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Abstract

Wire routing is an important component in the design of very
large scale integrated circuits (VLSI). In a recent work Er-
dem et al. argued that routing problems can be solved by
general-purpose answer-set programming solvers. They pro-
posed to view routing as a planning problem in which mul-
tiple robots have to determine their paths between matching
pins. As in other planning problems, the representation refers
to time moments (or a counter of the number of steps taken).
We propose a different approach which eliminates the need to
represent time. In adition, we develop techniques to limit the
search space by eliminating from consideration grid points
that are far from the terminal points. We have experimented
with our approach using both smodels and our program
dcs. Both programs ran faster on representations proposed
here than on the original ones.

Introduction

The design of very large scale integrated (VLSI) circuits re-
quires assistance of computers. One area of VLSI design is
the physical layout of wires connecting sets (usualy pairs)
of terminal points. This problem is referred to as routing.
Because of the increasing size of circuits, research in com-
puter aided design (CAD) for VLSI is an active area of re-
search. In a recent paper, Erdem et al. (Erdem, Lifschitz,
& Wong 2000) observed that routing can be viewed as a
planning problem. Given n pairs of terminal points to be
connected, they introduce n robots, one for each pair. The
task for the robots is to plan paths between the correspond-
ing pairs of terminals so that these paths do not intersect.
Being a planning problem, routing can be solved by answer-
set programming (Niemeld 1999; Lifschitz 1999a; 1999b;
Marek & Truszczynski 1999). Erdem et al. model the path
planning problem using an action language ccalc (McCain
& Turner 1997). They propose to solve it by first compiling
the resulting action theory into propositional logic and, then,
by applying a satisfiability checker (they use relsat (Ba-
yardo & Schrag 1997) in their work). Their aproach, while
conceptually very elegant, is not yet practical. Only rather
small routing problems can be solved by methods developed
in (Erdem, Lifschitz, & Wong 2000).

In this paper we further study the main observation made
by Erdem et al. that routing problems can be solved by
answer-set programming. We propose a different way to

10
’ A A
8 |lwe A
<> NP,
7 Y Y
° i -~
5 e 2 Yo L
s\ T s\ T
4 Y
2 N
< D>
1 Y

1 2 3 4 5 6 7 8 9 10

Figure 1: The shaded areas are component regions. The
terminal points are indicated by circles. Arrows show which
adjacent points can be included in the path.

model the problem. Planning perspective on routing leads
to explicit representation of time in the corresponding the-
ories. In our approach, it is not necessary to represent
time. Instead, we exploit the structure of the grid to define
constraints on paths connecting the corresponding terminal
points and to specify how points are included in paths. In
particular, each terminal point must belong to exactly one
path and exactly one of its adjacent points must also be in
the same path. Further, for each internal point on a path
exactly two of its adjacent points must also be in the same
path.

We do not use counting (time) to move along the path.
However, it is advantageous to use distance to limit the
search space. We eliminate points for a particular route
based on their distance from the terminal points (Niemela
2000) . If the set of paths connecting the terminal points
cannot be found, these constraints can be relaxed until a so-
lution is found, or until the entire space has been inluded in
the search. This method can also be used with the approach
described by Erdem et al. (Erdem, Lifschitz, & Wong 2000).

We have experimented with different representations of



the routing problem using both smodels (Niemela 1998)
and dcs (East & Truszczyriski 2000). Both programs pre-
formed better on representations proposed in this paper. In
particular, we were able to solve problems on grids of size
15 x 15, while the original approach (Erdem, Lifschitz, &
Wong 2000) worked for grids of smaller sizes of 10 x 10 or
so. Despite the progress, scaling to problems of sizes of in-
terest to industry remains a major challenge for answer-set
programing approaches. At the very least, however, rout-
ing problems emerge as important benchmarks that can be
used in development and testing of answer-set programming
implementations.

Wire Routing Basics

Physical layout is the last stage in the design of VLSI circuits
(Kahng & Robins 1995). This stage has two steps. First, the
components are placed on a chip. Second, wires connecting
pairs of terminal points are routed so that they do not overlap
with each other and with regions occupied by other compo-
nents. The examples given in this paper and used for exper-
iments and are simplifications of actual wire routing prob-
lems. Despite simplifications, in our work we will address
some of the key issues arising in routing such as placing
multiple wires and restricting individual path lengths. Other
issues such as skews (one wire having a much longer path
than the others) and delays at terminals will be addressed in
future work. Figure 1 shows a simplified chip on a 10 x 10
grid. The shaded areas are component regions. The terminal
points are indicated by circles. The simplified model of wire
routing we address in this paper has the following require-
ments:

1. Wires must not intersect
2. Wires cannot touch components

3. Each wire has a pair of points on the chip which must be
connected

Routing Programs

In this section we will present dcs and smodels programs
for routing problems specified by the three requirements
given above. dcs (East & Truszczynski 2000) combines
Horn clauses with constraints and smodels (Niemela &
Simons 1996) is an implementation of stable logic program-
ming. Both are answer-set programming (ASP) systems.

dcs

Figure 2 defines the wire routing problem in the language
of des. We will not give a precise description of the syn-
tax of dcs. We will only describe the intuitive meaning
of rules comprising the program. The predicates wire,
pt, block, 11, upr and terminal are data pred-
icates. They are used to specify the input. The program
predicates inp and path are used in constraints and Horn
rules. The intuitive meaning of literal inp (I, J,W) is that
grid point (I,J) belongs to wire W. These literals must sat-
isfy rules (1) - (5) of the program. In particular, we have
that:

idbpred
inp(pt,pt,wire).
path(pt,pt,wire).

idbvar
pt 1,J,L,M,P,Q.
wire W.

idbrules

1 Select(0,1,W) inp(I,J,W).

2 Select(0,3,L,M;abs(I-L)+abs(J-M)==1)
inp(L,M,W),inp(I,J,W).

3 Forall(terminal(I,J,W))
Select(1,1,L,M;abs(I-L)+abs(J-M)==1)
inp(L,M,W).

4 Forall(block(I,J)) NOT inp(I,J,W).

5 Forall(terminal(I,J,W)) inp(I,J,W).

6 NOT inp(I+1,J,W),inp(I,J+1,W), inp(I,J,W),
inp(I+1,J+1,W).

7 Forall(terminal(I,J,W))

Horn inp(I,J,W) -> path(I,J,W).
8 Horn inp(I+1,J,W),inp(I-1,J,W), inp(I,J,W) ->

path(I,J,W).

9 Horn inp(I,J+1,W),inp(I,J-1,W), inp(I,J,W) ->
path(I,J,W).

10 Horn inp(I-1,J,W),inp(I,J-1,W), inp(I,J,W) ->
path(I,J,W).

11 Horn inp(I-1,J,W),inp(I,J+1,W), inp(I,J,W) ->
path(I,J,W).

12 Horn inp(I+1,J,W),inp(I,J-1,W), inp(I,J,W) ->
path(I,J,W).

13 Horn inp(I+1,J,W),inp(I,J+1,W), inp(I,J,W) ->
path(I,J,W).

14 inp(I,J,W) <--> path(I,J,W).

Figure 2: A predicate dcs program for wire routing.

Forall(1l(I,J,W);P<I-t) NOT inp(P,Q,W).
Forall(11l(I,J,W);Q<J-t) NOT inp(P,Q,W).
Forall(upr(I,J,W);P>I+t) NOT inp(P,Q,W).
Forall(upr(I,J,W);Q>J+t) NOT inp(P,Q,W).

Figure 3: Constraints limiting the search space for each wire.
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Figure 4: Cycles which are independent to the path can re-
sult if Horn clauses are not used in the dcs wire routing
program.

Rule 1 prevents more than one wire from passing through
a point

Rule 2 prevents more than two adjacent points of any
point in a path from being included

Rule 3 requires exactly one adjacent point for each termi-
nal point to be included in the path

Rule 4 prohibits all wires from entering a component re-
gion

Rule 5 requires that each terminal point is in some path.
Rule 6 prohibits a one block cycle.

In other words, literals inp (I, J,W) (if they satify these
constraints) define collections of paths between terminal
points and, possibly, some additional cycles (see Fig. 4). We
want to eliminate these cycles as they are not important for
solving the routing problem. To this end we use the predi-
cate path. The intuitive meaning of literal path (I, J,W)
is that grid point (I,J) belongs to wire W and it can be
reached from a terminal point of W. To enforce this intuition
we use rules (7) - (13). Finally, we are interested in such
initial choice of literals inp (I, J,W) for which the liter-
als inp(I,J,W) and path(I,J,P) coincide (thatis, in
such a choice in which there are no redundant cycles). Rule
(14) enforces this constraint.

The dcs program in Figure 2 does not constrain the size
of the search space. By including in it the additional rules in
Figure 3 we can reduce the search space for each wire to a
rectangle determined by its terminal points and the constant
t. When ¢ = 0 the rectangle is the area defined by the low-
est row and column values and the highest row and column
values in the set of points for a wire. As ¢ increases the size
of the rectangle increases in each direction. The predicates
11 (lower left) and upr (upper right) are included in the
data file (although they could be compute from the terminal
points) and are only used for these constraints.

:-2{ path(I,J,W) : wire(W) } , pt(I;J).

l1{path(M,N,W):pt(M):pt(N): (abs(I-M)+abs(J-N))=1}1
:- endpoint(I,J,W),wire(W),pt(I;J).

2{path(M,N,W):pt(M):pt(N): (abs(I-M)+abs(J-N))=1}2
:-— path(I,J,W), not endpoint(I,J,W), wire(W),
pt(I;J).

:- path(I,J,W), block(I,J), pt(I;J),wire(W).

endpoint(I,J,W) :- terminal(I,J,W).

path(I,J,W) :- terminal(I,J,W).

:— path(I,J,W), path(I+1,J,W),path(I,J+1,W),
path(I+1,J+1,W), pt(I;J),wire(W).

Figure 5: An smodels program for wire routing.

path(X,L,W), 11(I,J,W), pt(X;L), K < I-t.
path(X,L,W), 11(I,J,W), pt(K;L), L < J-t.
:- path(X,L,W), upr(I,J,wW), pt(K;L),K > I+t.
:- path(X,L,W), upr(I,J,W), pt(K;L),L > J+t.

Figure 6: smodels constraints for limiting the search space
for wire routing.

smodels

The smodels program in Fig. 5 for wire routing is based
on similar ideas as the dcs program we discussed before.
The constraints used to reduce the search space are shown
in Fig. 6.

Figure 7 illustrates an example where it is necessary to
relax the boundary constraints. In both the smodels wire
program and the dcs wire program, ¢ is a constant that is
given a value on the command line of the grounder. If a
solution is not found with ¢ = 0 (the rectangle formed by
terminal points of each wire) then the constraint can be re-
laxed by increasing the value assigned to ¢. The layout in
Fig. 7 requires t = 2.

Experimentation

For experiments, we have implemented a utility program
to generate problems which specify chips with components
and pairs of wire terminals. The percentage of the area of
the chip to be covered with components, and the number of
wires and the size of the chip can be specified by the user.
The terminal points for the wires are chosen randomly under
the following requirements:

1. The terminal points are distinct.
2. No terminal point is in a component area.

3. The pair of terminal points for a wire are at least % the
size of the chip apart.

We used this utility to generate several test cases (discard-
ing those that could be easily determined as unsolvable and
those which required very long paths).

Our experimental results, although still limited, show sev-
eral interesting aspects of the wire routing problem. First,
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Figure 7: Possible solution for wire route.

Modeling with count
10 x 10, 4 wires, ~ 10% blocked
instance | min length dcs smodels
10.1 f=10 25.98 0.30
10.2 f=10 45.28 0.55
10.3 f=10 11.41 0.43
10.4 f=10 2096.28 0.50
10.5 f=10 15.95 0.35
10.6 f=10 20.92 0.24
10.7 f=10 21.20 0.26
10.8 f=12 1961.93 0.26
10.9 f=10 12.33 0.49
10.10 f=10 17.49 0.52

Table 1: f is the minimum path length where a solution was
found.

Modeling with count
15 x 15, 4 wires, =~ 15% blocked
instance | min length | smodels
15.1 f=1 0.43
15.2 f=15 2.24
15.3 f=15 1.43
15.4 f=13 0.82
15.5 f=13 1.10
15.6 f=15 30.03
15.7 f=15 1.15
15.8 f=15 5.20
159 f=15 2.60
15.10 f=12 0.83

Table 2: f is the minimum path length where a solution was
found. Executions were not performed with dcs for count-
ing with 15 x 15 grids.

Modeling w/o count
10 x 10, 4 wires, ~ 10% blocked
instances | relaxation dcs smodels
10.1 t=1 0.25 0.06
10.2 t=0 0.04 0.07
10.3 t=0 0.05 0.06
10.4 t=0 0.06 0.09
10.5 t=1 2.05 0.08
10.6 t=1 0.07 0.07
10.7 t=1 2.79 0.08
10.8 t=1 0.47 0.11
10.9 t=2 3102.23 0.20
10.10 t=0 0.06 0.07

Table 3: t is the minimum relaxation where a solution was
found.

the problem is a source of good benchmarks for testing
ASP implementations and even relatively small instances
(on grids of the size 15 x 15) may be quite difficult. More-
over, input parameters specifying area covered by compo-
nents and the number of terminal pairs allow the user to
control to some degree the difficulty of the problem. We are
studying ways to generate instances randomly and expect
to locate the phase-transition area where random problems
rapidly change from solvable to unsolvable. This work is in
progress.

We ran problems we generated both on dcs and smod-
els. We also ran them using two different representations:
one that required time (or counting the number of steps) and
another which did not require counting. The problems we
used were difficult for dcs, which performed significantly
worse than smodels. In particular, we observed a big vari-
ability in the performance of dcs much bigger than in that
of smodels. We attribute this behavior to limited looka-
head used by dcs (full lookahead is used by smodels).
However, using full lookahead in dcs, while possible in
theory, is at present time not practical — performance de-
teriorates even further. This implies that additional work on



Modeling w/o counting
15 x 15, 4 wires, = 15% blocked
instance | relaxation dcs smodels
15.1 t=2 Hpok 1.34
15.2 t=0 0.62 0.19
15.3 t=0 3.50 0.26
154 t=2 Hpok 0.47
15.5 t=0 0.85 0.21
15.6 t=0 15.90 0.24
15.7 t=0 612.90 0.18
15.8 t=0 3.03 0.24
15.9 t=0 0.61 0.21
15.10 t=20 0.67 0.23

Table 4: t is the minimum relaxation where a solution was
found. *** stopped after one hour.

improved implementation of lookahead in dc's is necessary.
The variability in the running time found for smodels is
also larger than one might want (the ratio of the largest ex-
ecution time to the smallest one in the case of grids of size
15 x 15 is over 60 for programs involving counting, and 7 for
the other representation). This demonstrates the difficulty of
routing problems.

For all instances executed by both smodels and dcs the
approach that did not rely on counting was more efficient in
time and space. Comparison of execution times is given in
Tables 1,2,3.4. The times are given for solving the instances
with the indicated constraints. These constraints limit the
search space. Without these constraints, times would be
much larger. The values for ¢ and f in Tables 1,2,3,4 are
those for the tightest constraints where a solution exists. The
programs not using counting are more efficient in terms of
size of their groundings (see Table 5). That seems to be a key
factor in better performance when processing them (as op-
posed to those that involve counting). smodels performs
very well on problems we generated. It can solve instances
substantially larger than those discussed in (Erdem, Lifs-
chitz, & Wong 2000). However, the comparison is not quite
fair as restrictions on the allowed area for the wires were not
used in (Erdem, Lifschitz, & Wong 2000). This study is still
to be done.

Neither approach guarantees that a solution with mini-
mum total path length is found. The counting approach en-
sures, though, that the solution found minimizes the length
of the longest path. This is not the case for the approach that
does not use counting (see Fig. 8).

We have shown here that our approach for encoding wire
routing is a viable alternative to the planning approach. The-
ories produced in this manner are smaller than those using
counting for the encoding. The smaller size of the theories
is vital as we scale up the size of the problems.

In conclusion, wire routing is a source of good bench-
marks for ASP implementations. Wire routing problems dis-
cussed in this paper show that a specific representation used
in modeling a problem (counting or no counting, in our case)
significantly affects the performance of the solver. Thus, the
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Figure 8: Paths do not find shortest routes.
smodels
Size w/o cnt cnt
Atoms | Rules | Atoms Rules
10 x 10 1385 | ~ 2884 5389 ~ 12695
15 x 15 3050 | =~ 6629 | 16254 ~ 36540

dcs
10 x 10 800 | ~ 3148 9000 | ~ 166057
15 x 15 1800 | =~ 8602 | 29100 | ~ 762721

Table 5: Differences in size of theories for both counting
and non-counting approach. The constraints are f = 10 for
10 x 10, f = 15 for 15 x 15,¢ = 0.



issue of programming methodology for ASP systems is a
very important one. Finally, wire routing allows us to exper-
iment with domain knowledge and its effect on the perfor-
mance. Adding restrictions on the area where wires can run
is an example of domain-specific knowledge that improves
the performance greatly.
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