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Abstract 
This paper describes on-going work in the analysis of 
motion dynamics in pen-based interaction.  The overall goal 
is the creation of a model of user motion in pen gestures 
where constraint and curvature vary over the length of the 
path. In particular, speed/curvature models of motion are 
used to analyze pen trajectories and infer target constraints 
obeyed by a user performing selection gestures. We aim to 
use this information to calculate an effective local spatial 
selection tolerance associated with each gesture. This can be 
used to perform selection according to user intent instead of 
their literal stroke. Here, we describe our early analysis of 
constrained user selection gestures, and outline a prototype 
application that infers a tolerance for one type of selection 
gesture. The application selectively splits pen strokes based 
on an analysis of user motion. 

Introduction  
This paper describes on-going work in the analysis of 
motion dynamics of pen-based interaction.  The particular 
problem at hand is the analysis of selection gestures in pen 
computing. Pen-based selection strategies include two 
common selection options, tap-to-select, and encircling. 
We focus on the latter, that is, selection by drawing a 
freehand closed shape around a target object. 
 Different applications treat selection by encircling 
according to domain-specific or application-specific 
criteria.  Most paint programs, for example, view selection 
gestures as definitive and cut image material precisely on 
the gesture’s path.  Advanced selection techniques can 
adjust a selection stroke to fit the borders of salient visual 
objects. 
   In pen-based note taking applications, selection gestures 
are typically interpreted in light of underlying pen strokes. 
Digital ink strokes themselves, and sometimes groups of 
ink strokes forming words, are viewed as immutable 
objects, and the selection gesture selects among strokes or 
words.  A problem faced by these programs is, which 
objects should become selected when the selection gesture 
in fact intersects immutable objects? 

 In our work, we seek to interpret selection strokes based 
on inference of user intention. We hypothesize that 
significant and useful aspects of intent can be estimated 
from measurable characteristics of the gesture.   
 This work is currently in its early stages. The purpose of 
this paper is to present initial work in selection gesture 
analysis under varying curvature and target constraints.  In 
addition, we outline a prototype proof-of-concept 
application which uses this analysis to make an intelligent 
judgment when executing one type of selection gesture. 

Problem Formulation 
Reliable assertions about user intention with respect to their 
actions would allow designers of pen-based interfaces to 
take into account users’ likely goals when choosing among 
program responses. Consider, for example, the user gesture 
in Figure 1.  Here, the user has drawn a circle around a line 
of text. Note that at the extreme endpoints of the line the 
user has “clipped” a number of letters from the gesture. 

 
Given the spatial and semantic coherence of the sentence 
itself, a reasonable assumption can be made that the user 
intended to select the whole.   Under some circumstances, 
however, a user may in fact wish to lop off one or more 
characters, or otherwise select a less salient set of 
markings.  We suggest that in these cases users will gesture 
more carefully, deliberately, and hence generally speaking, 
more slowly than they otherwise would. 

 
 Our goal is therefore analysis of the deliberateness, or 
carefulness, of user gesture. More accurately, we formulate 

Figure 1: A user selection gesture with inaccuracies. 

Figure 2: Inferring tolerance at a point on the gesture. 



our problem as follows. Given a user gesture, such as 
shown in Figure 2, can we infer at any point on that gesture 
the intended carefulness of the user at that point? Inferring 
this accuracy allows us to create a “tunnel” around the 
gesture. Objects located inside this tunnel may be excluded 
or included in the selection region based on their 
“attachment” to objects within or outside the selection 
region. Based on this attachment and the tolerance in the 
gesture, we can develop an interpretation of the selection 
gesture that allows a certain degree of inaccuracy, or 
sloppiness, in a user’s expression of his or her intention. 
 Speed alone is not an indicator of carefulness because 
any gesture normally varies in speed along its path as a 
function of its starting and ending points, and shape.  Our 
analysis must effectively factor apart baseline properties of 
movement trajectories executed under casual conditions 
from properties governed by intentional constraints due to 
task-specific targets. 

Related Work 
The most successful analysis of human motion is 
undoubtedly Fitts’ Law [Fitts 1954], relating the time taken 
to acquire a target with the distance from and size of the 
target. However, work exists on the analysis of trajectories, 
both in HCI and in Neuroscience. In this section, we first 
detail related work in trajectory analysis, before going on to 
detail specific work in intelligent selection gestures.  

Trajectory Analysis 
Trajectories have been analyzed in Neuroscience and in 
HCI. In Neuroscience, Flash, Hogan, and Viviani [Flash 
and Hogan 1985, Viviani and Flash 1995] have analyzed 
the characteristics of trajectories of motion by analyzing 
pen gestures. This research led to the development of the 
2/3 Power Law and the Minimum Jerk Law, two laws of 
human motion that describe the instantaneous velocity of 
human movement during trajectories. In HCI, work has 
focused on the analysis of straight line motion under 
constraint, and resulted in the development of the Steering 
Law, describing the movement characteristics of users 
when traversing nested menu structures. 
The Minimum Jerk and 2/3 Power Laws. The Minimum 
Jerk Law [Flash and Hogan 1985] describes the 
acceleration of users over a trajectory using the time 
derivative of acceleration, known as “jerk”. This law 
describes the characteristic of users to prefer smooth, as 
opposed to “jerky”, motion over trajectories. When 
analyzing user motion, it was determined that people 
typically create paths that minimize jerk. 
 An extension to the minimum jerk law involves the 
traversal of paths of varying curvatures [Viviani and Flash 
1995].  X and y components of motion can be factored and 
jerk found to be minimized in x and y independently, 
leading to a relationship between the curvature of a path 
and the instantaneous speed of motion of a person tracing a 
path. Mathematically, this relationship is expressed as: 

 
 
In this equation, a(t) represents the angular velocity at time 
t, c(t) is the curvature, and k is a constant, typically called 
the “velocity gain factor”. 
 The equation for the 2/3 Power Law can be rewritten in 
terms of tangential velocity via a simple mathematical 
manipulation, and based on the fact that v(t) = r(t) a(t) and 
c(t) = 1/r(t), specifically: 
 
 
In the work that follows, we plot speed vs. radius of 
curvature raised to the 1/3 power.  Where the range of the 
x-axis becomes too large, we may revert to examining 
speed versus curvature raised to the 2/3 power. 
The Steering Law. While traversing constrained paths, a 
person’s trajectory’s velocity tends to be governed by the 
level of constraint. More highly constrained paths tend to 
be traversed more slowly than less constrained paths. The 
“Steering Law” relates path length and path width to the 
time taken to traverse a path, much as Fitts’ Law relates 
size and distance from target to time taken to acquire a 
target [Accot and Zhai 1997]. Specifically: 
 
 
Here, we see that Tc, the time taken, is proportional to the 
length of the “tunnel” whose boundaries constrain the path, 
and inversely proportional to the width of the tunnel. In 
other words, the narrower the tunnel and the longer the 
tunnel the more time it takes to traverse the tunnel. This 
predicts an inverse linear relationship between width of the 
tunnel and time spent in the tunnel. 

Other Related Research 
In overall focus, our work bears some relationship to work 
on Intelligent Scissors [Mortensen and Barrett 1998]. Their 
work involved boundary detection, with the goal of 
extracting relevant objects from an image. In this work, 
given a gesture a user draws with a mouse, the segment 
snaps to an appropriate object in the image. They call this 
technique the live wire technique, where drawing a gesture 
around an object ends up creating an encircling gesture for 
the object. 
 More generally, our approach is based on inferring user 
intention from action and context. In the InkScribe system, 
Saund and Lank describe a modeless interaction 
mechanism, called the Inferred Mode Protocol, which 
examines user action and the context of the action with the 
goal of inferring likely user intention from the action 
[Saund and Lank, 2003]. The idea of inferring user 
intention has also been explored in the domain of 
architecture drawings, where Do has used domain 
constraint, specifically the fact that a user is engaged in 
architecture design, to perform analyses of the designer’s 
intention [Do 2002]. 
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Analyzing User Trajectory 
When a user draws a selection gesture in an interface, the 
whitespace—or lack of it---around an object or group they 
intend to select represents a basic level of constraint on the 
gesture. Other forms of constraint may also apply. For 
example, a user might intend to carve up image material by 
cutting digital ink strokes into pieces in specific places. 
 Our hypothesis is that the motion dynamics of a user 
includes information on the relative deliberateness of 
selection gestures. Analysis of a gesture’s instantaneous 
speed is confounded by the varying curvature of the 
trajectory. To use motion dynamics in the analysis of user 
gestures, an understanding of the motion characteristics of 
users under constraint is essential.  
  The Minimum Jerk Law and the 2/3 Power Law deal with 
unconstrained motion. As well, the Steering Law was 
formulated in terms of straight or circular paths, rather than 
paths of arbitrary curvature and constraint. These laws must 
be extended to develop a more complete picture of 
instantaneous human motion under varying curvatures and 
constraints. 
 To study human motion dynamics of selection gestures, 
we implemented an application that presented users with 
targets of varying visible path constraints and curvatures. 
We conducted user trials, asking users to draw a series of 
gestures. We then analyzed the trajectories to determine the 
relationship between velocity, curvature, and target path 
constraint. 
 In this section, we first describe our experimental set-up 
to capture user data. Next, we describe our analysis of that 
data. Finally, we describe the characteristics of mid-path 
constrained motion in pen-based interfaces. 

Experimental Data Capture 
To develop a model of user constraint, we designed an 
application that generates a series of drawing tasks for the 
user with varying constraints. The application captured user 
drawing strokes, and allowed analysis of the strokes. 
 Figure 3 depicts the gesture selection tasks users were 
asked to perform. We collected data from ten users, nine 
right handed and one left handed. Each of the users was 
asked to draw a circular gesture between two objects or, in 
the unconstrained case, around an object. They could 
“cancel” a stroke until they were satisfied, and then, by 
pressing the “save” button, save the path they drew. 
 Figure 3 shows the interface used to capture the data. 
Users would cycle between the eleven trails, saving one 
gesture for each trial. Test 1, shown at the top, allowed a 
path unconstrained in its outer extent. Tests 2 through 6 
constrained paths to lie between ovals of varying widths. 
Finally, tests 8 through 10 were a series of paths around a 
larger block and through a channel between a larger and 
smaller block. The smaller block was placed, in tests 8 and 
9, along the longer side of the larger block and in tests 9, 
10, and 11 along the shorter edge. Test 10 is shown at the 
bottom right in Figure 3. 

Data Analysis 
To analyze the characteristics of motion during selection, 
we examined speed and velocity profiles of pen selection 
gestures. To capture speed and velocity accurately, we 
performed a linear least squares fit of a third order 
polynomial to the data path, assuming a polynomial of the 
form: 

 
 
 

 
As shown, we fit x and y independently as a function of 
time (t). To obtain x and y velocity directly from our 
coefficients a1 and b1, we set the time at any point along 
our path to “0” and fit our curve relative to this time using 
points in either direction. To create a data set for our fitting 
function, we used a number of points before and after our 
current point that represented at least 10% of the total 
curve length. The result is that, at each point, we fit 
polynomials in x and y to a segment of a user’s gesture 
totaling approximately 20% of the total gesture length. The 
long curve length for our fitting function minimized 
discontinuities from pixelization and sampling rate. 
 Curvature was calculated using the standard curvature 
formula: 
 
 

 
 
 
We note that when users initially start to draw curves,  their 
strokes follow velocity profiles that correspond to the 

Figure 3: Sample drawing tasks given to users. 
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minimum jerk law. As shown in Figure 4, the pen gradually 
accelerates to a maximum velocity. As the trajectory enters 
an area of high curvature, the 2/3 Power Law takes over, 
and the pen decelerates. Figure 4 depicts a typical velocity 
profile for a test subject in our user trial. The horizontal 
axis is milliseconds, the vertical axis is pixels per 
millisecond. 

Effects of Curvature under Constant Constraint 
When drawing a closed loop gesture, users typically speed 
up according to minimum jerk characteristics. As shown in 
Figure 4, they reach an initial maximum speed and then 
slow down as the path curves. 
 To simplify our analysis, we focused only on the effects 
of curvature under varying degrees of constraint. For our 
first set of tests, tests 2 through 6, we constrained the entire 
user gesture, and held constraint constant over the entire 
gesture. We selected a portion of the gesture away from the 
endpoints and analyzed that portion of the gesture with 
respect to speed and curvature. 
 For unconstrained gestures, we expect speed vs. 
curvature plots to obey the 2/3 Power Law. Figure 5 
demonstrates the linear relationship between Speed 
(vertical axis) and Radius of Curvature1/3 (horizontal axis).  
 In Figure 6, we see the results of successively more 
constrained paths. The paths are constrained by widths, 
with path widths of 80 pixels, 60 pixels, 40 pixels, 20  
pixels, and 10 pixels for trials 2 through 6. Linear 
correlation (r) varies between 0.88 and 0.97 for these 
values. 

 When we examine the most constrained path, of 10 
pixels, for five of our users, we see in Figure 7 that the 
linear relationship between the values continues to hold. 
Linear correlation remains between 0.86 and 0.97 for these 
values, with all but one r value over 0.95. 
 While the linear relationship between speed and radius 
of curvature1/3 was well-known for unconstrained paths, the 
fact that this relationship is maintained under target 
constraint appears to be a novel observation. 

Figure 5: Speed vs. Radius of Curvature1/3 of an 
unconstrained gesture. 

Figure 4: Speed versus time of an unconstrained path. 
The user starts the stroke and speeds up, then slows 
down to go around the higher area of curvature (P1). 
The user then reaccelerates through P2, at low 
curvature slows down to go around the end (P3), then 
briefly speeds up before slowing down to stop. 
 

Figure 6: Speed vs. Radius of Curvature1/3 under 
constraints of 80, 60, 40, 20, and 10 pixel tunnels for a 
single user. 



 

 
 One other aspect of our observations is the relatively 
wide range of drawing speeds for various users, as shown 
in Figure 7. Here we see that for a 10-pixel path, the fastest 
user drew a gesture more than four times faster (0.28 pixels 
per second) than the slowest user. This could in itself be a 
result of variable baseline deliberateness on the part of 
different users. We noted that some users drew slowly and 
were very careful to traverse only the middle of the path 
when drawing, while others were more tolerant to contact 
with the edges of the path.  

Varying Curvature and Constraint 
Tests 7 through 11 require users to draw a gesture around a 
large rectangle, and between it and another smaller square 
(see call-out in Figure 6).  There were two path constraints, 
a 40 pixel constraint and a 20 pixel constraint, placed either 
along the length of a rectangle (tests 7 and 8) or along the 
width of a rectangle (tests 9 and 10).  
 Figure 8 examines data points along a locally 
constrained curve. The call-out depicts the constraint path. 
We’ve superimposed three plots in this graph. The first, in 
diamond points at the top, depicts a user drawing under a 
weak path constraint, namely, an oval of 80 pixels in width. 
The second plot, in “X” points at the bottom, depicts a user 
drawing in a constrained oval path of 20 pixels in width.  
Finally, a plot drawn in small squares is displayed on the 
graph. This plot is the locally constrained path shown in the 
call-out.  All these strokes were drawn by the same user 
performing different tests. 
 The square-point plot of the locally constrained path is 
revealing. It coincides with both the dark blue plot and the 
red plot at different points over its length. 
 Our analysis of what occurs is as follows. The path 
plotted in “X” points at the bottom of the image represents 
the effect of the Steering Law placing an upper bound on 
user speed. We see, in this plot, that curvature is still a 
factor in user speed, with areas of high curvature exhibiting 
slower speeds than areas of low constraint over the course 
of the stroke. However, the speed of the plot against 
curvature is consistently slower than that of the diamond 
point plot, due to path constraint. 
 Where the plot with square points is locally constrained 
to a 20 pixel tunnel, it coincides in speed to the plot with 
“X” points. Where it is unconstrained, it coincides, instead 
with the plot of the slightly constrained path drawn using 
red diamonds. 

Analyzing User Behavior 
The observations we have made are based on early pilot 
studies from a relatively small data set of ten users. While 
caution should be taken in drawing strong conclusions from 
the modest data set, some characteristics of user motion 
seem to be evident. 
 First, all our data leads us to believe that the relationship 
between speed and radius of curvature described by the 2/3 
Power Law for unconstrained gestures is preserved under 
path width constraint. With knowledge of curvature, we can 
predict the expected speed at different points given 
constant constraint on the path. 
 Second, the Steering Law describes an inverse linear 
relationship between speed and tunnel width. In our results, 
we demonstrate that the effects due to tunneling and 
curvature are preserved for individual users. 

Figure 7: Speed vs. Radius of Curvature1/3 for five users 
with path width of 10 pixels.  Note the wide variability 
of user drawing speeds in spit of the identical 
constraint. 

Figure 8: Speed vs Radius of Curvature1/3. The plot in 
red diamond shapes at the top depicts a speed profile 
for a slightly constrained path (80 pixels in width). The 
dark blue “X” plot at the bottom is a more constrained 
20 pixel wide path. Finally, the light blue “box” shaped 
points represent the curve drawn over a locally 
constrained path pictured to the right. 



Designing for Intelligent Selection 
We are in the process of designing a prototype application 
that performs more intelligent selection based on the 
dynamics of user motion. In this section, we outline some 
of the design decisions, and describe the current status of 
our prototype application. 

Speed and Constraint from Context 
One challenge in the design of intelligent selection is in the 
creation of a usable model of path motion and constraint. 
From the basic model of dynamics developed in the 
previous section, we know that, given the path 
characteristics at several points with weak constraint (i.e. 
wider tunnel widths), we can calculate expected behavior at 
constrained points. 
 Our goal, however, is to infer likely tunnel width from 
motion characteristics, rather than predict speed given 
tunnel widths over the path.  By analyzing the image 
content the selection gesture acts upon, we can begin to 
develop a partial model of motion characteristics. Consider, 
for example, Figure 9, where a user has drawn a selection 
gesture around the operand in an integral. It was the user’s 
intention to exclude the “x” in the term “dx” from the 
selected region. 

 
 Saund and Lank note in their work on inferred mode 
that, given an action and the context of an action, a 
significant amount of information exists that can be mined 
by applications [Saund and Lank 2003]. In the contrived 
example in Figure 9, we have segmented the selection 
gesture into two unconstrained portions (above and below 
the integral) and two constrained portions (to the left and 
the right). Given an understanding of the underlying image 
material, constraints on a user’s gesture can be developed 
for each individual segment of the gesture dynamically. 
 If a user draws a gesture where speed varies only with 
curvature, we assume that the user is operating without 
taking into account constraint. We may therefore estimate 
the cognitively unconstrained regions of the selection 
gesture to extend +/- 40 pixels (i.e. a variability of up to 80 
pixels). This value is based on results from our earlier user 

trials, where tunnels of width between 60 and 80 pixels on 
a 15 inch Wacom Cintiq data tablet in 1024X768 
resolution appeared to exhibit similar behavior to 
unconstrained paths. 

Inferring Tolerance in Gestures 
Given that we have inferred a tunnel width for 
unconstrained portions of the gesture, when a user acts with 
constraint, we need to infer the level of the constraint (i.e. 
the perceived tunnel width from the user’s perspective). 
This problem is the one we are currently exploring. 
 Fortunately, with the assumptions in the previous 
section, this problem is relatively easy to solve. At any 
point, given the characteristics of the unconstrained 
portions of the gesture, we can simply divide the current 
velocity by the expected velocity to get a tunnel width, i.e.: 
 
 
 
 
 
In this equation, W is the tolerance we should allow in the 
user’s selection gesture, vi is the observed velocity at the 
current point, and vp is the predicted velocity. The Min 
function accounts for outliers. 

Conclusions and Future Work 
We have outlined on-going work in the analysis of 
deliberateness versus sloppiness in selection gestures. We 
describe an analysis of gesture trajectory and speed under 
varying curvature and constraint. Evidence is provided for 
a number of conclusions, including the extension of the 2/3 
Power Law to speed profiles for constrained gestures and a 
validation of the principle of the Steering Law, specifically 
a linear relationship between tunnel width and speed, for 
paths of varying curvature.  We have built a proof-of-
concept prototype application demonstrating tolerance to 
sloppy selection gestures. 
 To make intelligent decisions about inclusion or 
exclusion of image material in a selection region, relevant 
groupings of the underlying image material would be 
useful. Understanding the strength of groups in the material 
being selected would allow the incorporation of prior 
probabilities into our decision to segment or include or 
exclude a specific component of a group. We have 
designed a clustering algorithm for digital ink based on the 
Earth Mover’s Distance. Our current work seeks to use 
these groupings in our inclusion/exclusion/segmentation 
decisions. 
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Figure 9: A selection gesture segmented into 
constrained and unconstrained components. 
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