained agent to act more human-
like.  

This research implements Learning from observation 
using CxBR and Neural Networks. Each of these offers 
improvements to a game agent or non-player character 
independently. For instance, CxBR could replace the 
classical finite state machine and offer a simple transition 
among hierarchically organized contexts and sentinel rules, 
allowing for the modeling of an agent to be more intuitive. 
Machine learning in the form of NNs, can be used to 
generalize a NPC’s action to new situations. This could 
allow a programmer to reduce the amount of hard-coded 
actions required for the NPC.  

More interestingly, the AI paradigms just mentioned 
combine to synergistically create a single new method for 
creating agents from observed human behavior. At the core 
of CONGO, there is a CxBR engine for determining which 
context a player is in by monitoring environment variables. 
For example, if a player has an enemy in close range and is 

firing at it, the system would gather data for the attack 
context. Since the system knows that the data are only for a 
specific situation, the input-output patterns are minimized 
to only what is necessary to function in the current context. 
When the human player is finished playing, one or more 
NN’s are trained with each context’s data. The system then 
uses the same CxBR engine with the newly-trained NN’s 
combined with default domain knowledge to create a fully 
functioning game agent.  

The following sections will explain CONGO’s three 
main modules: Contextual Observation Module, Network 
Training Module and the Game Performance Module.   

Contextual Observation Module  
The contextual observation module passively collects 
input-output patterns based on a human player’s actions for 
the entire duration of a match. Figure 1 shows the basic 
flow of the system. The Quake 2 environment passes 
variables to the CxBR engine, which then outputs the data 
into the currently-active context’s input/output file. The 
CxBR engine’s duty for this module is only to switch in 
and out of contexts and write patterns out to data files. The 
engine is comprised of a set of hierarchical contexts along 
with fixed rules that decide when they are active.  

 
Figure 1 - Contextual Observation Module Diagram 

The input/output (I/O) patterns are recorded for each frame 
that the game server graphically produces. The exact 
number of frames per second depends on the hardware 
being used. Quake 2 is an older game and most current 
systems can push the frame rate to 60 frames per second 
with ease. Sixty frames per second also produces 60 I/O 
patterns per second, which contain a large amount of 
redundant patterns. These redundant data are useful in 
situations where the data represent a temporal time line of 
a human’s behavior. Some behaviors, such as gun 
preference, are simple binary decisions carried out 
instantaneously. Redundant data are not useful in such 
cases and will only cause the NN’s to take longer to train. 
Therefore, the redundant patterns are filtered out for 
contexts such as these.  

Training module  
This module is used after all of the data from the 
observation module are collected. The files are then 
formatted in preparation to be passed to the neural network 
training algorithm. Previous research using NN’s have 
shown that back propagation learning algorithm was 
capable of learning behaviors such as aiming, or paths 
around a map [7, 12]. The RPROP training algorithm was 
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chosen along with the use of Time-Delay.  These are both 
explained in the next sections.  

RPROP – Neural Network Training Algorithm 
Resilient Propagation is a modification of back 
propagation learning algorithm devised by Reidmiller and 
Braun (Riedmiller and Braun 2003). The modification is a 
local-learning scheme that uses an update value for each 
weight to change the weight only when the sign of the 
partial derivative changes. Tests show that RPROP reduces 
the chance that a weight update will oscillate, allowing it to 
converge more often. Furthermore, the number of steps in 
the training procedure is significantly reduced from 
traditional gradient descent procedure, thus making 
RPROP a faster and computationally more efficient 
learning algorithm.  

Time Delay Neural Networks  
It has been shown that creating NN’s that are purely 
reactive was not effective in capturing human behaviors in 
a game simulation (Geisler 2002). Through the use of time 
delay neural networks (TDNN), a network can make 
decisions based on more than just the current situation. 
TDNN’s have a standard feed-forward structure with the 
addition of memory nodes. This allows for temporal 
learning, meaning that the network makes decisions not 
only based on the present state, but also upon previous 
ones. A sub-class of the TDNN is the input-delay neural 
network.  

Input-delay neural networks (IDNN) concentrate only on 
the input to the network, while time-delay networks require 
internal delays at every neuron. This implementation of 
CONGO uses IDNN. As shown in Figure 2, along with 
present input pattern, the desired amount of previous input 
patterns are fed into the IDNN at the input layer. An 
advantage of the IDNN is having a less complex network 
than the original TDNN, but preserves the same temporal 
processing capability (Clouse 2003).  

 
Figure 2 - Input Delay Neural Network Architecture 

After the training module creates and trains the NN’s, they 
are exported into the gaming performance module. This is 
where the agent is placed into the Quake II environment to 
perform autonomously. The NN’s are combined with a 
default level of intelligence realized through scripted, rule-
based AI, all of which is then inserted into the CxBR 
engine’s contexts.  

 

Performance CxBR engine  
The same engine is re-used from the observation module, 
with the addition of NN’s and the previously mentioned 
scripted default knowledge. As seen in Figure 3, the CxBR 
Engine receives input from the Quake Environment and 
processes a context to choose just as the observation 
module did. Then, the context executes actions based upon 
outputs from a NN or from a script.  One concern that 
arose was how to output functional commands to the 
Quake engine. Quake 2 has built-in functionality to control 
agents inside of the environment. The use of this 
functionality can give the bot abilities to move in ways that 
a human player cannot. With NN’s controlling the output, 
it can become quite easy for a bot to move and turn quite 
unnaturally. More importantly, the bot could appear to 
have an unfair speed or precision advantage. This is why it 
was decided that the contexts should send keyboard and 
mouse commands to Quake II, instead of using internal 
variables.  

 
Figure 3: Gaming Performance Diagram 

 
There are three types of control schemes for the contexts. 
The first scheme is designed for complete control from 
trained NN’s. These are the contexts that require tactical or 
strategic movements and may contain multiple NN’s 
running concurrently. The second type of control scheme 
uses a NN to make a decision and once a decision is made, 
a script carries out the action. This is done to keep the 
NN’s small, but preserve the humanness of the decisions 
being made. For example, in the item-hunting context, the 
NN decides whether or not to get a certain item when one 
of its output nodes reaches a certain threshold. After 
which, a script is called to navigate and pick up the item. 
The third type is a completely scripted context that gives 
the bot some minimal level of intelligence. One example to 
illustrate this is if the bot becomes completely stuck in a 
corner, a stuck context will see that the bot hasn’t moved 
and is surrounded by walls. This will cause the context to 
become active, and its functions will help the bot maneuver 
out of the corner. 

Context Breakdown  
The contexts in this implementation of CONGO are 
tailored for the FPS genre of game play. They are general 
enough to apply to games other than Quake 2, although it 
is possible to add or remove contexts if necessary. The 
core CxBR engine used by the observation module only 
contains the contexts that are in need of data to train the 
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NN’s. Others, such as scripted contexts, are implemented 
as sub-contexts and no data need to be gathered for them. 
To be clear, there are also sub-contexts that are not 
scripted. The complete list of contexts and sub-contexts is 
shown below. The scripted sub-contexts are italicized, and 
the contexts using both a NN and a script have an asterisk. 

• Item-Hunting Context* 
o Wander Sub-Context 
o Stuck Sub-Context 

• Attack Context  
o Stuck Sub-Context  
o Retreat Sub-Context* 
o Last Stand Sub-Context  

• Run Away Sub-Context* 
o Stuck Sub-Context 

• Counter-Attack Context  
• Enemy-In-Sight Context* 

o Approach Sub-Context 
o Attack Sub-Context  

• Just-Saw-An-Enemy Context  

Testing 

This section describes a series of experiments designed to 
prove the hypothesis stated earlier. There will be set of 
three tests given to each volunteer tester. The main factors 
that need to be validated are:  

• The entertainment value of CONGO  
• The humanness as compared to other bots  
• The accuracy of the learned behaviors  

Entertainment value is a scale that quantifies the fun-factor 
of the game experience. This is a familiar parameter for 
most gamers because it is how magazines and websites 
gauge the quality of a game. The second factor, 
humanness, can be described as how realistically the bot 
reacts in situations. The most obvious situation is when 
gamers are usually able detect that an agent isn’t human is 
when the agent moves in ways that a human isn’t able to 
do. This usually results in the player thinking that the 
match is unfair, and the majority of gamers do not approve 
of this in an FPS multi-player environment. The accuracy 
of the learned behaviors will show how well CONGO was 
able to learn behaviors that players tried to instill into the 
bot.  

Test subjects were assigned skill levels based on their 
familiarity with the game.  A skill level of ten represents an 
expert Quake 2 player, while a zero represents someone 
who has never played Quake 2 or any other games like it.  
Questionnaires were issued for each test subject to gather 
the following information:  

• Behaviors that the test subject successfully trained 
the bot to perform 

• The entertainment value as compared to a well 
known traditional scripted ACEbot (Yeager 1998) 

• How human the bot acted in each context  

Detailed descriptions of each test are below:  
Test #1: Kill the Running Enemy: The test subjects were 
asked to train a bot to kill an enemy that was running 
around in a contained area. The enemy does not fire at the 
player, and will not leave the area that the player is in. This 
represents testing only the attack context that from 
previous research, has proven to be a formidable task 
(Zanetti 2003). Moreover, the attack context is controlled 
completely by NN’s. Therefore, this test will be able to 
show the captured behaviors without using any scripted 
actions. 
Test #2: Train Bot for a Real Death Match: This test 
involves training a complete bot. To do this, the 
observation module observes the test subject play in a 
death match against another human player. Similar to the 
last test, the player is asked the behaviors they intend to 
instill into the bot beforehand. This time there are context- 
specific behaviors that they must specify. Lastly, to have 
another experience to which to relate, the player will play a 
match against the ACEbot.  
Test #3: Death Match against Many Human Players: 
This test uses the same bot that was trained in the previous 
test in a match with multiple other human players. This test 
pushes the bounds of what CONGO bots were designed to 
do. This implementation of CONGO was not designed to 
play against multiple enemies.  When an enemy is found, 
the CxBR engine transfers to enemy in sight context. This 
context keeps a single pointer at that enemy, therefore 
when another enemy comes into sight; there is possibility 
that it would be ignored. In that same situation, the bot 
could also oscillate aiming between enemies. This could 
cause the bot to never attack either enemy. 

Results 

A summary of these results are shown below in Table 1. In 
this table, the five test subjects rated the questions asked 
between 1 and 10, 10 being the best and 1 being the worst.  
CONGO made it possible to rate individual context’s 
humanness, although the ACEbot had to be rated as a 
whole. 

The results confirm the hypothesis, although interesting 
insights were obtained regarding the entertainment value of 
the CONGO system. First, Test #1 demonstrated the utility 
of the attack context in a non-hostile situation. The trained 
bots for all subjects were all able to kill the enemy at least 
four out of the five different situations. This confirms at 
the very least a basic level of competence for the CONGO 
bots.  

Secondly, Test #2 showed that in most cases the 
humanness and entertainment value of a bot created with 
CONGO was better than that of the ACEbot’s. The 
interesting trend found in this test was that because of 
slight aiming problems the bots created weren’t truly 
competitive for the players, although the entertainment 
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value was still increased. This shows that even though the 
bot only posed a small threat, watching it perform the way 
you intended is entertaining it itself. 

 

0 3 5 7 10 
6 7 6 3 6.5 
7 8 5 3 6 
8 8 5 10 3 
6 6 7 6 2 
7 10 7 5 3 
6 6 5 4 6 
6 9 5 6 3 
5 4 7 4 2 
7 7 7 5 2 
4 2 1 0 3 
5 5 4 3 7 
6 8 6 5 7 

Table 1 – Summary of Results 
 

Third, Test #3 refuted the notion that a bot made using 
the CONGO implementation would perform in-humanly in 
a death match with more than one enemy. The results 
showed that the humanness only suffered a marginal 
decrease, and was able to perform just as well as it did in a 
one-on-one match. See (Moriarty 2007) for complete data 
and analysis.   

Further tests were conducted by sacrificing speed to try 
to improve the accuracy of the NN’s. The results of these 
tests showed that other approaches didn’t seem to improve 
the accuracy of the bots being trained. Using RPROP keeps 
the training time low, which is important to preserve the 
entertainment value.  

Summary 

With CONGO, players are given the ability to train the AI 
of their bot by playing how they expect it to act.  To ensure 
playability and create a more humanlike NPC, Context 
Based Reasoning and Neural Networks are synergistically 
combined to create a learning from observation system. 
The base set of contexts was established by observing 
Quake 2 expert players play the game. There were some 
reactive behaviors that did not fit the normal context 
specifications. These are behaviors that span for only brief 
period of time. These behaviors were made to capture a 
single reaction that a player has. These contexts are forced 
to be active for two seconds, then they return control to the 
engine. 

The RPROP training algorithm was used and is a 
modified back propagation technique that significantly 
reduces the time it takes to train a network, without 
sacrificing much accuracy. It was also shown in previous 
work that humans do not make decisions based on the 
current situation alone (Riedmiller and Braun). For this, time 
delay neural networks are used to supply CONGO with the 
ability to reason based on previous states.  

The testing procedure was composed of three tests that 
grow incrementally harder for the bot to perform well. 

Because it is difficult to observe the bot’s behavior while 
playing against it, a video is recorded from the bot’s 
perspective for the test subject to watch after the match. 
The tests showed that although the bots produced by 
CONGO were ranked only slightly above novice skill 
level, they improved the humanness and entertainment 
value over a more traditionally scripted bot. 
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