
Multi-Agent Architectures that Facilitate Apprenticeship Learning for
Real-Time Decision Making: Minerva and Gerona

 David C. Wilkins David Fried
 Center for Study of Language and Information Department of Computer Science
 Stanford University University of Illinois at Urbana-Champaign
 Stanford, CA 94305 Urbana, IL 61801
 dwilkins@stanford.edu fried@uiuc.edu

Abstract

This paper describes the Minerva and Gerona agent
architectures, which have been designed to facili-
tate apprenticeship learning in real-time decision
making domains. Apprenticeship is a form of
learning by watching, which is particularly useful
in multi-agent knowledge-intensive domains. In
this form of situated learning, human and synthetic
agents refine their knowledge in the process of cri-
tiquing the observed actions of each other, and re-
solving underlying knowledge differences. A major
design feature of Minerva and Gerona is their
method of knowledge representation of domain and
control knowledge, both static and dynamic. Their
representations facilitates reasoning over domain
and control knowledge for the purpose of appren-
ticeship learning. This ability to reason over do-
main and control knowledge plays a central role in
solving the global and local credit assignment
problems that confront an apprenticeship learner.

Introduction
Apprenticeship learning is a powerful method that agents

use in a multi-agent setting to refine their knowledge
(Wilkins88, Tecuci98). Apprenticeship is particularly effec-
tive in knowledge intensive domains. This paper describes
the key challenges for apprentices in the domain of real-time
decision making. It describes the Minerva and Gerona
multi-agent architectures, and shows how their design as-
sists with meeting the challenges of apprenticeship.

In an apprenticeship learning situation, there are two
problem-solving agents, either synthetic or human, with
differing levels of competence. This is shown in Figure 1.
One of the agents actively solves a problem and the other
agent watches. The watching agent employs apprenticeship
techniques to improve the agent with the lesser competence,
which can be the either the active or watching agent.

The first major challenge of apprenticeship is global
credit assignment, which is the problem of determining
when an observed action of the active agent suggests a
knowledge difference between the two agents. This is not
easy, because there are natural variations in solving a prob-
lem in a community of agents. This places two difficult de-
sign requirements on the performance element of the watch-
ing agent. The first design requirement is that that per-

fomance element must be able to compute the range of ac-
tions consistent with acceptable problem solving styles.
Only then can it know when an observed action is not part
of the normal variation and thus a knowledge difference
exists between the agents. The second design requirement is
that the watching agent’s performance element must be able
to recompute its preferred next best action based on the ob-
served action that was taken by the active agent, rather than
the action that it would have taken. These global credit as-
signment problem has major implications for the representa-
tion of control and scheduler knowledge within the per-
formance element.

The second major challenge of apprenticeship is local
credit assignment. This is the problem of determining the
specific and best knowledge repair to make in the agent with
lesser competence, based on an unexplainable action of the
active agent. The range of possibilities is quite large, rang-
ing from missing or wrong knowledge, and domain or con-
trol knowledge.

The remainder of this paper is organized as follows: The
next section presents the Minerva architecture, which was
developed in the domain of medical diagnosis and ship
damage control. The following section presents the Gerona
architecture, which was developed in the domain of decision
making for ship damage control.

Figure 1. The Multi-agent apprenticeship learning paradigm.
Agents can be synthetic or human. Either agent can be im-
proved in the above scenario, depending on the apprentice-
ship mode.

Watching
Agent

Learning
Module

Active
Agent

Actions

 Knowledge Difference

Actions

Problem

Minerva Multi-Agent Architecture
Minerva is a multi-agent architecture for real-time deci-

sion making. The accomplishment of the Minerva project is
that it started with a classical expert system architecture and
modified its method of knowledge representation and infer-
ence to create a multi-agent architecture. The Minerva archi-
tecture supports a broad range of multi-agent explanation,
critiquing, and learning capabilities, especially apprentice-
ship learning. Minerva is an evolutionary descendant of the
Mycin and Neomycin architectures. In this section, we will
review these systems and explain how they led to Minerva.

In the beginning was Mycin (Buchanan and Shortliffe,
1986). Mycin’s major components were a rule base and a
backward-chaining inference engine as shown in Figure 2. It
had some but limited multi-agent capabilities. Specifically,
the Guidon and Tieresias augmentations to Mycin allowed it
to transfer expertise between itself and another agent, but
only when Mycin was the active agent. The Guidon knowl-
edge-based tutor queried the watching agent (a human nov-
ice) on what it believed from watching Mycin solve prob-
lems, and through a Socratic dialogue improved the watch-
ing agent's performance. Tieresias allowed a watching agent
(a human expert) to track down a knowledge difference
within a Mycin-like system and make a repair. The limita-
tion of Mycin as a multi-agent system is that its domain
rules were an admixture of domain, control, and scheduling
knowledge.

Neomycin redesigned the representation and inference
method of Mycin to provide greater multi-agent capabilities
(Clancey, 1984). Neomycin separates strategy knowledge
from the domain rule knowledge, as shown in Figure 2.
This allows the same domain knowledge to be applied under
many different problem-solving strategies, such as rule out
hypothesis, group and differentiate hypotheses, and review
of systems. A community of experts has these variations.

The Odysseus apprenticeship learning program worked
in conjunction with Neomycin, and refined Neomycin’s
knowledge by watching a human expert (Wilkins, 1988).

Odysseus analyzes each action of a human expert diagnos-
ing a patient. It solve the global credit assignment problem,
by unifying the rules in the domain and strategy layers to
generate all reasoning chains, which have with the expert’s
observed action as the root of the chain. If no reasoning
chain is found that connects the observed action to an active
goal, it assumed that there is a difference between Neomy-
cin’s domain knowledge and the knowledge of the expert.

Odysseus addresses the local credit assignment problem
using the metarule chain completion method. This method
involves generating all reasoning chains from the unex-
plained action to an active goal, and allowing one unifica-
tion clause failure in the creation of this reasoning chain.
The method successfully improved the Neomycin knowl-
edge base. But it had a major weakness. In a large knowl-
edge base, an “explanation” can too frequently be generated,
since its not possible to distinguish between good and poor
explanations. Thus, the explanation failures that signal the
need for a knowledge base repair become too infrequent.

Minerva is a reworking of Neomycin to further increase
multi-agent capabilities (Park, et al, 1992; Donoho, 1993).
In Minerva, scheduler knowledge is separate from domain
and strategy knowledge and placed in a separate layer, as
shown in Figure 2. In Minerva, all explanation chains are
generated as before by unifying domain and strategy knowl-
edge. But then the scheduler reasons over these chains and
gathers evidence for and against each chain using a process
called recursive heuristic classification (Park, Donoho,
Wilkins, 1993), as shown in Figure 3. The evidence against
the chains is probabilistic, and after combining evidence this
leads to all chains having a probabilistic weight. When an
observed action is not in the top third of the strongest
chains, an explanation failure is said to have occurred. Mi-
nerva and Odysseus use the local credit assignment method.

In Minerva, the embedded scheduler knowledge base is
completely generated using induction over solved cases. A
training example is generated for each action taken within
an expert session, not just for each case (Donoho, 1993). An
alternative method of accomplishing scheduling is by Envi-
sionment of the alternatives (Bulitko and Wilkins, 2003).

Figure 2. Improving Support for Multi-Agent Reasoning in
Decision-Making Shells

NEOMYCIN
(1982)

MYCIN
(1972)

MINERVA
(1992)

Domain KN

Strategy KN

Inference
Engine

Inference
Engine

Strategy KN

Domain KNDomain KN

Inference
Engine

Scheduler KN

Figure 3. Use of Recursive Heuristic Classification for
scheduling in Minerva.

Strategy-Task Level
(hypothesis-directed)

Domain Level
(medical knowledge)

Inference Level
(domain blackboard)

Scheduler Level
(RHC)

Strategy-Task Level
(exhaustive chaining)

Domain Level
(scheduling knowledge)

Inference Level
(scheduler blackboard)

Scheduler Level
(FIFO)

Minerva-Medicine Minerva-Scheduler

The Gerona Real-Time Agent Architecture
The Gerona Agent Framework creates event-driven agents
for real-time decision-making (Fried, et al, 2003). Its major
components are shown in Figure 4. Information from other
agents is sent to Gerona using an Event Communication
Language (ECLs). Domain and control knowledge is en-
coded in Graph Modification Operators (GMOs); these are
comprehensible to domain experts and are directly executed
by the Gerona interpreter (Dhuse, 1992). All dynamic
knowledge is encoded in a Causal Story Graph (CSG),
which consists of a structured and annotated set of ECL
statements. Meta-GMOs allow the agent to answer ques-
tions about its domain and control knowledge. MGMOs
reason over the GMO and CSG structures, which have an
explicit representation. The remainder of this section de-
scribes the ECL, GMO, CSG, and MGMO components. We
then describe Gerona-DCX, a Gerona agent for damage
control decision making with apprenticeship capabilities.

An Event Communication Language (ECL) defines the
entire range of language statements that can be exchanged
with another agent. An ECL language encompasses the vo-
cabulary of messages, orders, queries, and answers that can
be passed between a Gerona agent and other agents, includ-
ing communications about its own internal state and do-
main-specific knowledge. ECLs are organized into classes,
and each class has a unique name and number.

An ECL class and an example instance in Gerona syntax
is as follows:

report(6801 "damage report (fire/flood/smoke)",
 [source, compartment, problem])

 report(6801 "damage report (fire/flood/smoke)", 2:43,
 [source = "Repair2",
 compartment="02-128-0-Q",
 problem = "fire"])

In this example, the ECL class is “damage report” with

the ECL number of 6801. A particular agent, repair party 2,
issues an ECL communication at time 2:43 that there is a
fire observed in compartment 02-128-0-Q.

Each ECL class defines a set of properties that are as-
signed specific values when the class is instanced (an in-
stance of an ECL class used for communication is also

called an "ECL message"). An ECL class can be repre-
sented as a tuple <Y, N, Π >, where Y is the type of informa-
tion represented (action, report, function, question, etc.), N
is the ECL number, and Π is the set of properties, πi. An
ECL instance is represented as <Y, N, T, P >, where T is the
timestamp that the instance was created, and P is a mapping
from each of the πi to one or more allowed values.

The Causal Story Graph (CSG) explicitly stores all of a
Gerona agent's ECL communication with other agents and
its beliefs about the other agents and their actions. It com-
prises all dynamic information required by Gerona to oper-
ate. A CSG is simply a collection of ECL instances, ar-
ranged as a tree, with some additional state and history in-
formation associated with each instance. The CSG gets its
name because it associates information both by causal and
logical relationships and as a chronological log (or story)
depicting the agent's beliefs at every point in its execution.

A CSG node can be represented by the tuple <Y, S, N, T,
P, D, R, O, H >, where the additional element S represents
the state (which can have different values based on the data
type), D is the unique Node ID, R is the Node ID of the
node's parent in the CSG, O is a pointer to the operator that
created the node or modified it to its current state (useful in
allocating local credit), and H is a history of the previous
states of the node.

The CSG also stores credit assignment information. The
sub-optimal action node in Figure 5 represents a critique of
an order given by another agent to investigate a compart-
ment. In this case, the O component of the CSG node
would later allow the system to locate the specific condi-
tions that led to the critique (see the section on MGMOs
below). Action nodes with states correct, error-of-
omission, error-of-commission, and late are critiques of
other agents. Action nodes with state pending are recom-
mendations of correct actions by Gerona to other agents.

Figure 4. Organization of a Gerona Agent, showing inputs,
outputs, and dependences.

ECL ECL
MGMOs

GMOs CSG
(ECL)

Questions Answers

Scenario
Events

Agent

Actions

Advice/
Actions

Agent

Critiques

Figure 5. Sample CSG excerpt from a Gerona-DCX agent. The
Gerona system is observing a human novice problem solver. It
has critiqued the novice’s action “of investigate compartments”
as suboptimal, and explained the reason for the critique.

scenario
(no state) crisis,

unsolved:
fire

goal,
active:

control fire

goal,
addressed:

identify fire
action,

sub-optimal:
investigate

compartment Q&A (no state):
Q: Why sub-optimal?
A: Did not send cor-

rect repair party.

Graph Modification Operators (GMO) encode all informa-
tion relevant to receiving and responding to communication
with other agents. Each GMO responds to a class of incom-
ing messages and as its name suggests describes the graph
operations to apply to the CSG. A single GMO may modify
one or more existing CSG nodes or create a single new CSG
node. Global credit assignment information is stored in the
CSG, and GMOs encode all knowledge for assigning global
credit.

A GMO consists of two parts. The first is a header that
describes the communications it responds to. This includes a
single ECL class and a set of conditions that the properties
of an incoming message must satisfy. Using the example of
the "damage report" ECL class described above, we might
have a separate GMO for this report when the problem re-
ported is "fire" and one for when problem is "flooding".

The second part of the GMO is a collection of nested if-
then rules, which are evaluated in parallel, with any discrep-
ancies between outputs handled in the simplest way possi-
ble. Because of this arrangement, the effects of a rule de-
pend only on its own preconditions and post-conditions.
Rules are composed of Graph Clauses, also called
G-Clauses. G-Clauses are simple, compact elements that
describe information queries or graph modifications. Their
functionality is based on three types of operation:
• find operation – search for previously-recorded commu-

nications and inferences or query static information.
• modify operation - modify one or more CSG nodes.
• create operation – create a CSG node.

The G-Clauses become the building blocks of GMO rules
along with a few simple control structures, including nega-
tion, disjunction, and for-each loops. Execution is forward
only without backtracking; if more than one result could be
bound to a variable, the set of possible results is bound.
Evaluation of a GMO can be shown to be worst-case O(E2)
– and usually O(E) – where E is the number of previous
events in the scenario; GMO evaluation is also in the effi-
ciently-parallelizable class NC. Figure 7 illustrates what the
flow of execution in a Gerona system looks like.

Meta-GMOs (MGMO) allow a Gerona agent to answer
questions from other agents about its own beliefs. MGMOs
are different from GMOs in that they operate both over the

CSG the GMOs themselves, creating new CSG answer
nodes containing the results of each question. Because they
can locate specific conditions that have or haven’t been met,
MGMOs make possible local credit assignment for knowl-
edge differences between Gerona agents and other agents.

Examples of an MGMOs are shown in Figures 9 and 11.
MGMOs may use special primitives and operations not
found in GMOs. A Meta-G-Clause locates G-Clauses just as
G-Clauses locate nodes in the CSG. The justify operation,
when used in either G-Clauses or Meta-G-Clauses, allows
the system to collect all the possible preconditions that
could lead to a particular (real or hypothetical) CSG modifi-
cation (this process is shown in Figure 8). A variation,
called justify-and-evaluate uses meta-programming to de-
termine why a particular effect did not or would not have
happened. MGMOs also have special primitives that allow
the context of the agent to be rolled forward and back in
order to ask questions about what the agent did at some pre-
vious time. Hypothetical events may even be proposed –
invoking the appropriate GMOs and creating a temporary

Figure 7. Execution in Gerona. An incoming ECL message
triggers a GMO. Rules whose preconditions are met are shown
in grey. Note that rules 1 and 2 are evaluated in parallel, as are
3, 4, and 5. Func1 is a relation, also implemented in Gerona,
that is queried by rules 2 and 3.

Incoming
ECL

GMO1

GMO2

Rule1 Rule3

Rule4

Rule2

Rule5

Func1

Rule6

Figure 8. A graphical illustration of justification in a Gerona
agent. The system is trying to justify Effect 2 in Rule 5.
Shaded elements are those whose logical conditions are in-
cluded in the justification.

GMO1

GMO2

Rule1 Rule3

Rule4

Rule2

Rule5

Rule6

Precondition 1
Precondition 2
Precondition 3

Effect 1
Effect 2
Effect 3

GMO 6820.fire FOR ECL 6820 "Alarm in compartment "
WHERE alarm = "fire"
LET compartment -> Compartment

 RULE 6820.fire-alarm.interpret.4

 "Fire alarm triggers new crisis and goals"
 IF NOT crisis(find, unsolved, 8100, "Fire",
 [compartment = Compartment], _, _)
 THEN
 crisis(create, unsolved, 8100, "Fire",
 [compartment <- Compartment], _, C)
 goal(create, active, 7100, "Control Fire",
 [compartment <- Compartment], C, G1)
 goal(create, …)
 …
 END RULE
END GMO

Figure 6. Part of a GMO, from Gerona-DCX, for handling a fire
alarm. The first G-Clause determines whether a fire crisis has
already been inferred for the compartment. The second and
third G-Clauses create the new crisis and top-level goal (addi-
tional G-Clauses would create additional sub-goals).

CSG – in order to answer "what if" questions. The follow-
ing are examples the very broad range of question types that
can be answered by our set of about 100 MGMOs:
• Why did the agent believe a goal needed to be satisfied,

propose an action, or generate a critique of another agent?
• At a particular time, what communications and beliefs did

the agent generate? Why?
• Why doesn't the Gerona agent believe a particular action

by another agent was correct?
• How would some hypothetical event be critiqued by the

system, in some hypothetical situation? Why?
• What does the Gerona agent believe is the definition of a

particular predicate or function ?
• When in general would the agent make a specific action

recommendation?
• How in general does the agent believe a specific goal can

be addressed or satisfied?
• When did the agent believe some condition first become

true or false?

Example Interaction with a Gerona Agent
The version of Gerona that allows it to function as a

watching agent for apprenticeship learning in the domain of
ship damage control is called Gerona-DCX (Fried, et al,
2003). Gerona-DCX is a component of the DC-Train
immersive trainer in the domain of ship damage control
(Bulitko and Wilkins, 1999). In our experiments to date,
Gerona-DCX has been employed as the more competent or
gold-standard agent, and the active agent has been a novice
problem solver.

As part of a post-session debrief, Figure 9 and 10 illus-
trate Gerona critiquing the active agent’s action of sending
the wrong repair team to fight a fire. This MGMO rolls the
scenario back to just before the novice made the error, de-
termines all the places it could modify the CSG to mark the
order in question correct, and then uses justify-and-evaluate
to determine why those operators failed to be evaluated.
What is notable about MGMOs is their small size, which in
some cases can generate pages of feedback concerning an
action that an active agent could take or has taken.

Perhaps this answer given in Figure 10 isn't enough for
the novice agent to determine what the critical knowledge
difference is between it and the Gerona agent. Another pos-
sible question Gerona could ask of the novice agent is
"When in general is it appropriate to order isolation?" The
MGMO that generates the answer to this question is shown
in Fig 11, and one answer (of several) is shown in Fig 12.

Power and Learnability
The computational power of a particular knowledge repre-
sentation is of interest because simpler representations tend
to be easier to learn (we learn C4.5 rules, not C++ pro-
grams). Gerona lacks an explicit control layer, but it is still
expressive; it can mimic the operation of a multi-tape Tur-
ing machine to compute any function in TISP(O(n2),O(n)).

However, its power is also reasonably limited, as it cannot
compute any function in TIME(ω(n3)) or in SPACE(ω(n)).

Furthermore, Gerona rules can be shown – at least in the-
ory – to be PAC-learnable if the ECL vocabulary is already
defined. The proof of learnability stems from the "Learning
to Take Action" paradigm (Khardon 1999). The proof re-
quires that the size of learned GMO rules be bounded,
which is a very reasonable assumption to make.

Related Research
A similar real-time agent that can operate in multi-agent

environments is SPARK (Morley and Myers, 2004), which
attempts to combine an "elegant, semantically grounded"

MGMO 9002 FOR ECL 9002 "Why Sub-Optimal Action"
LET action-node -> ActionNode
RULE 9002.1 "Explain why the action isn't correct."
IF g-clause(find, action([create, modify], correct,
 ActionNode.ecl, _, _, _, _), _, CorrectGClauses)
 AND roll-back(before, ActionNode, _)
 AND g-clause(justify-and-evaluate, CorrectGClauses,

 ActionNode, Justification)
THEN
 answer(create, _, 9002, "Why Sub-Optimal Action",
 [action-node <- ActionNode,
 justification <- Justification], ActionNode, A)
END RULE
END MGMO

Figure 9. The entire MGMO that answers why a particular ac-
tion by another agent was critiqued as sub-optimal. It uses a
Meta-G-Clause to locate G-Clauses that recognize an action as
correct, establishes a context just before the other agent sent the
order, and then evaluates the various preconditions for the ac-
tion being correct to see which one failed.

trigger(5170, "Isolate Space",
 [compartment -> Compart, target -> Station])
 SUCCESS
goal(find, active, 7116, "Isolate Compart for Firefighting",
 [compartment = Compart], _, G) ***SUCCESS***
world-state(find, _, 3360, "Can Isolate Compartment",
 [compartment = Compart], _, _) ***SUCCESS***
world-state(find, _, 4302,
 "Best Repair Locker for Compartment",
 [compartment <- Compart, station = Station], _, _)
 FAILED

"In order for ordering a station to isolate a space to
be correct, the goal of isolating the space should be
active, the compartment should be able to be iso-
lated, and the station should be the best repair
locker for the compartment – you failed to meet this
last condition."

Figure 10. A justification created by the justify-and-evaluate
operation in the MGMO in Figure 9, and stored in an answer
node in the CSG. The system is capable of creating justifica-
tions as both GMO excerpts and in English.

agent framework with mechanics that scale up to real-world
problems. SPARK provides a full-featured programming
environment, where Gerona's computational power is lim-
ited for the purposes of transparency and learnability.
SPARK does, however, include reflective tools similar to
Gerona's MGMOs that allow interesting questions to be
answered about an agent's performance.

The Disciple system (Tecuci 1998) is another system that
acquires knowledge through multi-agent interactions.
Unlike Spark and Gerona, Disciple is not primarily designed

as a real-time agent. However, it does feature a powerful
mechanism for improving its rule knowledge; this mecha-
nism involves asking questions about specific examples
with which the Disciple agent is having difficulty. By using
examples rather than exposing a human expert directly to
rule knowledge, it is unnecessary for experts to be familiar
with formal logic while helping the agent to learn.

Acknowledgements
We gratefully acknowledge the feedback on the Gerona
design by Greg Dhuse, Eugene Grois, and Karl Schultz.
This research was supported, in part, by ONR MURI grant
N00014-00-1-0660.

References
Clancey, W. J. 1985. Heuristic Classification. Artificial Intelli-
gence. 27:289-350.

Bulitko, V. V. and Wilkins, D. C., "Automated Instructor Assistant
for Ship Damage Control," Proceedings of the Eleventh Confer-
ence on Innovative Applications of Artificial Intelligence, IAAI-99,
Orlando, July 18-22, 1999, 778-785.

Bulitko, V. and Wilkins, D.C., “Qualitative Simulation of Tempo-
ral Concurrent Processes Using Time Interval Petri Networks,”
Artificial Intelligence, Volume 144, Issue 1-2, 95-145, March 2003

Buchanan, B. G. and Shortliffe, E. H. 1984. Rule Based Expert
Systems: The Mycin Experiments of the Stanford Heuristic Pro-
gramming Project. Addison-Wesley.

Donoho, S., 1993. Similarity Based Learning for Heuristic Classi-
fication, M.S. Thesis, Dept of Computer Science, Univ of Illinois.

Dhuse, G, 2004. Glint: An Interpreter for Graph Modification Op-
erators of the Gerona Language for Crisis Decision Making, M.S.
Thesis, Department of Computer Science, Univ. of Illinois.

Fried, D. M., Wilkins, D. C., Grois, E., Peters, S., Schultz, K. and
Clark, B. 2003. “The Gerona Knowledge Ontology and Its Support
for Spoken Dialogue Tutoring of Crisis Decision Making Skills,”
Workshop on Knowledge and Reasoning in Practical Dialogue
Systems, Eighteenth International Joint Conference on Artificial
Intelligence, Aug 2003.

Khardon, Roni. "Learning to Take Actions." Machine Learning,
Volume 35, Number 1, pp. 57-90, 1999.

Morley, D., and Myers, K. "The SPARK Agent Framework",
Third International Conference on Autonomous Agents and Multi-
agent Systems, Volume 2, 714-721.

Park, Y. T. and Donoho, S. and Wilkins, D. C., “Recursive Heuris-
tic Classification,” International Journal of Expert Systems, Vol-
ume 7, Number 4, 1994, 329-357.

Tecuci, G. 1998. Building Intelligent Agents: An Apprenticeship
Multistrategy Learning Theory, Methodology, Tool, and case Stud-
ies. London, England: Academic Press.

Wilkins, D. C. 1988. Knowledge base refinement using apprentice-
ship learning techniques. In Proceedings of the 1998 National
Conference on Artificial Intelligence. 646-651.

Wilkins, D. C. and Ma, Y. 1994. “The Refinement of Probabilistic
Rule Sets: Sociopathic Interactions,” Artificial Intelligence, Vol-
ume 70, Number 1, 1994, 1-32.

MGMO 9300 FOR ECL 9300 "When action"
LET action-ecl-number -> ActionECLNumber
RULE 9300.1 "Determine when action is appropriate."
IF g-clause(find, action(create, pending,
 ActionECLNumber, _, _, _, _), _, GClauses)
 AND g-clause(justify, GClauses, _, Justifications)
THEN answer(create, _, 9300, "When action",

 [action-ecl-number <- ActionECLNumber,
 justifications <- Justifications],
 miscellaneous-questions, _)
END RULE
END MGMO

Figure 11. The entire MGMO that determines the conditions
under which an action is appropriate. The Meta-G-Clause finds
operations which could create a proposal to perform the action,
and the justify operation creates the excerpts that will serve as
answers (see Figure 12).

trigger(6801, "damage report (fire/flood/smoke)",
 [casualty = "fire", source -> Src,
 compartment -> Compart])
goal(find, inactive, 7116, "Isolate Compartment",
 [compartment = Compart], _, G)
world-state(find, _, 3360, "Can Isolate Compartment",
 [compartment = Compart], _, _)
world-state(find, _, 4302,
 "Best Repair Locker for Compartment",
 [compartment <- Compart, station -> Station], _, _)
goal(modify, active, 7116, "Isolate Compartment",
 [compartment = Compart], _, G)
action(create, pending, 5170,
 "Electrically and Mechanically Isolate Space",
 [compartment = Compart, target = Station], G, _)

"When a fire report is received from a station in a
compartment, and the goal of isolating the com-
partment (if necessary) is not active, and the com-
partment can be isolated, and the best repair locker
for the compartment is some station, then mark the
goal as active, and recommend ordering the station
to electrically and mechanically isolate the com-
partment."

Figure 12. One of several possible sets of circumstances in
which the action of isolating a compartment is appropriate.
This GMO excerpt would be one of several generated by the
MGMO in Figure 11.

