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Abstract 

This paper describes the Minerva and Gerona agent 
architectures, which have been designed to facili-
tate apprenticeship learning in real-time decision 
making domains. Apprenticeship is a form of 
learning by watching, which is particularly useful 
in multi-agent knowledge-intensive domains. In 
this form of situated learning, human and synthetic 
agents refine their knowledge in the process of cri-
tiquing the observed actions of each other, and re-
solving underlying knowledge differences. A major 
design feature of Minerva and Gerona is their 
method of knowledge representation of domain and 
control knowledge, both static and dynamic. Their 
representations facilitates reasoning over domain 
and control knowledge for the purpose of appren-
ticeship learning. This ability to reason over do-
main and control knowledge plays a central role in 
solving the global and local credit assignment 
problems that confront an apprenticeship learner. 

Introduction 
Apprenticeship learning is a powerful method that agents 

use in a multi-agent setting to refine their knowledge    
(Wilkins88, Tecuci98). Apprenticeship is particularly effec-
tive in knowledge intensive domains. This paper describes 
the key challenges for apprentices in the domain of real-time 
decision making. It describes the Minerva and Gerona 
multi-agent architectures, and shows how their design as-
sists with meeting the challenges of apprenticeship.  

In an apprenticeship learning situation, there are two 
problem-solving agents, either synthetic or human, with 
differing levels of competence. This is shown in Figure 1. 
One of the agents actively solves a problem and the other 
agent watches. The watching agent employs apprenticeship 
techniques to improve the agent with the lesser competence, 
which can be the either the active or watching agent. 

The first major challenge of apprenticeship is global 
credit assignment, which is the problem of determining 
when an observed action of the active agent suggests a 
knowledge difference between the two agents. This is not 
easy, because there are natural variations in solving a prob-
lem in a community of agents. This places two difficult de-
sign requirements on the performance element of the watch-
ing agent. The first design requirement is that that per-

fomance element must be able to compute the range of ac-
tions consistent with acceptable problem solving styles. 
Only then can it know when an observed action is not part 
of the normal variation and thus a knowledge difference 
exists between the agents. The second design requirement is 
that the watching agent’s performance element must be able 
to recompute its preferred next best action based on the ob-
served action that was taken by the active agent, rather than 
the action that it would have taken. These global credit as-
signment problem has major implications for the representa-
tion of control and scheduler knowledge within the per-
formance element. 

The second major challenge of apprenticeship is local 
credit assignment. This is the problem of determining the 
specific and best knowledge repair to make in the agent with 
lesser competence, based on an unexplainable action of the 
active agent. The range of possibilities is quite large, rang-
ing from missing or wrong knowledge, and domain or con-
trol knowledge.  

The remainder of this paper is organized as follows:  The 
next section presents the Minerva architecture, which was 
developed in the domain of medical diagnosis and ship 
damage control. The following section presents the Gerona 
architecture, which was developed in the domain of decision 
making for ship damage control.  

Figure 1. The Multi-agent apprenticeship learning paradigm. 
Agents can be synthetic or human. Either agent can be im-
proved in the above scenario, depending on the apprentice-
ship mode. 
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Minerva Multi-Agent Architecture 
Minerva is a multi-agent architecture for real-time deci-

sion making. The accomplishment of the Minerva project is 
that it started with a classical expert system architecture and 
modified its method of knowledge representation and infer-
ence to create a multi-agent architecture. The Minerva archi-
tecture supports a broad range of multi-agent explanation, 
critiquing, and learning capabilities, especially apprentice-
ship learning. Minerva is an evolutionary descendant of the 
Mycin and Neomycin architectures. In this section, we will 
review these systems and explain how they led to Minerva. 

In the beginning was Mycin (Buchanan and Shortliffe, 
1986). Mycin’s major components were a rule base and a 
backward-chaining inference engine as shown in Figure 2. It 
had some but limited multi-agent capabilities. Specifically, 
the Guidon and Tieresias augmentations to Mycin allowed it 
to transfer expertise between itself and another agent, but 
only when Mycin was the active agent. The Guidon knowl-
edge-based tutor queried the watching agent (a human nov-
ice) on what it believed from watching Mycin solve prob-
lems, and through a Socratic dialogue improved the watch-
ing agent's performance. Tieresias allowed a watching agent 
(a human expert) to track down a knowledge difference 
within a Mycin-like system and make a repair. The limita-
tion of Mycin as a multi-agent system is that its domain 
rules were an admixture of domain, control, and scheduling 
knowledge.  

Neomycin redesigned the representation and inference 
method of Mycin to provide greater multi-agent capabilities 
(Clancey, 1984). Neomycin separates strategy knowledge 
from the domain rule knowledge, as shown in Figure 2.  
This allows the same domain knowledge to be applied under 
many different problem-solving strategies, such as rule out 
hypothesis, group and differentiate hypotheses, and review 
of systems. A community of experts has these variations. 

The Odysseus apprenticeship learning program worked 
in conjunction with Neomycin, and refined Neomycin’s 
knowledge by watching a human expert (Wilkins, 1988).  

Odysseus analyzes each action of a human expert diagnos-
ing a patient. It solve the global credit assignment problem, 
by unifying the rules in the domain and strategy layers to 
generate all reasoning chains, which have with the expert’s 
observed action as the root of the chain. If no reasoning 
chain is found that connects the observed action to an active 
goal, it assumed that there is a difference between Neomy-
cin’s domain knowledge and the knowledge of the expert. 

Odysseus addresses the local credit assignment problem 
using the metarule chain completion method. This method 
involves generating all reasoning chains from the unex-
plained action to an active goal, and allowing one unifica-
tion clause failure in the creation of this reasoning chain. 
The method successfully improved the Neomycin knowl-
edge base. But it had a major weakness. In a large knowl-
edge base, an “explanation” can too frequently be generated, 
since its not possible to distinguish between good and poor 
explanations. Thus, the explanation failures that signal the 
need for a knowledge base repair  become too infrequent.  

Minerva is a reworking of Neomycin to further increase 
multi-agent capabilities (Park, et al, 1992; Donoho, 1993). 
In Minerva, scheduler knowledge is separate from domain 
and strategy knowledge and placed in a separate layer, as 
shown in Figure 2. In Minerva, all explanation chains are 
generated as before by unifying domain and strategy knowl-
edge. But then the scheduler reasons over these chains and 
gathers evidence for and against each chain using a process 
called recursive heuristic classification (Park, Donoho, 
Wilkins, 1993), as shown in Figure 3. The evidence against 
the chains is probabilistic, and after combining evidence this 
leads to all chains having a probabilistic weight. When an 
observed action is not in the top third of the strongest 
chains, an explanation failure is said to have occurred. Mi-
nerva and Odysseus use the local credit assignment method. 

In Minerva, the embedded scheduler knowledge base is  
completely generated using induction over solved cases. A 
training example is generated for each action taken within 
an expert session, not just for each case (Donoho, 1993). An 
alternative method of accomplishing scheduling is by Envi-
sionment of the alternatives (Bulitko and Wilkins, 2003). 

Figure 2. Improving Support for Multi-Agent Reasoning in 
Decision-Making Shells 
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Figure 3. Use of Recursive Heuristic Classification for 
scheduling in Minerva. 
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The Gerona Real-Time Agent Architecture 
The Gerona Agent Framework creates event-driven agents 
for real-time decision-making (Fried, et al, 2003). Its major 
components are shown in Figure 4. Information from other 
agents is sent to Gerona using an Event Communication 
Language (ECLs). Domain and control knowledge is en-
coded in Graph Modification Operators (GMOs); these are 
comprehensible to domain experts and are directly executed 
by the Gerona interpreter (Dhuse, 1992). All dynamic 
knowledge is encoded in a Causal Story Graph (CSG), 
which consists of a structured and annotated set of ECL 
statements. Meta-GMOs allow the agent to answer ques-
tions about its domain and control knowledge. MGMOs 
reason over the GMO and CSG structures, which have an 
explicit representation. The remainder of this section de-
scribes the ECL, GMO, CSG, and MGMO components. We 
then describe Gerona-DCX, a Gerona agent for damage 
control decision making with apprenticeship capabilities. 

An Event Communication Language (ECL) defines the 
entire range of language statements that can be exchanged 
with another agent. An ECL language encompasses the vo-
cabulary of messages, orders, queries, and answers that can 
be passed between a Gerona agent and other agents, includ-
ing communications about its own internal state and do-
main-specific knowledge.  ECLs are organized into classes, 
and each class has a unique name and number. 

An ECL class and an example instance in Gerona syntax 
is as follows:  

report( 6801 "damage report (fire/flood/smoke)", 
    [ source, compartment, problem ] ) 

    report( 6801 "damage report (fire/flood/smoke)", 2:43, 
    [ source = "Repair2",  
      compartment="02-128-0-Q", 
      problem = "fire" ] ) 

 
In this example, the ECL class is “damage report” with 

the ECL number of 6801. A particular agent, repair party 2, 
issues an ECL communication at time 2:43 that there is a 
fire observed in compartment 02-128-0-Q.  

Each ECL class defines a set of properties that are as-
signed specific values when the class is instanced (an in-
stance of an ECL class used for communication is also 

called an "ECL message").  An ECL class can be repre-
sented as a tuple <Y, N, Π >, where Y is the type of informa-
tion represented (action, report, function, question, etc.), N 
is the ECL number, and Π is the set of properties, πi.  An 
ECL instance is represented as <Y, N, T, P >, where T is the 
timestamp that the instance was created, and P is a mapping 
from each of the πi to one or more allowed values. 

The Causal Story Graph (CSG) explicitly stores all of a 
Gerona agent's ECL communication with other agents and 
its beliefs about the other agents and their actions.  It com-
prises all dynamic information required by Gerona to oper-
ate.  A CSG is simply a collection of ECL instances, ar-
ranged as a tree, with some additional state and history in-
formation associated with each instance.  The CSG gets its 
name because it associates information both by causal and 
logical relationships and as a chronological log (or story) 
depicting the agent's beliefs at every point in its execution. 

A CSG node can be represented by the tuple <Y, S, N, T, 
P, D, R, O, H >, where the additional element S represents 
the state (which can have different values based on the data 
type), D is the unique Node ID, R is the Node ID of the 
node's parent in the CSG, O is a pointer to the operator that 
created the node or modified it to its current state (useful in 
allocating local credit), and H is a history of the previous 
states of the node. 

The CSG also stores credit assignment information. The 
sub-optimal action node in Figure 5  represents a critique of 
an order given by another agent to investigate a compart-
ment.  In this case, the O component of the CSG node 
would later allow the system to locate the specific condi-
tions that led to the critique (see the section on MGMOs 
below).  Action nodes with states correct, error-of-
omission, error-of-commission, and late are critiques of 
other agents.  Action nodes with state pending are recom-
mendations of correct actions by Gerona to other agents. 

Figure 4. Organization of a Gerona Agent, showing inputs, 
outputs, and dependences. 
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Figure 5. Sample CSG excerpt from a Gerona-DCX agent. The 
Gerona system is observing a human novice problem solver. It 
has critiqued the novice’s action “of investigate compartments” 
as suboptimal, and explained the reason for the critique. 
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Graph Modification Operators (GMO) encode all informa-
tion relevant to receiving and responding to communication 
with other agents. Each GMO responds to a class of incom-
ing messages and as its name suggests describes the graph 
operations to apply to the CSG.  A single GMO may modify 
one or more existing CSG nodes or create a single new CSG 
node.  Global credit assignment information is stored in the 
CSG, and GMOs encode all knowledge for assigning global 
credit. 

A GMO consists of two parts. The first is a header that 
describes the communications it responds to. This includes a 
single ECL class and a set of conditions that the properties 
of an incoming message must satisfy.  Using the example of 
the "damage report" ECL class described above, we might 
have a separate GMO for this report when the problem re-
ported is "fire" and one for when problem is "flooding". 

The second part of the GMO is a collection of nested if-
then rules, which are evaluated in parallel, with any discrep-
ancies between outputs handled in the simplest way possi-
ble.  Because of this arrangement, the effects of a rule de-
pend only on its own preconditions and post-conditions.  
Rules are composed of Graph Clauses, also called             
G-Clauses.  G-Clauses are simple, compact elements that 
describe information queries or graph modifications.  Their 
functionality is based on three types of operation: 
• find operation – search for previously-recorded commu-

nications and inferences or query static information. 
• modify operation - modify one or more CSG nodes. 
• create operation – create a CSG node. 

The G-Clauses become the building blocks of GMO rules 
along with a few simple control structures, including nega-
tion, disjunction, and for-each loops.  Execution is forward 
only without backtracking; if more than one result could be 
bound to a variable, the set of possible results is bound.  
Evaluation of a GMO can be shown to be worst-case O(E2) 
– and usually O(E) – where E is the number of previous 
events in the scenario; GMO evaluation is also in the effi-
ciently-parallelizable class NC.  Figure 7 illustrates what the 
flow of execution in a Gerona system looks like. 

Meta-GMOs (MGMO) allow a Gerona agent to answer 
questions from other agents about its own beliefs.  MGMOs 
are different from GMOs in that they operate both over the 

CSG the GMOs themselves, creating new CSG answer 
nodes containing the results of each question.  Because they 
can locate specific conditions that have or haven’t been met, 
MGMOs make possible local credit assignment for knowl-
edge differences between Gerona agents and other agents. 

Examples of an MGMOs are shown in Figures 9 and 11. 
MGMOs may use special primitives and operations not 
found in GMOs. A Meta-G-Clause locates G-Clauses just as 
G-Clauses locate nodes in the CSG.  The justify operation, 
when used in either G-Clauses or Meta-G-Clauses, allows 
the system to collect all the possible preconditions that 
could lead to a particular (real or hypothetical) CSG modifi-
cation (this process is shown in Figure 8).  A variation, 
called justify-and-evaluate uses meta-programming to de-
termine why a particular effect did not or would not have 
happened.  MGMOs also have special primitives that allow 
the context of the agent to be rolled forward and back in 
order to ask questions about what the agent did at some pre-
vious time.  Hypothetical events may even be proposed – 
invoking the appropriate GMOs and creating a temporary 

Figure 7. Execution in Gerona.  An incoming ECL message 
triggers a GMO.  Rules whose preconditions are met are shown 
in grey.  Note that rules 1 and 2 are evaluated in parallel, as are 
3, 4, and 5.  Func1 is a relation, also implemented in Gerona, 
that is queried by rules 2 and 3. 
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Figure 8.  A graphical illustration of justification in a Gerona 
agent.  The system is trying to justify Effect 2 in Rule 5.  
Shaded elements are those whose logical conditions are in-
cluded in the justification.
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GMO 6820.fire FOR ECL 6820 "Alarm in compartment " 
WHERE alarm = "fire" 
LET compartment -> Compartment 
 
 RULE 6820.fire-alarm.interpret.4 

 "Fire alarm triggers new crisis and goals" 
 IF NOT crisis(find, unsolved, 8100, "Fire",  
        [compartment = Compartment], _, _) 
 THEN 
  crisis(create, unsolved, 8100, "Fire",  
     [compartment <- Compartment], _, C) 
  goal(create, active, 7100, "Control Fire",  
    [compartment <- Compartment], C, G1) 
  goal(create, …) 
  … 
 END RULE 
END GMO 
 
Figure 6. Part of a GMO, from Gerona-DCX, for handling a fire 
alarm.  The first G-Clause determines whether a fire crisis has 
already been inferred for the compartment.  The second and 
third G-Clauses create the new crisis and top-level goal (addi-
tional G-Clauses would create additional sub-goals).



CSG – in order to answer "what if" questions.  The follow-
ing are examples the very broad range of question types that 
can be answered by our set of about 100 MGMOs: 
• Why did the agent believe a goal needed to be satisfied, 

propose an action, or generate a critique of another agent? 
• At a particular time, what communications and beliefs did 

the agent generate?  Why? 
• Why doesn't the Gerona agent believe a particular action 

by another agent was correct? 
• How would some hypothetical event be critiqued by the 

system, in some hypothetical situation?  Why? 
• What does the Gerona agent believe is the definition of a 

particular predicate or function ? 
• When in general would the agent make a specific action 

recommendation? 
• How in general does the agent believe a specific goal can 

be addressed or satisfied? 
• When did the agent believe some condition first become 

true or false? 

Example Interaction with a Gerona Agent 
The version of Gerona that allows it to function as a 

watching agent for apprenticeship learning in the domain of 
ship damage control is called Gerona-DCX (Fried, et al, 
2003). Gerona-DCX is a component of the DC-Train      
immersive trainer in the domain of ship damage control      
(Bulitko and Wilkins, 1999). In our experiments to date,       
Gerona-DCX has been employed as the more competent or 
gold-standard agent, and the active agent has been a novice 
problem solver.   

As part of a post-session debrief, Figure 9 and 10 illus-
trate Gerona critiquing the active agent’s action of sending 
the wrong repair team to fight a fire. This MGMO rolls the 
scenario back to just before the novice made the error, de-
termines all the places it could modify the CSG to mark the 
order in question correct, and then uses justify-and-evaluate 
to determine why those operators failed to be evaluated. 
What is notable about MGMOs is their small size, which in 
some cases can generate pages of feedback concerning an 
action that an active agent could take or has taken. 

Perhaps this answer given in Figure 10 isn't enough for 
the novice agent to determine what the critical knowledge 
difference is between it and the Gerona agent.  Another pos-
sible question Gerona could ask of the novice agent is 
"When in general is it appropriate to order isolation?"  The 
MGMO that generates the answer to this question is shown 
in Fig 11, and one answer (of several) is shown in Fig 12. 

Power and Learnability 
The computational power of a particular knowledge repre-
sentation is of interest because simpler representations tend 
to be easier to learn (we learn C4.5 rules, not C++ pro-
grams).  Gerona lacks an explicit control layer, but it is still 
expressive; it can mimic the operation of a multi-tape Tur-
ing machine to compute any function in TISP(O(n2),O(n)).  

However, its power is also reasonably limited, as it cannot 
compute any function in TIME(ω(n3)) or in SPACE(ω(n)). 

Furthermore, Gerona rules can be shown – at least in the-
ory – to be PAC-learnable if the ECL vocabulary is already 
defined.  The proof of learnability stems from the "Learning 
to Take Action" paradigm (Khardon 1999). The proof re-
quires that the size of learned GMO rules be bounded, 
which is a very reasonable assumption to make. 

Related Research 
A similar real-time agent that can operate in multi-agent 

environments is SPARK (Morley and Myers, 2004), which 
attempts to combine an "elegant, semantically grounded" 

MGMO 9002 FOR ECL 9002 "Why Sub-Optimal Action" 
LET action-node -> ActionNode 
RULE 9002.1 "Explain why the action isn't correct." 
IF g-clause( find, action([create, modify], correct,  
   ActionNode.ecl, _, _, _, _), _, CorrectGClauses) 
 AND roll-back(before, ActionNode, _) 
 AND g-clause(justify-and-evaluate, CorrectGClauses,  

   ActionNode, Justification) 
THEN 
 answer(create, _, 9002, "Why Sub-Optimal Action", 
   [action-node <- ActionNode, 
    justification <- Justification], ActionNode, A) 
END RULE 
END MGMO 
 
Figure 9. The entire MGMO that answers why a particular ac-
tion by another agent was critiqued as sub-optimal.  It uses a 
Meta-G-Clause to locate G-Clauses that recognize an action as 
correct, establishes a context just before the other agent sent the 
order, and then evaluates the various preconditions for the ac-
tion being correct to see which one failed. 
 
trigger( 5170, "Isolate Space",  
  [ compartment -> Compart, target -> Station ] ) 
  ***SUCCESS*** 
goal( find, active, 7116, "Isolate Compart for Firefighting", 
  [ compartment = Compart ], _, G) ***SUCCESS*** 
world-state(find, _, 3360, "Can Isolate Compartment",  
  [compartment = Compart], _, _) ***SUCCESS*** 
world-state(find, _, 4302,  
  "Best Repair Locker for Compartment",  
  [compartment <- Compart, station = Station], _, _) 
  ***FAILED*** 
 

"In order for ordering a station to isolate a space to 
be correct, the goal of isolating the space should be 
active, the compartment should be able to be iso-
lated, and the station should be the best repair 
locker for the compartment – you failed to meet this 
last condition." 

 
Figure 10. A justification created by the justify-and-evaluate 
operation in the MGMO in Figure 9, and stored in an answer 
node in the CSG.  The system is capable of creating justifica-
tions as both GMO excerpts and in English. 



agent framework with mechanics that scale up to real-world 
problems.  SPARK provides a full-featured programming 
environment, where Gerona's computational power is lim-
ited for the purposes of transparency and learnability.  
SPARK does, however, include reflective tools similar to 
Gerona's MGMOs that allow interesting questions to be 
answered about an agent's performance. 

The Disciple system (Tecuci 1998) is another system that 
acquires knowledge through multi-agent interactions.  
Unlike Spark and Gerona, Disciple is not primarily designed 

as a real-time agent.  However, it does feature a powerful 
mechanism for improving its rule knowledge; this mecha-
nism involves asking questions about specific examples 
with which the Disciple agent is having difficulty.  By using 
examples rather than exposing a human expert directly to 
rule knowledge, it is unnecessary for experts to be familiar 
with formal logic while helping the agent to learn. 
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MGMO 9300 FOR ECL 9300 "When action" 
LET action-ecl-number -> ActionECLNumber 
RULE 9300.1 "Determine when action is appropriate." 
IF g-clause( find, action(create, pending,  
   ActionECLNumber, _, _, _, _), _, GClauses) 
 AND g-clause(justify, GClauses, _, Justifications) 
THEN  answer(create, _, 9300, "When action", 

   [ action-ecl-number <- ActionECLNumber,  
     justifications <- Justifications ], 
     miscellaneous-questions, _) 
END RULE 
END MGMO 
 
Figure 11. The entire MGMO that determines the conditions 
under which an action is appropriate.  The Meta-G-Clause finds 
operations which could create a proposal to perform the action, 
and the justify operation creates the excerpts that will serve as 
answers (see Figure 12). 
 
trigger(6801, "damage report (fire/flood/smoke)",  
  [casualty = "fire", source -> Src,  
   compartment -> Compart]) 
goal(find, inactive, 7116, "Isolate Compartment",  
  [compartment = Compart], _, G) 
world-state(find, _, 3360, "Can Isolate Compartment",  
  [compartment = Compart], _, _) 
world-state(find, _, 4302,  
  "Best Repair Locker for Compartment", 
  [compartment <- Compart, station -> Station], _, _) 
goal(modify, active, 7116, "Isolate Compartment",  
  [compartment = Compart], _, G) 
action(create, pending, 5170,  
  "Electrically and Mechanically Isolate Space", 
  [compartment = Compart, target = Station], G, _) 
 

"When a fire report is received from a station in a 
compartment, and the goal of isolating the com-
partment (if necessary) is not active, and the com-
partment can be isolated, and the best repair locker 
for the compartment is some station, then mark the 
goal as active, and recommend ordering the station 
to electrically and mechanically isolate the com-
partment." 

 
Figure 12. One of several possible sets of circumstances in 
which the action of isolating a compartment is appropriate.  
This GMO excerpt would be one of several generated by the 
MGMO in Figure 11. 


