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Abstract
A very natural approach to categorization is similarity-
based clustering. We propose a visual representation
which can be used with such a mechanism for the
acquisition of spatial relation categories. We also
show how supervision can be helpful in cases where
basic similarity is low by proposing a learning
mechanism which operates both in the presence and in
the absence of words.

Motivation

Words signifying spatial relationships between objects are
quite common in human languages. Such words, like the
English ABOVE, cannot be adequately explained in terms
of other words (Harnad, 1990). The core of their meaning
is rather directly associated with visual perception. This
means that to a significant extent, the acquisition of spatial
relation concepts has to be independent of language (Choi
and Bowerman, 1991, Regier, 1992).
This, in turn, implies that humans have some innate
capability to automatically form spatial relation concepts,
by noticing regularities in their visual input (unsupervised
learning). When words are present (supervised learning),
they help refine those concepts to their intended meaning
within the language being used.

Modeling

This acquisition process can be viewed as categorization of
instances of various spatial configurations. And a very
natural approach to categorization (especially
unsupervised) is similarity : if two instances are
“sufficiently” similar, they belong to the same category
(Goldstone, 1994a, 1994b, Rosch and Mervis, 1975, Smith,
1992). In order to apply such a criterion in the case of
spatial configurations, we have to specify representations
for our instances and also a way in which their similarity
can be judged.

Input Representation
On the representation issue, we could start with a picture ;
this is what humans get as raw input. The first step in
recognizing a spatial relation in the picture, is definitely to
find the objects that take part in it. Then, we need a way to
represent the locations of these objects within the picture,
since this information is what matters for defining a spatial
relationship.
It’s interesting to observe that, for the kinds of spatial
relation categories used in human languages, specific
attributes of the participating objects are irrelevant ( a “red
elephant ABOVE a green mouse”, is as good an instance of
ABOVE as an “angry sky ABOVE a calm sea”). What is
really essential to know is just which segments of the
picture correspond to different objects.
Also, if we’re just concerned with relations between two
objects, which we’ll call Trajector and Landmark
(Langacker, 1987), the essential location information
needed for specifying the spatial relationship, is position of
the Trajector relative to the Landmark. The exact location
of the Landmark in the picture is irrelevant (“a book
(Trajector) is ON the table (Landmark)” no matter where
“the table” is located in the visual field).
We chose to incorporate the abstractions over object
specificity and Landmark position in our input
representation. We assume the existence of a first
processing stage that takes a 2D visual bitmap and outputs
a 2D map where a number is attached to every map bit,
which signifies the object it belongs to (Mozer, Zemel and
Behrmann, 1991). There’s a unique number for each
object, and for the sake of simplicity, we’ll assume that
Trajector bits are marked with 1, Landmark bits with 2 and
background bits with 0. These numbers tell us whether two
bits belong to the same or different objects, but contain no
information about the exact identities of the objects
involved (a “red elephant” Trajector and an “angry sky”
Trajector will just be two regions of 1-bits in the 2D map).
The shape of the objects is retained in this representation.
A second processing stage, which takes the previous 2D
map as input, produces a representation with explicit
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Figure 1: An overview of the architecture. Filled arrowheads indicate flow of activation and white ones direction of
learning. The stage being pointed is always the one that is affected.

information about the position of 1-bits (Trajector) relative
to 2-bits (Landmark). It’s easy to imagine such a
representation if there’s just one Trajector bit and one
Landmark bit : if their absolute coordinates are (Xt, Yt) and
(Xl, Yl), we can use (Xt-Xl, Yt-Yl). This just tells us the
way we have to go to find the Trajector, if we start from the
Landmark. It’s also relatively easy to represent location of
a group of Trajector bits, relatively to a single Landmark
bit. For each Trajector bit (Xti, Yti), we can use (Xti-Xl,
Yti-Yl). This implies that to hold the relative location
information, we could use a 2D displacement map, where if
element (X, Y) is 1, it means that there’s a Trajector bit
which can be reached from the single Landmark bit.
But when there’s more than one Landmark bit, it’s not clear
where we should be centering the coordinate system. One
possibility might be some characteristic point in the
Landmark, like its center of “mass”. A possible problem
with such approaches is that they abstract information
about the size and shape of the Landmark, which is
important for certain spatial relation categories (like SIKI
vs SINI in Mixtec). A way to include such information in a
simple manner, is to create displacement maps for all bits
of the Landmark and then superimpose them into a single
displacement map.

Similarity-based clustering
The superposition displacement map is used as input by
both unsupervised and supervised learning.

Unsupervised learning. The unsupervised process, merely
notices similarities between different inputs by evaluating
their degree of overlap. Highly overlapping inputs should
get clustered together, non-overlapping ones should be far
apart. Such a process can be computationally realized in a
very elegant manner through the use of a Kohonen map and
Kohonen map learning (Kohonen, 1982).
Kohonen map units specialize to the detection of frequently
occurring input patterns, by developing weight connections
that maximally respond to them (a kind of Hebbian
learning). In our version of learning, for each input
pattern,there’s a winner unit that is specialized the most,
and a region of units around it that are specialized less and
less as the distance from the winner increases. This ensures
that winners of highly similar patterns are either going to
eventually merge, or be physically close on the Kohonen
map.

Supervised learning. For the supervised part, we directly
represented spatial relation words with individual units.
These units are either active or non-active and there can
only be at most one active unit at any given time instant.
The presence of an active unit, signifies the presence of the
corresponding spatial relation word in the auditory input
signal. These units are slowly associated with visual input.
Again, as in unsupervised learning, each word unit is
specializing to respond maximally to the visual patterns
that are present when it is active. Unlike unsupervised
learning, such patterns may or may not have high degree of



overlap. In order to ensure maximal response, the word
units specialize to the overlap, no matter how small that is.
This means that these units are sensitive to activation
deviations over time. Visual input units that have wildly
varying activations in different patterns that are present
when the word unit is active, are going to be ignored. As
consistency increases, so does the strength of association
between the word unit and the corresponding visual input
units. In the current implementation, high consistency in
being active results in high valued weights and high
consistency in being inactive receives weights close to 0
(which is the same as what happens with low consistency).

Interaction. The development of unsupervised (pure
similarity driven) winners on the Kohonen map and
supervised (word presence driven) winners are closely
coupled. Every time a word is present, it affects the visual
input by reinforcing input units to which it maximally
responds, and suppressing ones that it has learnt to ignore
or that it consistently found inactive in the past.
This flow of control from word units to visual input might
correspond to a word-driven attention process. It results in
increasing the similarity of different instances of the same
language-relevant spatial relation and consequently making
it more possible for a single -or closeby- Kohonen units to
cluster them together.
Additionally, every time an active word unit is entrained, it
does not directly examine the visual input, but, instead,
examines the current Kohonen map winner, and performs
weight adjustments based on the values of the winner’s
weights. This amounts to using not only current evidence
for supervised learning, but, also, past experience.
A highly occurring pattern or group of similar
(overlapping) patterns will develop a strongly responding
Kohonen winner, with weights that closely match them.
Then supervised learning will be fast, since it will be based
on highly consistent input, the weights of the single
Kohonen winner. It will take longer to learn categories with
highly dissimilar instances, since they are going to initially
develop different Kohonen winners, which will also be
probably responding to patterns belonging to other
categories. Then, at least initially, the relevant word units
are going to be receiving misleading information from the
Kohonen map winners.

Implementation

Simulation
In order to test the efficiency of our modeling
specifications, we used the visual representations created

by 75 7x7 picture bitmaps which produce 75 patterns on a
13x13 displacement map (displacement on a scale of 0-7
can be from -6 to +6) to train a Kohonen map of 5x5 units
and an array of 12 word units, corresponding to certain
spatial categories. Each picture bitmap was a clear example
of one or more of those 12 categories. During training,
there was a 25% probability that exactly one of the
appropriate word units would be activated. This is a rough
simulation of what happens in real life. Training was
repeated until either the weights on the Kohonen  map
stabilized (change was consistently under a threshold) or an
oscillation was detected.
In oscillations, the Kohonen weights cycle continuously
through a number of value assignments. In each state in the
cycle, at least as far as we could tell, the same clusters are
formed but are represented in different places on the
Kohonen map. Oscillations occur depending on the initial
values of weights and the training set. For our particular
training set, they occurred around once every ten times we
trained.

Results
When training stops, clusters have been formed on the
Kohonen map and the word units have developed certain
specializations. In order to determine how closely these
correspond to groupings made by humans, for the patterns
of each category, we recorded their winners on the
Kohonen map. Then we computed the average location of a
winner for each category and the location dispersion. For
successful category learning, we should get 0 or small
winner location dispersions.
It’s also interesting to notice whether similar categories
have average locations that are closeby and whether their
dispersion values define a high degree of overlap. To help
such observations,  for each pair of patterns we defined
circles of influence centered at the location of the prototype
winners and with radii equal to the respective location
dispersions. Then, we computed the ratio of common area
of the two circles over the total area they occupy.
Finally, direct inspection of the weights of the word units,
would reveal how successfully the categories are learnt. It
may be the case that our initial visual representation is too
impoverished to allow learning of certain categories. In
other cases, supervision might not be needed at all, because
the visual representation forces instances of certain
categories to have high degree of overlap by embodying the
right kinds of abstractions. To determine the extent to
which this is true, we performed an additional series of
simulations in which supervision was turned off.



with
supervision

without
supervision

categorycategory avg Xavg X avg Yavg Y dispersiondispersion avg Xavg X avg Yavg Y dispersiondispersion
above 4 3.94 0.24 0.06 0 0.24

below 2.23 2 0.42 2 1.54 0.84

left 2 3.67 0.47 0.33 2 0.47

right 4 1.25 0.43 2.75 0 0.43

touch 3.17 2.80 1.28 1.07 0.72 1.35

inside 3.67 2.5 0.90 1.17 0.33 1.01

encircling 4 2.75 0.43 0.75 0 0.83

sideways 2.94 2.53 1.63 1.47 1.06 1.63

protect 4 4 0 0 0 0

Table 1: Dispersions get smaller with supervision. Certain categories (siki, sini, on) have been omitted since they are identical
with the category PROTECT (where the Trajector is above the Landmark and completely covering it vertically).

above below left right touch inside encirc side prot

above 100% 0% 0% 0% 1% 0% 0% 0% 100%
below 0% 100% 0% 0% 6% 0% 0% 7% 0%
left 0% 0% 100% 0% 3% 0% 0% 6% 0%
right 0% 0% 0% 100% 0% 0% 0% 3% 0%
touch 1% 6% 3% 0% 100% 43% 11% 62% 0%
inside 0% 0% 0% 0% 43% 100% 23% 30% 0%
encircling 0% 0% 0% 0% 11% 23% 100% 7% 0%
sideways 0% 7% 6% 3% 62% 30% 7% 100% 0%
prot. vert. 100% 0% 0% 0% 0% 0% 0% 0% 100%

Table 2: Ratios of circle area overlap over total circle area for all pairs of categories. The centers are (Avg X, Avg Y)
from Table 1 and the radii are the corresponding dispersions.

The results indicate that certain categories (like
TO_THE_LEFT, BELOW) can be acquired without
supervision. Other categories (like ABOVE, TOUCH,
SIDEWAYS) rely more on supervision. The rather
intriguing difference in performance between ABOVE and
BELOW should be attributed to the particular training set
used. With a slightly expanded set (the 75 patterns plus 6
more) we got exactly the opposite result : ABOVE was
better than BELOW.

Discussion

It is noteworthy that during purely unsupervised learning
the network showed remarkable stability and always
converged on the same clusters, even though these might be
realized in different regions of the Kohonen map at
different runs. Also, the supervised learning seems to be

doing an excellent job of abstracting the best possible
regularities for each category, and helping the Kohonen
map converge to clusters that are closer to the intended
meanings of words (contrast BELOW without and with
supervision, also same with ENCIRCLING).
On the negative side, as the strength of supervision
increases, it becomes more and more difficult for the
network to converge to a stable state. Also, it seems that the
coupling from unsupervised to supervised learning is really
weak ; no matter what the strength of supervision is, the
word unit weights always converge on the same optimal
values. This would lead to the conclusion that the
unsupervised learning component is really useless. Our
only objection is that supervised learning is possibly faster
when unsupervised learning is cooperating. But since we
didn’t measure speed of convergence, we can’t support
such a claim.



Clearly, the coupling of the two modes of learning needs
further development. There is also the need to analyze how
different values of the several operating parameters affect
performance. Up to now, we have experienced a few cases
where certain values lead to severe degradation in
performance. We also need to train with more patterns to
see how much our results (good and bad) depend on the
specific patterns we’ve been using.
But, in overall, the tendency of the network is to become
better with time -at least in the long run-, and that is an
encouraging result, which strengthens our belief that the
acquisition of spatial categories can be based on simple
similarity, if the “right” input representation is used.
Our whole approach was largely motivated by the work of
Schyns (Schyns, 1991) on general concept acquisition. The
unsupervised part of our architecture is essentially identical
to the one he uses. Schyns, however, worked mainly on the
formation of object prototypes, from noisy input that is
always centered. Such a process cannot be directly applied
to raw visual input containing visual relations between
objects. By assuming preprocessing that leads to our
displacement map, unsupervised spatial concept formation
becomes possible. Also, Schyns seems to underestimate the
importance of supervised learning. He claims that a word
can only be learnt after unsupervised learning has finished
forming the appropriate concept. The presence of the word
while unsupervised learning is in progress is irrelevant.
Dorffner (Dorffner, 1991) is also in favor of a strong
unsupervised learning component. He allows for interaction
between auditory and visual signals by assuming the
formation of internal symbols that associate them. That
interaction, however, seems to be going only one-way, from
perception to higher cognition. Correct internal symbols
can only be formed once the appropriate auditory and
visual concepts have been independently formed.
We would agree that a strong unsupervised component is
needed for such a perceptually oriented task as spatial
concept acquisition, as far as it justifies our assumptions of
preprocessing. There’s just too much going on in what an
infant perceives, for it to attain spatial categories just by
hearing the correct words in the correct contexts, without
any inborn attentive predispositions. How far these extend,
is we think an open question. Regier (Regier, 1992) has
achieved remarkable results in the field of spatial concept
acquisition, both static and dynamic, across languages, by
assuming a considerable amount of preprocessing, which is
all hardwired in his architecture and precedes learning.
We think we have shown that with relatively simple and
reasonable preprocessing assumptions, both unsupervised
and supervised learning can become more efficient. We
have also attempted to show how the acquisition process
can benefit from the continuous interaction of these two
modes of learning. This last issue is subject to future
development.
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