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Abstract

Most classification algorithms expect the frequency of
examples form each class to be roughly the same. How-
ever, this is rarely the case for real-world data where
very often the class probability distribution is non-
uniform (or, imbalanced). For these applications, the
main problem is usually the fact that the costs of mis-
classifying examples belonging to rare classes differ sig-
nificantly from the costs of misclasifying examples from
classes represented in a higher proportion in the data.
Cost-sensitive learning studies and provides methods
for the design and evaluation of classification algo-
rithms for arbitrary cost functions. This paper outlines
an issue that can occur in the imbalanced data setting
but has not been studied, according to our knowledge,
in the cost-sensitive learning literature—the situation
when the class probability distribution on the training
data differs significantly from the class probability dis-
tribution test data. We will present a brief overview of
cost-sensitive learning methods applied on imbalanced
data and we will extend the existing theoretical results
for the setting in which training and test class priors
are different.

Introduction

An increasing variety of application problems have been
approached lately using supervised learning techniques.

The model for supervised learning assumes that a
set of labeled examples (x;,y;) (called training data) is
available, where X; is a vector of continuous or discrete
values called attributes and y; is the label of x;. The
model further assumes that there exists an underlying,
unknown function, f(z) = y that maps the attribute
vectors to the set of possible labels. A learner outputs a
hypothesis h(x) which is an approximation of f(z), with
respect to some error function (a parametric function
measuring the overall accuracy of the predictions).

The labels can be elements of a discrete set of classes
Y = {y1,y2,...,yx} in the case of classification, or ele-
ments drawn from a continuous subset of a continuous
set (e.g. a continuous subset of the reals) in the case of
regression.
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For the rest of this paper we will concentrate on clas-
sification tasks and we will denote with m the number
of attributes and with k the number of classes.

Most classification algorithms assume uniform class
probability distribution, i.e. they assume that the pro-
portions of examples from each class are roughly equal.
On the other hand many real-world applications require
classifiers that are trained and tested on non-uniformly
distributed (or imbalanced) data. For example, in a
life-threatening disease diagnosis task, the number of
patients diagnosed as being ill is usually much smaller
than the number of patients diagnosed as being healthy,
and therefore the data used to train a classifier for auto-
matic diagnosis would be highly imbalanced. Predicting
important events in event sequences (Fawcett & Provost
1997; Tjoelker & Zhang 1998), pattern detection in
remotely-sensed images (Kubat, Holte, & Matwin 1998)
and document classification (Koller & Sahami 1997) are
a few other examples of real-world classification tasks
in which the data is also imbalanced.

This paper highlights the main reason why class im-
balace matters in real-world applications: the fact that
the real cost of misclassifying examples is not a uni-
form function over the set of examples—usually rare
examples are very expensive to be misclassified. We
will then bring to the attention of the reader a practi-
cal situation that has been given little or no attention
in previous research: training classifiers on data with
different class priors than the priors of the previously
unseen (test) examples. We derive a decision-theoretic
rule for the optimal prediction in such situations and
we present some preliminary experimental results. The
paper concludes with a discussion of the results and the
future directions of research.

What error function needs to be
minimized?
In order to derive a classification scheme for a given
task, first of all one needs to know what is the error
function that has to be minimized.

The main problem in the case of tasks with imbal-
anced data is that the error function is an asymmet-
ric function (also called loss function or cost function)
rather than the raw misclassification rate (also referred



to as 0/1 loss). It is usually the case that the misclassi-
fication of examples that belong to rare classes induces
a high misclassification cost.

Cost-sensitive learning (Turney 1997) studies meth-
ods for building (Pazzani et al 1994; Knoll,
Nakhaeizadeh, & Tausend 1994; Bradford et al. 1998;
Kukar & Kononenko 1998; Domingos 1999) and
evaluating (Bradley 1997; Provost & Fawcett 1997;
Margineantu & Dietterich 2000) classifiers when the er-
ror function is different from the 0/1 loss.

In general, in cost-sensitive learning, the error func-
tion may be described either by a k x k cost matrix C,
with C(i, j) specifying the cost incurred when an exam-
ple is predicted to be in class ¢ when in fact it belongs
to class j, or by a k-dimensional cost vector L, with
L(i) specifying the cost of misclassifying an example
that belongs to class i. It is easy to observe that a cost
vector L is equivalent with a cost matrix C in which
the diagonal values are equal to 0 and C(,5) = L(j)
for all extra-diagonal values.

The procedure that has been most oftenly applied
in learning from imbalanced data is stratification, i.e.
changing the frequency of classes in the training data
in proportion to the costs specified in the cost vector.
Stratification can be achieved either by oversampling
or by undersampling the available data. The two main
shortcomings of stratification is that it is not straight-
forward how it can be applied when the error function
is represented as a cost matrix (see (Margineantu & Di-
etterich 1999) for possible solutions and a discussion on
this issue) and, second, it distorts the original distribu-
tion of the data.

Another possible approach to the data imbalance
problem (and to cost-sensitive problems in general) is
based on the class probability estimates of the exam-
ples, P(y|z). Assuming that we have a procedure that
computes good estimates for the class probabilities of
the examples, the optimal output of the classification
procedure is the class label for which the value of the
conditional risk (Duda & Hart 1973) is minimized:

k
h(z) = argmin ) _ P(y;|2)C(y, ), (1)
vey i
or, equivalently, for a loss vector L:
k
h(z) = argmin Y P(y;lz)L(y;). (2

VEY =1y

This also assumes that the class frequencies in the
training data are the same as the class frequencies that
will be encountered on the test data—a condition that
sometimes doesn’t hold either because of the nature of
the process that generates the data or because of the
preprocessing of the training data by the means of a
stratification procedure.
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Different class priors on the training
and on the test data

We will further study what is the optimal output of
a clagsifier when the class priors (i.e., the frequency of
classes) on the training data are different from the class
priors for the test examples. The class priors on the test
data are assumed to be known.

Let the probability values that refer to the training
data be denoted as P; and the probability values that
refer to the test data be denoted as P;. The priors of y
on the training and on the test data will be denoted as
P;(y) and P,(y), respectively.

We will assume that within each class the underlying
probability density is the same for both the training
and the test data: Pi(z|y) = P,(z|y), and we will also
assume that P;(z) = P,(z).

From the definition of the conditional probability we
get:

Pyle) = 2 ®
and, similarly:
Pu(yle) = 2R @

From (3) and (4) and from the assumptions made we
obtain:

Pi(y)

P,(y|z) = Pi(ylz) =—— 5

s (ylz) = P (y] )Pt(y) (5)

When we plug this result into (1) we get the expres-
sion for the optimal prediction on an unseen (test) ex-

ample:

EA Pl C)  (©)

k
h(x) = argmin

which becomes:

_ . £ Ps(y;) ) ,
h(z) = arygergmj:é;# Bty W) (@

for an error function represented by a loss vector L.

Experiments

We have conducted some preliminary tests using three
classification methods.

Our first method is C4.5-avg, a version of the C4.5
algorithm (Quinlan 1993) modified to accept weighted
training examples (this is equivalent to stratification).
Each example was weighted in proportion to the av-
erage value of the column of the cost matrix C corre-
sponding to the label of the example. This is the aver-
age cost (over the training set) of misclassifying exam-
ples of this class. (Breiman et al. 1984) suggests a simi-
lar method for building cost-sensitive decision trees and
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Figure 1: Decision boundaries for the Expf5 data set.

Table 1: Description of the two tasks on which we ran
the tests.

Class Frequencies
on Training Data
0.2,0.2,0.2,0.2,0.2]
0.1,0.05,0.15,0.4,0.3]

Class Frequencies
on Test Data
0.21,0.44,0.26,0.001,0.089
0.21,0.44,0.26,0.001,0.089
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(Margineantu & Dietterich 1999) compare this method
against other methods for incorporating costs into the
decision tree learning algorithm.

The second algorithm that we tested is BagCost-Cj.
BagCost-C4 employs Bagging (Breiman 1997) over C4.5
decision trees to estimate the class probabilities of the
unseen examples and then applies (6) to output a pre-
diction.

Our third method is Metacost-C4, which is a ver-
sion of Metacost (Domingos 1999).Metacost-C4 esti-
mates the class probabilities of the training examples
using Bagged C4.5 trees, relabels them (the training
examples) according to (6) and then grows a C4.5 de-
cision tree using the relabeled data.

To compare the results we employed the BDelta-
Cost procedure, a cost-sensitive evaluation procedure
described in (Margineantu & Dietterich 2000).

We have tested the three procedures on Expf5, an
artificial domain with two features and five classes. The
decision boundaries of Expf5 are shown in Figure 1.

Table 1 presents the tasks on which we ran the exper-
iments. The first column indicates the class frequencies
on the training data and the second column indicates
the class frequencies on the test data. For each task
the size of the training and test data sets was set to be
1000.

Each experiment involves testing several different
cost matrices, C. These were generated randomly based
on three different cost models. Table 2 shows the un-
derlying distributions for each of the cost models. Our
preliminary experiments were conducted on one ran-
domly selected cost matrix for each cost model.

On both tasks and for all cost models BDeltaCost
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Table 2: The cost models used in our experiments.
Uniffa, b] indicates a uniform distribution over the [a, b]
interval. P() represents the prior probability of class ¢
(from the second column in Table 1.

Cost C(i,5) C(i,1)
Model i#]
MI | Umif[0, 1000 X P(3)/P()] 0
M2 Unif[0, 10000] Unif[0, 1000]
M3 | Unif0, 2000 x P(i)/P(5)] | Unif[0,1000]

could not reject the null hypothesis when the classifiers
built by MetaCost-C4 and BagCost-C4 were compared.
On the other hand, both MetaCost-C4 and BagCost-C4
outperformed the decision tree classifier on all tasks.

Conclusions and Discussion

This paper has emphasized the cost-sensitive nature
of the data imbalance problem in classification tasks.
We have briefly reviewed some cost-sensitive procedures
that are frequently applied in the case of imbalanced
data. We have derived a generalization of the rule for
optimal class labels for the case in which we have avail-
able a procedure that is trained to output good class
probability estimates of the example. Further, we ex-
perimented with three cost-sensitive procedures. Two
of the procedures MetaCost-Cj and BagCost-C4 label
the examples based on some class probability estimates
while the third one is a stratification procedure. The
preliminary results show that the two methods based on
probability estimates outperform the stratification pro-
cedure. This proves again that stratification is not a
good method for cost-sensitive learning on imbalanced
data. We also believe that the probability estimates
computed by Bagging are not very accurate and there-
fore better probability estimates will produce even bet-
ter decisions.
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