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Abstract 
The number and the size of spatial databases, e.g. for geo- 
marketing, traffic control or environmental studies, are rapid- 
ly growing which results in an increasing need for spatial data 
mining. In this paper, we present new algorithms for spatial 
characterization and spatial trend analysis. For spatial char- 
acterization it is important that class membership of a data- 
base object is not only determined by its non-spatial 
attributes but also by the attributes of objects in its neighbor- 
hood. In spatial trend analysis, patterns of change of some 
non-spatial attributes in the neighborhood of a database ob- 
ject are determined. We present several algorithms for these 
tasks. These algorithms were implemented within a general 
framework for spatial data mining providing a small set of 
database primitives on top of a commercial spatial database 
management system. A performance evaluation using a real 
geographic database demonstrates the effectiveness of the 
proposed algorithms. Furthermore, we show how the algo- 
rithms can be combined to discover even more interesting 
spatial knowledge. 
Keywords: Data Mining Algorithms, Database Primitives, 
Spatial Data, Characterization, Trend Detection. 

1. Introduction 
Spatial Database System (SDBS) (Gueting 1994) are data- 
base systems for the management of spatial data. To find im- 
plicit regularities, rules or patterns hidden in large spatial da- 
tabases, e.g. for geo-marketing, traffic control or 
environmental studies, spatial data mining algorithms are 
very important. A variety of data mining algorithms for min- 
ing in relational as well as spatial databases have been pro- 
posed in the literature (Fayyad et al. 1996, Chen et al. 1996., Ko- 
perski et a2. 1996, for overviews). 

In this paper, we present new algorithms for characteriza- 
tion and trend detection in spatial databases. These tasks, es- 
pecially characterization in spatial databases were also stud- 
ied in (Lu et al. 1993), (Koperski. &  Han 1995), (Ng 1996) and 
(Knorr & Ng 1996). For methods of spatial statistics including 
regression methods for trend detection see e.g. (Isaaks & 
Srivastava 1989). A simple approach for spatial trend detec- 
tion, based on a generalized clustering algorithm, is present- 
ed in (Ester etal. 1997b). 
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In (Lu et al. 1993), attribute-oriented induction is per- 
formed using spatial and non-spatial concept hierarchies to 
discover relationships between spatial and non-spatial at- 
tributes. The data is generalized along these concept hierar- 
chies. This process yields abstractions of the data from low 
concept levels to higher ones which can be used to summa- 
rize or characterize the data in more general terms. 

(Koperski. &  Han 1995) introduces spatial association rules 
which describe associations between objects based on dif- 
ferent spatial neighborhood relations. They present an algo- 
rithm to discover spatial rules of the form X + Y (c%), 
where X and Y are sets of spatial or non-spatial predicates 
and c is the confidence of the rule. 

(Ng 1996) and (Knorr & Ng 1996) study characteristic prop- 
erties of clusters of points using reference maps and themat- 
ic maps in a spatial database. For instance, a cluster may be 
explained by the existence of certain neighboring objects 
which may “cause” the existence of the cluster. For a given 
cluster of points, they give an algorithm which can efficient- 
ly find the “top-k” polygons that are “closest” to the cluster. 
For n given clusters of points, an algorithm is presented 
which can find common polygons or classes of polygons 
that are nearest to most, if not all, of the clusters. 

Our algorithms for spatial characterization and trend de- 
tection are presented within a general framework based on 
database primitives for spatial data mining. Most spatial data 
mining algorithms make use of explicit or implicit neighbor- 
hood relations. We argue that spatial data mining algorithms 
heavily depend on an efficient processing of neighborhood 
relationships since the neighbors of many objects have to be 
investigated in a single run of a data mining algorithm. 
Therefore, the extension of an SDBS by data structures and 
operations for efficient processing of neighborhood rela- 
tions is proposed in (Ester et al. 1997a). 

The rest of the paper is organized as follows. We briefly 
introduce database primitives for spatial data mining in sec- 
tion 2. In section 3 and section 4, new algorithms for spatial 
characterization and spatial trend detection are presented. 
The performance of the algorithms is evaluated in section 5 
using real data from a geographic information system. 
Section 6 concludes the paper. 

2. Database Primitives for Spatial Data Mining 
Our database primitives for spatial data mining (Ester et al. 
1997a) are based on the concepts of neighborhood graphs 
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and neighborhood paths which in turn are defined with re- 
spect to neighborhood relations between objects. 

There are three basic types of spatial relations: topologi- 
cal, distance and direction relations which may be combined 
by logical operators to express a more complex neighbor- 
hood relation. We will only mention the direction relations 
for the 2-dimensional case because they are explicitly need- 
ed for our filter predicates. To define the direction relations, 
e.g. 02 south 01, we consider one representative point of the 
object OI as the origin of a virtual coordinate system whose 
quadrants and half-planes define the directions. To fulfil the 
direction predicate, all points of 02 have to be located in the 
respective area of the plane. Figure 1 illustrates the defini- 
tion of some direction relations using 2D polygons. 

Obviously, the directions are not uniquely defined but 
there is always a smallest direction relation for two objects A 
and B, called the exact direction relation of A and B, which is 
uniquely determined. For instance, in figure 1 A and B satis- 
fy the direction relations northeast and east but the exact di- 
rection relation of A and B is northeast. 

E any-direction A 
B north A 

,A 

B east A, 
C east A 

D south A 

figure 1: Illustration of some direction relations 

Definition 1: (neighborhood graphs and paths) Let neigh- 
bor be a neighborhood relation and DB be a database of spa- 

tial objects. A neighborhood graph Gfighbor = (N, E) 

is a graph with nodes N = DB and edges E c N x N where 
an edge e = (nl, n2) exists iff neighbor(nl,n$ holds. A 
neighborhood path of length k is defined as a sequence of 
nodes [nl, n2, . . ., qJ, where neighbor(ni, ni+l) holds for all 
niE N, 1 lick . 

We assume the standard operations from relational alge- 
bra like selection, union, intersection and difference to be 
available for sets of objects and sets of neighborhood paths 
(e.g., the operation seZection(set, predicate) returns the set of 
all elements of a set satisfying the predicate predicate). 
Only the following important operations are briefly de- 
scribed: 

l neighbors: Graphs x Objects x Predicates --> 
Sets-of-objects 

l paths: Sets-of-objects --> Sets-of-paths; 
l extensions: Graphs x Sets-of-paths x Integer x Pred- 

icates -> Sets-of-paths 
The operation neighbors(graph, object, predicate) returns 

the set of all objects connected to object in graph satisfying 
the conditions expressed by the predicate predicate. 

The operation paths(objects) creates all paths of length 1 
formed by a single element of objects and the operation ex- 
tensions(graph, paths, max, predicate) returns the set of all 
paths extending one of the elements of paths by at most max 
nodes of graph. The extended paths must satisfy the predi- 
cate predicate. The elements of paths are not contained in 
the result implying that an empty result indicates that none 
of the elements of paths could be extended. 

Because the number of neighborhood paths may become 
very large, the argument predicate in the operations neigh- 
bors and extensions acts as a filter to restrict the number of 
neighbors and paths to certain types of neighbors or paths. 
The definition of predicate may use spatial as well as non- 
spatial attributes of the objects or paths. 

For the purpose of KDD, we are mostly interested in paths 
“leading away” from the start object. We conjecture that a 
spatial KDD algorithm using a set of paths which are cross- 
ing the space in arbitrary ways will not produce useful pat- 
terns. The reason is that spatial patterns are most often the 
effect of some kind of influence of an object on other objects 
in its neighborhood. Furthermore, this influence typically 
decreases or increases more or less continuously with in- 
creasing or decreasing distance. To create only relevant 
paths, we introduce special filter predicates which select 
only a subset of all paths, thus also significantly reducing the 
runtime of data mining algorithms. 

There are many possibilities to define “starlike” filters. 
The filter starlike, e.g., requires that, when extending a path 
p = [q,n2,..., nk] with a node nk+I, the exact “final” direction 
of p may not be generalized. For instance, a path with final di- 
rection northeast can only be extended by a node of an edge 
with the exact direction northeast. The filter variable-starlike 
requires only that, when extending p the edge (nk, nk+l) has 
to fulfil at least the exact “initial” direction of p. For in- 
stance, a neighborhood path with initial direction north can be 
extended such that the direction north or the more special di- 
rection northeast is satisfied. Figure 2 illustrates these filters 
when extending the paths from a given start object. The fig- 
ure also depicts another filter vertical starlike which is less 
restrictive in vertical than in horizontal direction. 

starlike vertical~turlike 

figure 2: Illustration of some filter predicates 

3. Spatial Characterization 
We define a spatial characterization of a given set of target 
objects with respect to the database containing these targets 
as a description of the spatial and non-spatial properties 
which are typical for the target objects but not for the whole 
database. We use the relative frequencies of the non-spatial 
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attribute values and the relative frequencies of the different 
object types as the interesting properties. For instance, dif- 

attributes attributes - 

(a) relative frequencies (b) relative frequencies 
in the database in the target regions 

g 
4 significance 

t? 
Q 
E 
b (c) ratio of the frequencies 

figure 3: Sample frequencies and differences 

ferent object types in a geographic database are communi- 
ties, mountains, lakes, highways, railroads etc. To obtain a 
spatial characterization, we consider not only the properties 
of the target objects, but also the properties of their neigh- 
bors up to a given maximum number of edges in the neigh- 
borhood graph. Figure 3 depicts an example for the relative 
frequencies in the database as well as in the target regions 
and the ratio of these frequencies in comparison with the 
specified level of significance. 

The task of spatial characterization is to discover the set of 
all tuples (attribute, value) and the set of all objects types for 
which the relative frequency in a set targets, extended by its 

neighbors, is significantly different from the relative fre- 
quency in DB. A very frequent property present only in the 
neighborhood of very few of the targets would create mis- 
leading results. Therefore, we require that such a property 
must also have a significantly larger relative frequency in 
the neighborhood of many targets. 

Definition 2: (spatial characterization): Let Gfzghbor be 
a neighborhood graph and targets be a subset of DB. Let 
freqS(prop) denote the number of occurrences of the proper- 
ty prop in the set s and let card(s) denote the cardinality of s. 
Thefrequency factor of prop with respect to targets and DB, 
denoted by fFzg,,,(prop), is defined as follows: 

fargets(prop) freqDB(prop) 
f F$ets(ProP) = ‘raTd(targets) ’ card( DB) 

Let significance and proportion be real numbers and let 
ma-neighbors be a natural number. Let neighbor+(s) 
denote the set of all objects reachable from one of the ele- 
ments of s by traversing at most i of the edges of the neigh- 
borhood graph G. Then, the task of spatial characterization 
is to discover each property prop and each natural number 
n I max-neighbors such that (1) the set objects = 
neighborsa(targets) as well as (2) the sets objects = 
neighborsE({ t}) for at least proportion many t E targets 
satisfy the condition: 

2 significance 
f ftects(ProP) Or 1 

5 significance 

In point (1) the union of the neighborhood of all target ob- 
jects is considered simultaneously, whereas in point (2) the 

characterization(graph Gf ; set of objects targets; real signifiance, proportion; integer mux-neighbors: 

initialize the set of characterizations as empty; 
initialize the set of regions to targets; 
initialize n to 0; 
calculate frequencPB@rop) for all properties prop = (attribute, value); 
while n I max-neighbors do 

for each attribute of DB and for the special attribute object type do 
for each value of attribute do 

calculatefrequencyregions (prop) for property prop = (attribute, value); 
if f f)eBgions(ProP) 2 significance or (prop) I 11 significance then 

add (Prop, It, f gfions 
f f)eBions 

(prop) ) to the set characterizations; 
if n < max-neighbors then 

for each object in regions do 
add neighbors( GrB , object, TRUE) to regions; 

increment n by 1; 
extract all tuples (prop, n, f(prop)) from characterizations which are significant in at least proportion of the 

regions with n extensions; 
return the rule generated from these characterizations; 

figure 4: Algorithm spatial characterization 
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neighborhood of each target object is considered separately. 
The parameter proportion specifies the minimum confi- 
dence required for the characterization rules and the fre- 
quency factors of the properties provide a measure of their 
interestingness with respect to the given target objects. 

Figure 4 presents the algorithm for discovering spatial 
characterizations. The parameter proportion is relevant only 
for the last step of the algorithm, i.e. for the generation of a 
rule. Note the importance of the parameter n (that is, the 
maximum number of edges of the neighborhood graph tra- 
versed starting from a target object) in the resulting charac- 
terizations. For example, a property may be significant when 
considering all neighbors which are reachable from one of 
the target objects via 2 edges of the neighborhood graph. 
However, the same property may not be significant when 
considering further neighbors if then the target regions are 
extended by objects for which the property is not frequent. 
The generated rule has the following format: 

target * pl (nl, freq-facl) fi . . . A pk (nk, freq- fack). 
This rule means that for the set of all targets extended by 

ni neighbors, the property pi isfreq-faci times more (or less) 
frequent than in the database. 

4. Spatial Trend Detection 
We define a spatial trend as a regular change of one or more 
non-spatial attributes when moving away from a given start 
object o. We use neighborhood paths starting from o to mod- 
el the movement and we perform a regression analysis on the 
respective attribute values for the objects of a neighborhood 
path to describe the regularity of change. Since we are inter- 
ested in trends with respect to o, we use the distance from o 
as the independent variable and the difference of the at- 

tribute values as the dependent variable(s) for the regression. 
The correlation of the observed attribute values with the val- 
ues predicted by the regression function yields a measure of 
confidence for the discovered trend. 

(a) positive trend (b) negative trend (c) no trend 

figure 5: Sample trends 

In the following, we will use linear regression, since it is 
efficient and often the influence of some phenomenon to its 
neighborhood is either linear or may be transformed into a 
linear model, e.g. exponential regression. Figure 5 illus- 
trates a positive and a negative (linear) trend as well as a sit- 
uation where no significant (linear) trend is observed. 

Definition 3: (spatial trend detection): Let g be a neighbor- 
hood graph, o an object (node) in g. and a be a subset of all 
non-spatial attributes. Let # be a type of function, e.g. linear 
or exponential, used for the regression and letfilter be one of 
the filters for neighborhood paths. Let min-conf be a real 
number and let min-length as well as mu-length be natural 
numbers. The task of spatial trend detection is to discover 
the set of all neighborhood paths in g starting from o and 
having a trend of type # in attributes a with a correlation of at 
least min-conf. The paths have to satisfy the filter and their 
length must be between min-length and max-length. 

global-trend(graph g; object o; attribute a; type t; real min-conf, integer min-Zength,max-length; filtern 
initialize a list of paths to the set extensions(g, path(o), min-length, f3; 
initialize an empty set of observations; 
initialize the last-correlation and last-paths as empty; 
initialize first-pos to 1; 
initialize last-pos to min-length; 
while paths is not empty do 

for each path in paths do 
for object fromfirst-pos of path to last-pos of path do 

calculate diffas a(objec#) - a(o) and calculate dist as dis#(objec#,o); 
insert the tuple (difl, dist) into the set of observations; 

perform a regression of type t on the set of observations; 
if abs(correlation) of the resulting regression function 2 min-conf then 

set last-correlation to correlation and last-paths to paths; 
if the length of the paths < max-length then 

replace the paths by the set extensions(g,paths, 1, fi; 
increment last-pos by 1; 
set first-pos to last-pos; 

else set paths to the empty list; 
else return last-correlation and last-paths; 

return the last correlation and last-paths; 

figure 6: Algorithm global-trend 
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local-trends(graph g; object o; attribute a; type t; real min-conf, integer min-Zengthpzux-Zength; filters) 
initialize a list of paths to the set extensions(g, path(o), min-length, fl; 
initialize two empty sets of positive and negative trends; 
while paths is not empty do 

initialize the set of observations as empty; 
remove the first element of paths and take it as path; 
for object from min-length& object of path to last object of path do 

calculate di$fas a(object) - a(o) and calculate dist as dist(object,o); 
insert the tuple (di#,dist) into the set of observations; 

I 
perform a regression of type t on the set of observations; 
if abs(correlation) of the resulting regression function 2 min-conf then 

if correlation > 0 then 
insert the tuple (path, correlation) into the set of positive trends; 

else insert the tuple (path, correlation) into the set of negative trends; 
if the length of path c max-length then 

add the extensions(g,path,I, f) to the head of paths; 
return positive-trends and negative-trends; 

figure 7: Algorithm local-trends 

Definition 3 allows different specializations. Either the 
set of all discovered neighborhood paths (global trend) or 
each of its elements (local trend) must have a trend of the 
specified type. 

Algorithm global-trend is depicted in figure 6. Beginning 
from o, it creates all neighborhood paths of the same length 
simultaneously - starting with min-length and continuing 
until max-length. The regression is performed once for each 
of these sets of all paths of the same length. If no trend of 
length I with correlation 2 min-conf is detected, then the path 
extensions of length Z+I, Z+Z, . . ., max-length are not creat- 
ed. The algorithm returns the significant spatial trend with 
the maximum length. 

Algorithm local-trends is outlined in figure 7. This algo- 
rithm performs a regression once for each of the neighbor- 
hood paths with length 1 min-length and a path is only ex- 
tended further if it has a significant trend. The algorithm 
returns two sets of paths showing a significant spatial trend, 
a set of positive trends and a set of negative trends. 

5. Performance Evaluation 
We implemented the database primitives on top of the com- 
mercial DBMS Illustra (Illustra 1997) using its 2D spatial 
data blade which offers R-trees. The advantage of this ap- 
proach is an easy and rather portable implementation. The 
disadvantage is that we cannot reduce the relatively large 
system overhead imposed by the underlying DBMS. 

A geographic database on Bavaria was used for the exper- 
imental performance evaluation of our algorithms. The data- 
base contains the ATKIS 500 data (Bavarian State Bureau of 
Topography and Geodesy 1996) and the Bavarian part of the 
statistical data obtained by the German census of 1987, i.e. 
2043 Bavarian communities with one spatial attribute (poly- 
gon) and 52 non-spatial attributes (such as average rent or 
rate of unemployment). Also included are spatial objects 
representing natural object like mountains or rivers and in- 
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Relation Bavarian Communities: 

figure 8: Spatial and non-spatial attributes 
frastructure such as highways or railroads. The total number 
of spatial objects in the database then amounts to 6924. The 
relation communities is sketched in figure 8. This geograph- 
ic database may be used, e.g., by economic geographers to 
discover spatial rules on the economic power of communi- 
ties. We performed several sets of experiments to measure 
the performance of our characterization and spatial trend de- 
tection algorithms. Note, that the runtime of the algorithms 
is in general not dependent on the database size but on the 
size of the input and on the number of neighborhood opera- 
tions performed for the considered objects. This number de- 
pends on the average number of neighbors per object in the 
database which is an application dependent parameter. In 



our geographic information system the average number of 
neighboring communities is approximately six. 

5.1 Characterization 
The characterization algorithm usually starts with a small set 
of target objects, selected for instance by a condition on 
some non-spatial attribute(s) such as “rate of retired people 
= HIGH” (see figure 9, left). Then, the algorithms expands 
regions around the target objects, simultaneously selecting 
those attributes of the regions for which the distribution of 
values differs significantly from the distribution in the whole 
database (figure 9, right). In the last step of the algorithm, a 
characterization rule is generated describing the target re- 
gions (figure 9, bottom). In this example, not only some 
non-spatial attributes but also the neighborhood of moun- 
tains (after three extensions) are significant for the charac- 
terization of the target regions. 

target objects maximally expanded regions 

rule characterizing the target objects 
object has high rate of retired people 3 

apartments per building = very low (0,g.l) A 
rate of foreigners = very low (0,8.9) A 
rate of academics = medium (0, 6.3) A 

average size of enterprises = very low (0,5.8) A 

object type = mountain (3,4.1) 

figure 9: Characterizing wrt. high rate of retired people 

Table 1 reports the efficiency of our spatial characteriza- 
tion algorithm. The numbers are calculated as the average 
over all start objects for several experiments with different 
target sets. 

5.2 Trend Detection 
Spatial trends describe a regular change of non-spatial at- 
tributes when moving away from a start object o. The two al- 
gorithms above may produce different patterns of change for 
the same start object o. 

The existence of a global trend for a start object o indi- 
cates that if considering all objects on all paths starting from 
o the values for the specified attribute(s) in general tend to 
increase (decrease) with increasing distance. Figure 10 (left) 
depicts the result of algorithm global-trend for the attribute 
“average rent” and the city of Regensburg as a start object. 

Algorithm local-trends detects single paths starting from 
an object o and having a certain trend. The paths starting 
from o may show different pattern of change, e.g., some 
trends may be positive while the others may be negative. 
Figure 10 (right) illustrates this case for the attribute “aver- 
age rent” and the city of Regensburg as a start object. 

The spatial objects within a trend region, i.e. either the 
start objects or the objects forming the paths, may be the 
subject of further analysis. For instance, algorithm global- 
trend may detect regions showing a certain global trend, and 
algorithm local-trends then finds within these regions some 
paths having the inverse trend (see figure 10). Then, we may 
try to find an explanation for those “inverse” paths. Another 
possibility is to detect “centers” for a given attribute first 
(using algorithm global-trend) and then apply our character- 
ization algorithm to the centers to find their common proper- 
ties. An example for this approach is presented in more de- 
tail in section 5.3. 

Global trend (min-conk0.7) Local trends (tin-confi0.9) 

+ direction of decreasing attribute values 

figure 10: Visualization of trends for attribute “average 
rent” starting from the city of Regensburg 

For our performance test we applied both algorithms to 
the Bavaria database varying min-con.dence from 0.6 to 0.8 
for the attribute “average rent” and linear type of regression. 
The predicate intersects was used as the neighborhood rela- 
tion to define the graph. The filter vertical starlike for paths 
was used because due to our domain knowledge we expect- 
ed the most significant trends in north-south direction. The 
length of the paths was restricted by min-length = 4 and max- 
length = 7. 

Table 2 reports the performance results for the algorithms 
global-trend and local-trends. The average numbers shown 
were calculated over all start objects. 

Table 1: Performance of spatial characterization 
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correlation 0 neighbors 
operations 0 runtime (sec.) 

1 correlation 11 ( 0 runtime (sec.) 

Table 2: Performance of both trend algorithm 

5.3 Combining Trend Detection and 
Characterization 

In our last set of experiments, we combined trend detection 
and characterization. In a first step, we detected centers for 
attribute “average rent” using algorithm global-trend: mini- 
mum correlation was set to 0.7 and we selected only those 
communities where the slope of the trend was less than - 1 OS4 
and the path length was not smaller than 5, i.e. we were only 
interested in linear trends that are noticeably decreasing. 

With this definition, we found 24 centers out of the 2043 
communities. The characterization rule discovered for these 
centers contains the following properties: 

rate of academics = high (1,9. l), 
average number of persons per household = low (1,2.5), 
rate of foreigners = low (1,2.8). 
Note that no attribute was significant for n = 0, i.e. without 

considering the neighborhood of the target object. Only if 
we extend the target regions by one neighbor, we can see 
some characteristic properties. Thus, this result could not be 
found by a non-spatial characterization algorithm. 

6. Conclusions 
In this paper, we presented new algorithms for spatial char- 
acterization and spatial trend detection. To obtain a spatial 
characterization, we consider not only the properties of the 
target objects but also the properties of their neighbors. The 
goal of spatial trend analysis is to discover patterns of 
change of some non-spatial attribute(s) in the neighborhood 
of a start object. The algorithms were implemented within a 
general framework for spatial data mining providing a small 
set of database primitives on top of a commercial spatial da- 
tabase management system. The effectiveness of the pro- 
posed algorithms was demonstrated by a performance eval- 
uation using a real geographic database. 

Future research will have to consider the following issues. 
The algorithm for spatial characterization might be extended 

to discover not only summarizing characterization mies but 
also discriminating rules. Furthermore, neighborhood paths 
may also be used as input for the well-known relational data 
mining algorithms such as decision tree classifiers. Alterna- 
tively, new spatial data mining algorithms operating directly 
on neighborhood graphs and paths will be investigated. 
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