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Abstract

Queuing and accepting reservations are common social meth-
ods for allocating scarce resources in our daily lives. How-
ever, neither method is flexible when they are components
of large, complex plans. In this paper we investigate the use
of mobile devices that provide timely information, facilitate
planning, and enable the trading of reservations. We investi-
gate the behavior of a closed society of simple agents com-
peting for scarce resources. The results of the experiments
demonstrate that a simple reservation mechanism can actually
reduce the social welfare under certain conditions, but trad-
able reservations and clairvoyance each improve it. While
in many situations queues are unavoidable, better informa-
tion and more flexibility in reservation handling can facilitate
planning.

Introduction
In modern society, we spend a great deal of time perform-
ing activities in physical, multi-user environments that have
limited capacity to serve their users. The quality of our ex-
perience often depends upon our implicit coordination with
other users. If, for example, we go to the grocery store or to
a restaurant at the same time as all of our neighbors, the wait
will be interminable. One common solution to this prob-
lem is to make some resources reservable (i.e., restaurants,
movies). Another is to make available information about
the current wait-time to improve the decision making (i.e.,
traffic reports). Still another solution is for the user to learn
a function describing the expected load on a resource (i.e.,
grocery stores are less busy very late at night).

Software agents operating on mobile devices have the po-
tential to greatly improve our ability to operate in these com-
plex environments. These agents can help the user plan an
itinerary, can keep the user informed of changes in the envi-
ronment that may warrant a change of plans, and can dynam-
ically manage reservations for resources that are required for
the current plan.

In this paper we consider a prototypical multi-user envi-
ronment that has reservable, capacity-constrained resources.
The model we examine is particularly well suited to describe
closed, densely populated attractions like amusement parks,
museums, and aquariums, but can also easily describe more
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general environments. We analyze the system performance,
measured in terms of social welfare, as we adjust the follow-
ing characteristics:

1. Information Quality: Often a person arrives at a restau-
rant and finds it crowded. If she had known in advance the
number of people waiting at the restaurant, she may have
chosen another time, or another restaurant. A clairvoyant
person would know the expected wait time of every place
before deciding where to go.

2. Tradable Reservations: Imagine a person who bought
the last ticket for the evening show at the theatre. His plan
changes suddenly and now he has to catch a plane this
afternoon, so he has to get rid of the theatre reservations,
and get an airline ticket. He may not be able to buy a
ticket from the airline, but there is another traveler who
would be willing to cancel her trip if she could get theatre
tickets. Markets for the reservations would enable these
two people to adjust their plans in a satisfactory manner.

3. Planning: Consider a person in an amusement park who
really wants to ride a roller coaster. Acquiring a reserva-
tion for the roller coaster right now is impossible, and the
queue is very long. If he plans ahead, he may find that
the reservations for the roller coaster in a few hours are
easy to get, and he can construct a plan around the roller
coaster reservation that involves other attractions.

Model
We consider a discrete time, finite horizon model of the en-
vironment. This would be consistent, for instance, with a
single day visit to an amusement park. A discrete time inter-
val, �, is an element of the ordered set ��� � � � � ��. The rest
of the model consists of two parts: the environment and the
agents.

The Environment
We model the environment as a connected graph. The
nodes of the graph represent the activities (rides, exhibi-
tions, restaurants, etc.). The edges of the graph represent
the walkways connecting the activities. The set of all nodes
is denoted � and the set of all edges �. Individual nodes
and edges are designated � and �, respectively.

Nodes have attributes that govern how agents interact with
them. The maximum capacity of node �, denoted 	�, is the
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maximum number of agents that can use activity � at the
same time. Naturally, 	� 
 �. The duration is the amount
of time an agent spends inside node �, and is represented
by �� 
 �. The admittance frequency is the amount of time
between the admittance of one group of agents to the activity
and the admittance of the next group of agents. Admittance
is periodic starting at � � �. The admittance frequency of
node � is denoted ��, where �� 
 �.

These attributes allow us to simulate a wide variety of ac-
tivities. For instance, roller coasters are modeled as hav-
ing small capacity, short duration, and frequent admittance.
Theatre shows have long duration, relatively large capacity,
and infrequent admittance. A sit-down restaurant has mod-
erately frequent admittance and long duration, while a cafe-
teria may admit one person every time step.

Many of the agents’ decisions will require the agent to de-
termine the next admittance time—the number of time steps
from time � until node � admits another group of agents.
Next admittance time is denoted ���, and can be computed
as:

��� �

�
� ���� mod ��� � ��
�� � �� mod ��� ��	
���
�

Each activity has an ordered set of agents waiting in line
to enter the attraction, called the queue. The queue at time
�, is denoted by ����. The agents are represented by ��, and
the position of agent �� is ����. The queue length, ����, is
the number of agents waiting in line to enter node � at time
�, and is equal to the cardinality of ����.

An agent can compute the amount of time it expects to
wait in line for node � with queue length ����. The expected
wait time, denoted ����, is:

���� � �� �

�
����

	�

�
� ����

The queues are FIFO (unless the agent has a reservation,
described later). Agents can abandon the line at any time.

The edges of the graph represent walkways (or other
means of transportation), that we call links. Each link con-
nects two nodes, and has an associated traversal time, ����,
where � is the origin node, � is the destination node, and
���� 
 �. If nodes� and � are not directly connected, then
���� is undefined.1 Note that ���� � ����.

The graph generation process used in the simulation en-
sures that the graph will always be connected, that is, there is
always a path from one node to another, using one or more
links. Sometimes, the direct link from � to � is not the
shortest path (i.e., it may be the scenic route). Let ����

be the shortest path from � to �, using one or more links.
���� may be less than ����.

The Agents
The agents represent people who use the facilities in the en-
vironment. Each agent has attributes that describe its history,

1Links could be modeled as activities with infinite capacity, ad-
mittance every time step, and duration ����.
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Figure 1: Utility Functions.

its current state, its utility for various actions, and its plan.
An individual agent is denoted �, and the set of all agents�.

Agent �’s position, ����, is the node or link at which it is
located at time �, where ���� � � � �. The agent’s time to
finish, ����, is the amount of time until agent � completes its
current action.

���� �

����������
���������

���� if agent � enters link ����
�� if agent � enters activity ��
������ � � if agent � is occupied

and ������ 
 ��
� if agent � decides to do nothing

for 1 time step�
� otherwise (including standing

in line).

The agent keeps track of its history in the form of the
number of visits it has made to each activity. An agent is
considered to have visited a node only if it actually partakes
in the activity. The number of times � has entered node � is
denoted ������.

������ �

���
��

� if � � ��
�������� � � if agent � enters node � at

time ��
�������� otherwise�

The agent derives value by participating in the activities
of the environment. The amount of value is defined by the
agent’s utility function. In general, the utility that an agent
gets from node � is a function of the number of times that the
agent has already visited �. For simplicity, we consider only
three types of utility functions, each representing a simpli-
fied, but common, scenario in these environments. Figure 1
shows the three types of utility functions: (a) utility that is
constant, (b) utility that decreases linearly with the number
of visits, and (c) utility that is constant to some threshold
number of visits, and zero thereafter.

Let ������������ represent agent �’s value for entering �
as a function of the number of previous visits. We assume
that agents have quasilinear utility; they are not budget con-
strained, but they do have some other use for money outside
the environment. In practice, we expect that it will be more
acceptable to be granted a budget in a currency local to the
environment.

Agents are utility maximizers and will follow the plan that
gives them the highest utility in their planning horizon.



The accumulated utility earned by agent � from time ��
until time � is represented by ����.

���� �
�
�

�������
���

��������

We assume that agents don’t share information between
them. One agent doesn’t know the valuations or the plans
of other agents, and it does not try to predict what the other
agents will do next.

The agent’s current state is the agent’s position and the
agent’s current action. The possible actions are:

Walk: An agent can move from one place to another
when it is not inside an attraction. Once it decides to go
to another place, it cannot change actions until it reaches an-
other node. For example, if an agent is going from A to D,
using the links A� B, B � C, and C � D on its way, it can
only change its destination when reaching B, C or D. The
result of agent � walking from node � to node � at time �
assuming the link�� � exists, is:

������ � �, where � � �����

All agents walk at the same pace; there are no faster or
slower agents. Although this assumption is not realistic, re-
laxing it would not change the behavior of the model.

Enter Queue: When an agent arrives at a node and wants
to enter, it has to go to the end of the line and wait its turn.
When two or more agents arrive to a queue at the same time,
the tie is broken randomly.

Enter Activity: When the agent is within 	� of the front
of the queue and the node is admitting users, the agent enters
the activity. The amount of time the agent will be inside
node � is ��, and the agent is removed from the queue. After
entering a node, agents cannot leave it before the activity is
over.

Wait: An agent may prefer to wait, doing nothing.
The perception of the agent determines how far the agent

can see. Specifically, it represents the list of places where
the agent can see the queue length, and can compute the ex-
pected wait time. A myopic agent can see only its current
location, and the neighbors that surround it (nodes directly
connected to the node where the agent is located). If the
agent is located in node �, then it can see the queue at node
� and the queues at all nodes � where ���� exists. Clair-
voyant agents can see the queue length of all the activities.

In Figure 2, an agent in node 1 with myopic perception
can see the queue lengths of its current position (node 1)
and the immediate neighbors (nodes: 2, 3, 4 and 7). With
clairvoyance, it would see all the nodes.

Enhanced Environments
We enhance the environments described in the previous sec-
tion by adding tradable reservations and clairvoyance to im-
prove planning. The reservations can be exchanged in mar-
kets, and we assume that the agents (on mobile devices) are
endowed with communication technology that enables them
to participate in the market while being carried around the
environment.

1
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7

6

5

8

9

Figure 2: Myopic and Clairvoyant Perception

A reservation for node � at time � is denoted ����. If an
agent holds ����, it will be admitted to node � at time � with-
out waiting in line. The number of reservations distributed
in node � for each admittance time is represented by ��,
� � �� � 	�. Note that ���� cannot be used after time �.

If an agent doesn’t hold a reservation, it must account
for the effect that other agent’s reservations will have on its
wait time. The expected time spent in line for an agent that
doesn’t have a reservation is

���� � �� �

�
����

	� � ��

�
� ����

We refer to the reservations that an agent currently holds
as its endowment, denoted ����. During the trading stage
of iteration �, the agent is free to sell part or all of its en-
dowment. Reservations that the agent purchases during the
trading stage are either used immediately or added to the
agent’s endowment for the next iteration.

Reservations can be traded in an electronic marketplace.
The market has one auction for each possible node and time
where reservations are possible. As a practical matter, the
number of reservable times may be regulated to keep the
number of markets down. For instance, the markets may be
opened for only the next two hours worth of activities, or
only for the entry to activities on the quarter hour mark.

General Equilibrium Theory provides a set of sufficient
conditions that ensure the existence of equilibrium prices
and the Pareto optimality of the supported allocation (Mas-
Colell, Whinston, & Green 1995). Unfortunately, the ex-
change economy defined by the agents in our model does
not satisfy the conditions of the First Welfare Theorem. In
particular, the goods are discrete and therefore violate the
condition that preferences be convex. In addition, as the
planning horizon increases, agents begin to construct plans
that include complementary reservations, which violates the
gross substitutes condition. The presence of these two viola-
tions will sometimes prevent the markets from converging.
In order to make progress in the face of these failures, we
have manipulated the auction to improve convergence at the
expense of optimality.

Auction Rules
The reservations are traded in �-double auctions (Satterth-
waite & Williams 1989) where � = 1/2. For the purposes



of this initial study, we assume that agents bid truthfully and
state their actual willingness to pay for (or minimum willing-
ness to sell) a particular reservation. Moreover, we assume
the agents act competitively and take the prices announced
by the auctioneer at face value.

The price quote generated by the auction is computed ac-
cording to the standard �� and � ����� price rules. The
buy and sell bids are sorted, and the  �� and � � ����

highest bids are identified, where  is the number of sell
offers. These prices delineate the range of prices that will
balance supply and demand. The �� price corresponds to
the ask quote, !��	, and the � ����� price is the bid quote,
!
��(Wurman, Walsh, & Wellman 1998).

After all the bids have been received, new quotes are com-
puted and communicated to the agents. Agents can then up-
date their bids in response to the new prices. The auction
will reach equilibrium when no agent wants to change its
bids, given the current prices of the reservations.

If the market fails to reach equilibrium, we introduce er-
ror in the utility computed by the agents by manipulating the
price quotes. When a convergence failure occurs, the market
will modify the prices announced by adding (subtracting) "
to the ask (bid) quote. This has the effect of making reser-
vations seem more expensive to buyers, and less valuable to
sellers. When buying �, agents will be told the ask price of
� is not !��	 but (!��	 + "�, thus decreasing their expected
utility of buying it. When selling �, agents will use the bid
quote (!
�� - "�, decreasing their expected utility of selling
it. If the market still fails to converge, " is increased. Even-
tually the announced prices will reach values where no agent
wishes to place a new bid, but in so doing the market sacri-
fices social efficiency.

After reaching quiescence, the markets clear. The ex-
change price is determined by using � = 1/2, that is, the
middle point between the bid and ask quotes. All the sellers
with bids below the exchange price will sell, and all the buy-
ers with bids above the exchange price will buy. The sellers
will transfer the reservation to the buyers, and buyers will
reciprocate with money in the amount equal to the trading
price. The detail of who exchanges the goods with whom is
not important, because all the goods in a specific market are
identical.

Planning
At each decision point, the agent evaluates its possible ac-
tions and selects a plan that generates the greatest utility. We
assume the agent’s planner generates only feasible plans.

Initially, consider plans that involve choosing only the
next activity. Let # denote such a feasible plan. Suppose
agent � is at node � and plan # involves going to node �
and participating without a reservation. The value of going
to node � at time � is ������������. The total amount of time
that � will spend to complete the activity of node � is the
time to finish its current activity ���� at node �, plus the
travel time ����, plus the time in line ����, plus the dura-
tion �� of �. Let

$�#� � ���� ����� � ���� � ���

The utility that � receives from #, will also include the

market value of the unused portion of the agent’s endowment
(i.e., the sum of bid prices of everything that it owns). Thus,
the utility of the plan to go to node � is

%����#� �
������������

$�#�
�
�

	�
���

!	�

If the agent decides to use a reservation that it owns, the
time required to enter node �, ����, will be the time until
the reservation can be used, and the income from the agent’s
endowment will not include the reservation �� that it intends
to use. The utility will be:

%����#� �
������������

$�#�
�
�

	�
���

!	 � !	�

If the agent needs to buy the reservation, �, that completes
the plan, the utility expression will have the same form as the
above with the exception that the agent will need to use the
ask price of �, and � is not an element of����. Notice that in
addition to being truthful, the agent is pessimistically using
the bid and ask quotes rather than computing the true � = 1/2
transaction prices.

When planning farther ahead, it is possible that a plan will
require more than one reservation. To compute the utility of
a complex plan, #, we compute the average value of all the
activities considered in the plan horizon. Let & denote the
average value of a complex plan. The utility will be:

%��� � & �
�

	�
���

!	 �
�

	 used in �

!	�

When two plans provide the same utility to an agent, the
agent selects one according to the following rules:

	 A plan that uses reservations has priority over plans that
involve waiting in line (because of the uncertainty of the
future queue length).

	 A plan that uses a reservation that the agent owns has pri-
ority over a plan that involves buying reservations.

	 Doing nothing has the lowest priority.

These rules basically encode an agent’s preference of
more certain actions over those that involve more uncer-
tainty.

For the simulations described in this paper, we have used
a very simple planning algorithm with a limited horizon. As
part of the larger research agenda, we plan to integrate state
of the art planning systems into the simulation.

Bidding
Agents interact with the market by placing bids to buy and
sell reservations. The first step in determining bids is to
compute the utility of each plan. We will also assume that
the agents are truthful and bid their exact willingness to pay
(sell).

Each agent will find the plan that gives him the highest
utility. We will denote the highest utility %���� and the next
highest utility �%���. Let & � be the average value of the plan
and !� the price of the reservation used in the highest utility



Plan ���� ���� �� &��� & �
����


& � ! offer '�����
Ride 1 with res. 0 1 1 10 10/2 = 5 5 - !� Sell 5 - 3.75 + !�
Ride 2 with res. 2 0 2 15 15/4 = 3.75 3.75 - !� Buy 3.75 - 5+ !�
Ride 2 2 3 2 15 15/7 = 2.14 2.14
Ride 1 0 5 1 10 10/6 = 1.66 1.66

Table 1: Example bid calculation when the agent owns a reservation for Ride 1.

plan, as calculated before. Similarly, �& and �! represent the
valuation and the price of the reservation used in the second
highest utility plan.

The value that � has for a reservation, �, is the amount
that would make the agent indifferent between the plan with
� and the best alternative. To compute a bid, '�����, for a
reservation, ��, that is part of the best plan, the agent com-
pares the plan to the second best plan. The agent is indiffer-
ent when %���� � �%���, that is,

& � � !� � �& � �!�

!� � & � � � �& � �!��

Thus, the truthful agent will bid '����� � & � � � �& � �!�.
If �� � ����, � is willing to sell �� as long as it receives at
least '�����. If �� is not in �’s endowment, � is willing to
buy �� for up to '�����.

Bids for reservations that are part of the other plans are
assessed in the same manner. Let %��� be the utility of a
arbitrary other plan. Again, the agent finds the indifference
point where %���� � %���. It follows that

& � � !� � & � !�

! � & � �& � � !���

And the truthful bid will be '����� � & � �& � � !��.
Table 1 shows an example of the bids computed by an

agent, assuming the agent is in node 1 at time 0 and there
are only 2 nodes. The price of the reservation for ride 1 at
time 1 (that he owns) is !� and for ride 2 at time 2 is !�.
Also ���� � �, !� ( ���� and !� ( ���� � !�.

The process is more difficult when plans involve more
than one activity because of the difficulty of ascribing the
value of a plan to the component reservations. One solution
is to permit combinatorial bidding (de Vries & Vohra to ap-
pear). However, due to the size of real problem instances,
that may prove intractable. Investigating combinatorial bid-
ding in this environment is part of the future work.

In the meantime, we ascribe value to component reser-
vations with the following heuristic. Let the superscript �
denote the highest utility plan that uses �. Let !�����	� de-
note the sum of the prices of all other reservations required
in plan �. Using the same nomenclature presented before,

the amount to bid for each reservation in the plan will be:
%���� � �%����

& � � !���� � !
�

����	� � �& � �!�

!���� � & � � !�����	� � � �& � �!�

'����� � & � � !�����	� � � �& � �!�

All the agents will place their bids: buy bids for reserva-
tions they don’t have, and sell bids for reservations that they
have. If an agent holds a reservation that it cannot use in
any of its plans (because, say, it can’t get to the node by the
reservation time), it will offer to sell the reservation for 0.

Results
The model used for the simulations has 10 nodes, 100 agents
and 100 time slots. The total capacity of the model is 36.24
agents per time slot. Thus only slightly more than a third
of all agents can be active at one time. At the beginning of
the simulation, each agent is randomly positioned next to an
activity.

We included two methods of allocating the reservations.
One is to randomly distribute reservations at the beginning
of the simulation. The second is to assign reservations on a
first-come, first-served basis (e.g. non-random).

We measured the social welfare of the system un-
der different conditions: no reservations, randomly dis-
tributed reservations without trading, non-randomly dis-
tributed reservations without trading, and trading. The four
types of simulations were run with both myopic and clair-
voyant perception and with varying levels of reservable ca-
pacity. Figures 3, 4 and 5 show the results when 20%, 40%
and 70% (resp.) of the capacity is reservable. As a baseline,
we observe that the lines corresponding to myopic and clair-
voyant agents using no reservations are constant in the three
graphs.

Several trends are visible in the graphs. First, the over-
all quality of the solutions increases as the proportion of the
capacity increases. Second, the difference between the my-
opic results and clairvoyant results is quite large. This result
primarily stresses the importance of making good informa-
tion available to the agents. Third, with or without clair-
voyance, trading improves social welfare. However, adding
reservations without trading sometimes decreases the social
welfare because a large percentage of the reservations go
unused, increasing the uncertainty in predicting the queue’s
progress. Finally, increasing the planning horizon does not
clearly help or hurt. This inconclusive result is due, in part,
to the fact that the horizons are all quite small and the plan-
ning algorithm is not sophisticated. This is a primary area
for future study.
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Figure 4: Utility vs Planning Horizon with 40% reservable
capacity

Non-randomly distributed reservations give better results
than randomly distributed reservations when the planning
horizon is small. When planning ahead, more reservations
requested by the agents are not used and wasted, because
they change their plans and the unused reservations cannot
be reallocated.

Figure 6 analyzes the evolution of prices over time, using
Clairvoyance, trading and planning 1 time step ahead. The
dotted line shows the queue length of the node analyzed.
Each continuous line represents the price of a reservation
over time. A circle over a continuous line indicate that the
corresponding reservation was traded at that price and time.
It is clear from the graph that the longer queue length makes
the reservations more valuable, and that price goes up as
reservation time nears. In most cases the reservations are
traded early and the agents keep their plans of using a reser-
vation once they buy it.
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Figure 5: Utility vs Planning Horizon with 70% reservable
capacity

There are two sources of “noise” in the agent’s decision
process that may help explain the results.

1. Uncertain queue length: When an agent decides to go to
a node without a reservation, the queue length will change
by the time it arrives. If many agents converge on a node
because they heard the line was short, a good portion of
them will be disappointed.

2. Convergence problems: Each time the markets fail to
converge, a bias is introduced in the quotes to force con-
vergence. This bias can produce a sub-optimal allocation,
although the result is still guaranteed to be better than not
trading. We expect the convergence problems to be more
frequent when the planning horizon is increased.

Even with those problems, it is clear that using tradable
reservations improves the social welfare.

Related Work
A great deal of recent work has studied software agents in
electronic markets (Chavez & Maes 1996; Wellman 1993).
However, to our knowledge, no one has modeled the types
of environments that we have addressed in this paper. The
Electric Elves project (Chalupsky et al. 2001) is one project
that studies the impact of mobile assistants that help work-
groups coordinate their activities, but currently the project
does not involve market interactions. The Trading Agent
Competition (Wellman et al. 2001b) is a framework for
studying trading strategies in a marketplace for travel re-
sources. The agents in TAC, however, represent groups of
people with travel preferences, but do not individually have
an overly complex scheduling problem. Some work has
been done on market-based scheduling (Clearwater 1995;
Wellman et al. 2001a) but the constraints on the models
differ in significant ways from the model presented here.

We expect that there is a lot of work in Queuing The-
ory that is relevant to the model presented here. However,
we are unaware of any that ties queuing directly to market
mechanisms. We do expect Queuing Theory to have relevant
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Figure 6: Evolution of Queue Length and Prices over Time (Circles Indicate Trades)

connections to the planning aspects of the agent’s decision
problems.

Conclusions
We present a formal model of a common, multi-agent coor-
dination problem in which agents are non-cooperative and
resources are limited. Through simulation, we have exper-
imented with the performance of the social system when
the resources are reservable, and when agents can trade the
reservation in a marketplace. We found that better informa-
tion and trading reservations both improve the social wel-
fare, but reservations alone are not always beneficial.

We plan to continue to extend the model. In particular,
we are interested in exploring better market mechanisms
(eg. combinatorial auctions), better planning methods (eg.
partial-order planning). We also plan to study the ability
of the enhanced system to accommodate plan deviations, as
when a human user suddenly becomes interested in an activ-
ity that was not previously in the plan.
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