
DISTILL : Learning Domain-Specific Planners by Example

Elly Winner ELLY @CS.CMU.EDU

Manuela Veloso MMV @CS.CMU.EDU

Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213

Abstract

An interesting alternative to domain-independent
planning is to provide example plans to demon-
strate how to solve problems in a particular do-
main and to use that information to learn domain-
specific planners. Others have used example
plans for case-based planning, but the retrieval
and adaptation mechanisms for the inevitably
large case libraries raise efficiency issues of con-
cern. In this paper, we introduce dsPlanners,
or automatically generated domain-specific plan-
ners. We present the DISTILL algorithm for
learning dsPlanners automatically from example
plans. DISTILL converts a plan into a dsPlan-
ner and then merges it with previously learned
dsPlanners. Our results show that the dsPlan-
ners automatically learned by DISTILL com-
pactly represent its domain-specific planning ex-
perience. Furthermore, the dsPlanners situation-
ally generalize the given example plans, thus al-
lowing them to efficiently solve problems that
have not previously been encountered. Finally,
we present the DISTILL procedure to automati-
cally acquire one-step loops from example plans,
which permits experience acquired from small
problems to be applied to solving arbitrarily large
ones.

1. Introduction

Intelligent agents must develop and execute autonomously
a strategy for achieving their goals in a complex environ-
ment, and must adapt that strategy quickly to deal with un-
expected changes. Solving complex problems with classi-
cal domain-independent planning techniques has required
prohibitively high search efforts or tedious hand-coded
domain knowledge, while universal planning and action-
selection techniques have proven difficult to extend to com-
plex environments.

Researchers have focused on making general-purpose plan-
ning more efficient by using either learned or hand-coded
control knowledge to reduce search and thereby speed up
the planning process. Machine learning approaches have
relied on automatically extracting control information from
domain and example plan analysis, with relative success in
simple domains. Hand-coded control knowledge (or hand-
written domain-specific planners) has proved more useful
for more complex domains. However, it frequently requires
great specific knowledge of the details of the underlying
domain-independent planner for humans to formalize use-
ful rules.

In this paper, we introduce the concept of dsPlanners, or au-
tomatically generated domain-specific planning programs.
We then describe the DISTILL algorithm, which automat-
ically extracts complete non-looping dsPlanners from ex-
ample plans, and our method for identifying one-step loops
in example plans.

The learning techniques used in the DISTILL algorithm
allow problem solving that avoids the cost of generative
planning and of maintaining exhaustive databases of ob-
served behavior by compiling observed plans into compact
domain-specific planners, or dsPlanners. These dsPlanners
are able to duplicate the behavior shown in the example
plans and to solve problems based on that behavior. Other
planning methods have exponential time complexity, but
dsPlanners return a solution plan or failure with complex-
ity that is linear in the size of the planners, and the size
of the solution, modulo state matching effort. The current
DISTILL algorithm learns non-looping dsPlanners from ex-
ample plans supplemented with their rationales. We show
that these dsPlanners succeed in compactly capturing ob-
served behavior and in solving many new problems. In
fact, dsPlanners extracted from only a few example plans
are able to solve all problems in limited domains.

Due to the complexity of finding optimal solutions in plan-
ning, dsPlanners learned automatically from a finite num-
ber of example plans cannot be guaranteed to find optimal
plans. Our goal is to extend thesolvability horizonfor

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.



planning by reducing planning times and allowing much
larger problem instances to be solved. We believe that post-
processing plans can help improve plan quality.

Our work on the DISTILL algorithm for learning dsPlan-
ners focuses on converting new example plans into dsPlan-
ners in if-statement form and merging them, where possi-
ble. Our results show that merging dsPlanners produces a
dramatic reduction in space usage compared to case-based
or analogical plan libraries. We also show that by con-
structing and combining the if statements appropriately, we
can achieve automaticsituational generalization, which al-
lows dsPlanners to solve problems that have not been en-
countered before without resorting to generative planning
or requiring adaptation.

We first discuss related work. Then, we formalize the con-
cept of dsPlanners. Next, we present the novel DISTILL

algorithm for learning complete non-looping dsPlanners
from example plans and present our results. We then dis-
cuss our algorithm for automatically identifying one-step
loops in example plans.

2. Related Work

We discuss related work in three main areas: in classi-
cal planning and learning, since our approach is another
method of learning for planning; in automatic program gen-
eration, since our approach is to learn a planning program;
and in universal planning, since the planning program our
techniques learn is, effectively, a universal plan.

2.1. Domain Knowledge to Reduce Planning Search

A large body of work has focussed on acquiring and us-
ing domain knowledge to reduce planning search. Some of
the most commonly used forms of domain knowledge are
control rules, e.g., (Minton, 1988); macro operators, e.g.,
(Fikes et al., 1972); case-based and analogical reasoning,
e.g., (Kambhampati & Hendler, 1992; Veloso, 1994); and
hierarchical and skeletal planning, e.g., (Sacerdoti, 1974;
Friedland & Iwasaki, 1985)1. Many of these methods suf-
fer from theutility problem, in which learning more infor-
mation can actually be counterproductive because of diffi-
culty with storage and management of the information and
with determining which information to use to solve a par-
ticular problem. In many cases, domain knowledge written
by humans is also much more useful than that learned by
computers. However, writing domain knowledge by hand
is often very time-consuming and difficult, in part because
writing effective domain knowledge often requires a deep

1Because the research we discuss in the Related Work section
is so broad, we list only representative examples of the work and
limit ourselves to only a brief mention or description of different
approaches.

understanding of the problem-solving architecture of the
underlying planner. Though each of these techniques has
been shown to reduce dramatically the planning time re-
quired to solve certain problems, they do not reduce the
complexity of the planning problem and cannot, in general,
solve problems without falling back on generative plan-
ning with a general-purpose planner. Our approach avoids
generative planning search and the reliance on a general-
purpose planner by acquiring a domain-specific planning
program from observed example plans.

One technique used to identify control knowledge is
explanation-based learning (EBL). This technique consists
of explaining a success or failure in a search conducted by a
specific planner. Given a state and a set of goals, EBL gen-
erates the explanation by filtering away the facts of the state
or other goals that are not relevant to the success or failure
of the search. Hence, EBL, applied to planning, produces
control knowledge that guides the choices encountered in
the search process of an existing planner. DsPlanners also
rely on explaining example plans by looking at the weakest
preconditions between state and goals. However, dsPlan-
ners are not control knowledge for an existing planner; they
are themselves planners: complete programs that create an
output plan.

2.2. Automatic Program Generation

Work on automatic program generation can be divided into
two main classes:deductiveandinductive program synthe-
sis. In deductive program synthesis, programs are gener-
ated from specifications, e.g., (Smith, 1991). We do not
know of a general and concise way to describe the desired
behavior of a domain-specific planner except through ex-
amples. Generating a program from examples is called in-
ductive program synthesis. Our work falls into this cat-
egory. Some work in inductive program synthesis in-
duces programs from input/output pairs, e.g., (Muggleton,
1991). In planning, this corresponds to inducing a plan-
ning program by looking only at pairs of initial and goal
states. Other work induces programs from example exe-
cution traces, e.g., (Bauer, 1979; Lau, 2001). In planning,
this corresponds to inducing a planner from example prob-
lems and solution plans that solve the problems. This is the
approach we have taken.

However, work in inductive program synthesis is not im-
mediately applicable to our problem. In much inductive
program synthesis work, example execution traces are an-
notated to mark the beginnings and ends of loops, to spec-
ify loop invariants and stopping conditions, to mark condi-
tionals, etc. This kind of labelling cannot be obtained au-
tomatically from observed executions, so we do not allow
it in our work. Another difference is that, whereas many
approaches to IPS must attempt to induce the purpose of



the steps from many examples, in our planning-based ap-
proach, the purpose of each step is automatically deduced
via plan analysis. This information is critical to rapidly
and correctly identifying the conditions for executing a se-
quence of steps or for terminating a loop. Despite these
differences, several researchers have explored the applica-
tion of inductive program synthesis to planning.

Inductive program synthesis has been used to generate iter-
ative and recursive macro operators, e.g., (Schmid, 2001).
These macros capture repetitive behavior and can drasti-
cally reduce planning search by encapsulating an arbitrar-
ily long string of operators. However, unlike our approach,
this technique does not attempt to replace the generative
planner, and so does not eliminate planning search.

Some work has also focussed on analyzing example plans
to reveal a strategy for planning in a particular domain in
the form of a decision list (Khardon, 1999), or a list of
condition-action pairs. These condition-action pairs are
derived from example state-action pairs. This technique
is able to solve fewer than 50% of 20-block Blocksworld
problems and requires over a thousand state-action pairs to
achieve coverage (Khardon, 1999). In our work, we pre-
serve and analyze the structure of the observed plans in or-
der to extract as much information as possible from limited
evidence. Our hope is that this will result in a more suc-
cessful algorithm that requires orders of magnitude fewer
examples.

2.3. Universal Planning

Some researchers have sought to avoid the planning search
problem by acquiring and using “universal plans,” or pre-
computed functions that map state and goal combinations
to actions. Our work can be seen as a new method of ac-
quiring and storing universal plans.

One previous approach to automatically acquiring a uni-
versal plan is reinforcement learning. There has, however,
been limited success in applying the solution to one prob-
lem to another, particularly to a larger or more complex
problem. There have also been many approaches to finding
more compact ways of representing the learned universal
plan, e.g., (Uther & Veloso, 2000), but such plans can still
be prohibitively large for interesting problems in complex
domains.

Decision trees have also been used in a purely planning
context. Schoppers suggests decision trees splitting on
state and goal predicates (Schoppers, 1987), but finds these
trees by conducting a breadth-first search for solutions—a
method which is too time-consuming for most domains.

Other researchers have used Ordered Binary Decision Dia-
grams (OBDDs) to represent universal plans (Cimatti et al.,
1998). OBDDs provide an effective way to compress a uni-

versal plan without losing precision, however are currently
generated via blind backwards search from goal states, a
method that is impractical in complex domains.

3. Defining and Using dsPlanners

We now introduce the concept of a dsPlanner, a domain-
specific planning program that, given a planning problem
(initial and goal states) as input, either returns a plan that
solves the problem or returns failure, if it cannot do so.
The dsPlanner is a novel method of storing planning knowl-
edge. It is expressive and compact and does not rely on an
underlying general-purpose planner.

DsPlanners are composed of the following programming
constructs and planning-specific operators:

• while loops;

• if , then , elsestatements;

• logical structures (and , or , not );

• in goal stateandin current stateoperators;

• v variant indicators;

• plan predicates; and

• plan operators.

In order for dsPlanners to capture repeated sequences in
while loops and to determine that the same sequence of op-
erators in two different plans has the same conditions, they
must update a current state as they execute by simulating
the effects of the operators they add to the plan. Without
this capability, we would be unable to use such statements
as: while (condition holds)do (body). Therefore, in or-
der to use a dsPlanner, it must be possible to simulate the
execution of the plan. However, since dsPlanner learning
requires full STRIPS-style models of the planning opera-
tors, this is not an additional problem.

The dsPlanner language is rich enough to allow compact
planners for many difficult problems. We demonstrate this
by presenting two short hand-written dsPlanners that solve
all problems in well-known domains. Our current algo-
rithm for learning dsPlanners from examples, DISTILL ,
does not find looping dsPlanners. However, we continue
to work towards this goal, and in Section 5, we describe
the DISTILL procedure for identifying simple loops in ex-
ample plans.

Table 1 shows a simple but suboptimal hand-written
dsPlanner that solves all BlocksWorld-domain (Veloso,
1994) problems that involve building towers of blocks. The
dsPlanner is composed of three while loops: first, all blocks
should be unstacked; then, the second-to-bottom block of
every tower should be stacked onto the bottom block; then,



plan← {}
while (in current state(on-block(?1:block ?2:block)) and

in current state(clear(?1:block))) do
operator←move-block-to-table(?1:block ?2:block)
execute operator
plan← plan + operator

while (in goal state(on-block(v?1:block v?2:block)) and
not (in goal state(on-block(v?2:block v?3:block))) and
in current state(clear(v?1:block)) and
in current state(clear(v?2:block))) do

operator←move-table-to-block(?1:block ?2:block)
execute operator
plan← plan + operator

while (in goal state(on-block(v?1:block v?2:block)) and
in current state(on-table(v?1:block)) and
in current state(on-block(v?2:block v?3:block))) do

operator←move-table-to-block(?1:block ?2:block)
execute operator
plan← plan + operator

return plan

Table 1. A dsPlanner that solves all BlocksWorld-domain prob-
lems. In future example dsPlanners, for the sake of compactness,
we replace the operator executing and plan updating and returning
notation with the name of the operator to execute and add to the
plan.

for each block that is stacked on a second block in the goal
state, if the second block is already stacked on a third, go
ahead and stack the first block on the second.

Table 2 shows a hand-written dsPlanner that solves all
Rocket-domain (Veloso, 1994) problems. The dsPlanner is
composed of two while loops: while there is some package
that is not at its goal location, execute the following loop:
while there is some package in the rocket that should arrive
at a goal destination, unload all packages in the rocket that
should end up in the rocket’s current city, load all packages
in the rocket’s current city that should go elsewhere, then
fly the rocket to the goal destination of the package inside
it that should be delivered to a goal destination. Once the
rocket contains no more packages that should be delivered
to goal destinations, fly the rocket to the location of the
original misplaced package, load it into the rocket, and be-
gin the rocket-emptying loop again. Once all the packages
are correctly placed, fly each rocket to its goal location.

We now describe how to generate plans from dsPlanners.
As previously mentioned, while executing the dsPlanner,
we must keep track of a current state and of the current
solution plan. The current state is initialized to the initial
state, and the solution plan is initialized to the empty plan.
Executing the dsPlanner is the same as executing apro-
gram: it consists of applying each of the statements to the
current state. Each statement in the dsPlanner is either a
plan step, an if statement, or a while loop. If the current
statement is a plan step, make sure it is applicable, then

while (in goal state(at(v?1:pkg v?2:city)) and
not (in current state(at(v?1:pkg v?2:city)))) do

while (in current state(inside(v?3:pkg v?4:rocket)) and
in goal state(at(v?3:pkg v?5:city))) do

while (in current state(inside(v?6:pkg ?4:rocket)) and
in current state(at(?4:rocket v?7:city)) and
in goal state(at(v?6:pkg v?7:city))) do

unload(?6:pkg ?4:rocket ?7:city)
while (in current state(at(?4:rocket v?6:city)) and

in current state(at(v?7:pkg v?6:city)) and
in goal state(at(v?7:pkg v?8:city))) do

load(?7:pkg ?4:rocket ?6:city)
if (in current state(at(?4:rocket ?6:city))) then

fly(?4:rocket ?6:city ?5:city)
if (in current state(at(?1:pkg ?3:city)) and

in current state(at(?4:rocket ?5:city))) then
fly(?4:rocket ?5:city ?3:city)

if (in current state(at(?1:pkg ?3:city)) and
in current state(at(?4:rocket ?3:city))) then

load(?1:pkg ?4:rocket ?3:city)
while (in current state(at(v?1:rocket v?2:city)) and

in goal state(at(v?1:rocket v?3:city))) do
fly(?1:rocket ?2:city ?3:city)

Table 2. A dsPlanner that solves all Rocket-domain problems.

append it to the solution plan and apply it to the current
state. If the current statement is an if statement, check to
see whether it applies to the current state. If it does, apply
each of the statements in its body; if not, go on to the next
statement. If the current statement is a while loop, check
to see whether it applies to the current state. If it does, ap-
ply each of the statements in its body until the conditions
of the loop no longer apply. Then go on to the next state-
ment. Once execution of the dsPlanner is finished and all
suggested plan steps have been determined to be applica-
ble, the final state must be checked to ensure that it satisfies
the goals. If it does, the generated plan is returned. Oth-
erwise, the dsPlanner must return failure. As previously
mentioned, dsPlanner execution is of linear time complex-
ity in the size of the dsPlanner, the size of the problem, and
the size of the solution.

4. Learning Non-Looping dsPlanners

The current version of the DISTILL algorithm, shown in
Table 3, learns complete, non-repeating dsPlanners from
sequences of example plans, incrementally adapting the
dsPlanner with each new plan. In Section 5, we present the
DISTILL procedure for identifying simple loops in exam-
ple plans. We describe the two main portions of the current
DISTILL algorithm (converting example plans into dsPlan-
ners and merging dsPlanners) in detail in the rest of this
section. We use online learning in DISTILL because it al-
lows a learner with access to a planner to acquire dsPlan-
ners on the fly as it encounters gaps in its knowledge in the



course of its regular activity. And because dsPlanners are
learned from example plans, they reflect thestyleof those
plans, thus making them suitable not only for planning, but
also for agent modeling.

Input : Minimal annotated consistent partial orderP,
current dsPlannerdsPi.

Output : New dsPlannerdsPi+1, updated withP
procedure DISTILL (P, dsPi):
A← Find VariableAssignment(P, dsPi.variables, ∅)
until matchor can’t matchdo

if A = ∅ then
can’t match

else
N ← Make New If Statement(Assign(P,A))
match← Is A Match(N , dsPi)

if not can’t matchand not matchthen
A← Find VariableAssignment(P, dsPi.variables,A)

if can’t matchthen
A← Find VariableAssignment(P, dsPi.variables, ∅)
N ← Make New If Statement(Assign(P,A))

dsPi+1← Add To dsPlanner(N , dsPi)

procedureMake New If Statement(PA):
N ← empty if statement
for all termstm in initial state ofPA do

if exists a stepsn in plan body ofPA such that
sn needstm or goal state ofPA needstm then

Add To Conditions(N , in current state(tm))
for all termstm in goal state ofPA do

if exists a stepsn in plan body ofPA such that
tm relies onsn then

Add To Conditions(N , in goal state(tm))
for all stepssn in plan body ofPA do

Add To Body(N , sn)
return N

procedure Is A Match(N , dsPi):
for all if-statementsIn in dsPi do

if N matchesIn then
return true

procedureAdd To dsPlanner(N , dsPi):
for all if-statementsIn in dsPi do

if N matchesIn then
In← Combine(In,N )
return

if N is unmatchedthen
Add To End(N , dsPi)

Table 3. The DISTILL algorithm: learning a dsPlanner from ex-
ample plans.

DISTILL can handle domains with conditional effects, but
we assume that it has access to a complete STRIPS-style
model of the operators and to a minimal annotated consis-
tent partial ordering of the observed total order plan. Pre-
vious work has shown that STRIPS-style operator models
are learnable through examples and experimentation (Car-
bonell & Gil, 1990) and has shown how to find minimal an-
notated consistent partial orderings of totally-ordered plans

given a model of the operators (Winner & Veloso, 2002).

The DISTILL algorithm converts observed plans into
dsPlanners, described in Section 4.1, and merges them by
finding dsPlanners with overlapping solutions and combin-
ing them, described in Section 4.2. In essence, this builds
a highly compressed case library. However, another key
benefit comes from merging dsPlanners with overlapping
solutions: this allows the dsPlanner to findsituational gen-
eralizationsfor individual sections of the plan, thus allow-
ing it to reuse those sections when the same situation is
encountered again, even in a completely different planning
problem.

4.1. Converting Plans into dsPlanners

The first step of incorporating an example plan into the
dsPlanner is converting it into a parameterized if statement.
First, the entire plan is parameterized. DISTILL chooses the
first parameterization that allows part of the solution plan
to match that of a previously-saved dsPlanner. If no such
parameterization exists, it randomly assigns variable names
to the objects in the problem.2

Next, the parameterized plan is converted into a dsPlanner,
as formalized in the procedure MakeNew If Statement in
Table 3. The conditions of the new if statement are the
initial- and goal-state terms that arerelevant to the plan.
Relevant initial-state terms are those which are needed for
the plan to run correctly and achieve the goals (Veloso,
1994). Relevant goal-state terms are those which the plan
accomplishes. We use a minimal annotated consistent par-
tial ordering (Winner & Veloso, 2002) of the observed plan
to compute which initial- and goal-state terms are relevant.
The steps of the example plan compose the body of the new
if statement. We store the minimal annotated consistent
partial ordering information for use in merging the dsPlan-
ner into the previously-acquired knowledge base.

if (in current state(f(?0:type1)) and
in current state(g(?1:type2)) and
in goal state(a(?0:type1)) and
in goal state(d(?1:type2))) then

op1
op2

Table 4. The dsPlanner DISTILL creates to represent the plan
shown in Figure 1.

Figure 1 shows an example minimal annotated consistent
partially ordered plan with conditional effects. Table 4
shows the dsPlanner DISTILL creates to represent that plan.
Note that the conditions on the generated if statement do

2Two discrete objects in a plan are never allowed to map onto
the same variable. As discussed in (Fikes et al., 1972), this can
lead to invalid plans.



pre:
{}

effects:
g(y:type2) −> d(y:type2)
f(x:type1) −> NOT b(x:type1)

op2

pre:
{}

effects:
f(x:type1) −> a(x:type1)
b(x:type1) −> c(x:type1)

op1

b(x:type1)
f(x:type1)
g(y:type2)
e(z:type3)

INITIAL GOAL

a(x:type1)
d(y:type2)
e(z:type3)

a(x:type1)

d(y:type2)

e(z:type3)

f(x:type1)

g(y:type2)

Figure 1. An example plan. The preconditions (pre) are listed, as
are the effects, which are represented as conditional effectsa →
b, i.e., if a then addb. A non-conditional effect that adds a literal
b is then represented as{} → b. Delete effects are represented as
negated terms (e.g.,{a} → NOT b).

not include all terms in the initial and goal states of the
plan. For example, the dsPlanner does not require thate(z)
be in the initial and goal states of the example plan. This
is because the plan steps do not generatee(z), nor do they
need it to achieve the goals. Similarly,b(x) and the condi-
tional effects that could generate the termc(x) or prevent
its generation are also ignored, since it is not relevant to
achieving the goals.

4.2. Merging dsPlanners

The merging process is formalized in the procedure
Add To dsPlanner in Table 3. The dsPlanners learned by
the DISTILL algorithm are sequences of non-nested if state-
ments. To merge a new dsPlanner into its knowledge base,
DISTILL searches through each of the if statements already
in the dsPlanner to find one whose body (the solution plan
for that problem) matches that of the new problem. We
consider two plans to match if:

• one is a sub-plan of the other, or

• they overlap: the steps that end one begin the other.

If such a match is found, the two if statements are com-
bined. If no match is found, the new if statement is simply
added to the end of the dsPlanner.

We will now describe how to combine two if statement
dsPlanners,if1= if x then abc and if2= if y then b, when
the body ofif2 is a sub-plan of that ofif1. For any set of
conditionsC and any steps applicable in the situationC,
we defineCs to be the set of conditions that hold after step
s is executed in the situationC. We also define a new func-
tion, Relevant(C, s), which, for any set of conditionsC

and any plan steps, returns the conditions inC that are
relevant to the steps.

Merging if1 and if2 will result in three new if statements.
We will label them if3, if4, and if5. The body of if3
is set toa and its conditions areRelevant(x, a). The
body of if4 is b and its conditions areRelevant(xa, b) or
Relevant(y, b). 3 Finally, the body ofif5 is c and its con-
ditions areRelevant(xab, c). Whichever ofif1 or if2 is al-
ready a member of the dsPlanner is removed and replaced
by the three new if statements.

Combining two if statements with overlapping bodies is
similar. Merging the two if statementsif1= if x then ab
and if2= if y then bc will result in three new if state-
ments, labelledif3, if4, and if5. The body ofif3 is set
to a and its conditions areRelevant(x, a). The body
of if4 is b, and its conditions areRelevant(xa, b) or
Relevant(y, b). Finally, the body ofif5 is c and its con-
ditions areRelevant(yb, c). Again, whichever ofif1 or if2
is already a member of the dsPlanner is removed and re-
placed by the three new if statements.

4.3. Illustrative Results

We present results of applying DISTILL to limited domains
since we have not yet added to DISTILL the ability to learn
looping dsPlanners from observed plans. Our results show
that, even without the ability to represent loops, the dsPlan-
ners learned by DISTILL are able to capture complete do-
mains from few examples and to store these complete solu-
tions very compactly.

Table 5 shows the dsPlanner learned by the DISTILL al-
gorithm that solves all problems in a blocks-world domain
with two blocks. There are 704 such problems,4 but the
dsPlanner needs to store only two plan steps, and it is possi-
ble for DISTILL to learn the dsPlanner from only 6 example
plans. These six example plans were chosen to cover the
domain; more examples could be required for the complete
dsPlanner to be learned if the examples were randomly se-
lected.

Table 6 shows the dsPlanner learned by the DISTILL al-
gorithm that solves all gripper-domain problems with one
ball, two rooms, and one robot with one gripper arm. Al-
though there are 1722 such problems,5 it is possible for the
DISTILL algorithm to learn the dsPlanner from only six ex-

3Note thatRelevant(x, a) ⊆ x andRelevant(y, b) = y.
4Though the initial state must be fully-specified in a problem,

the goal state need only be partially specified. There are only four
valid fully specified states in the blocksworld domain with two
blocks, but there are 176 valid partially specified goal states.

5As previously mentioned, each problem consists of one fully-
specified initial state (in this case, there are 6 valid fully-specified
initial states), and one partially-specified goal state (in this case,
there are 287).



if (in current state(clear(?1:block)) and
in current state(on(?1:block ?2:block)) and
(in goal state(on(?2:block ?1:block)) or

in goal state(on-table(?1:block)) or
in goal state(clear(?2:block)) or
in goal state(¬on(?1:block ?2:block)) or
in goal state(¬clear(?1:block)) or
in goal state(¬on-table(?2:block))

)) then
move-from-block-to-table(?1 ?2)

if (in current state(clear(?1:block)) and
in current state(clear(?2:block)) and
in current state(on-table(?2:block)) and
(in goal state(on(?2:block ?1:block)) or

in goal state(¬clear(?1:block)) or
in goal state(¬on-table(?2:block))

)) then
move-from-table-to-block(?2 ?1)

Table 5. The dsPlanner learned by the DISTILL algorithm that
solves all two-block blocks-world problems.

ample plans. Also note that only five plan steps (the length
of the longest plan) are stored in the dsPlanner.

Our results show that dsPlanners achieve a significant re-
duction in space usage compared to case-based or analog-
ical plan libraries. In addition, dsPlanners are also able to
situationally generalize known problems to solve problems
that have not been seen.

5. Identifying Loops

We now present the DISTILL procedure to identify one-step
loops in which repeated behaviors are not causally linked.
A looping plan in the rocket domain involves loading sev-
eral packages into the rocket, flying the rocket to the goal
destination, and then unloading all the packages. In this ex-
ample, the sequence of package loads is a loop, since they
are repeated identical behaviors. No package load in this
loop is causally linked to the other loads. The unloading
sequence is a similar loop. The algorithm we use to iden-
tify such loops is shown in Table 7, and Table 8 shows the
dsPlanner code our algorithm extracts from the above ex-
ample.

The DISTILL procedure for identifying loops in observed
plans identifies steps that are not linked in the transitive
closure of the partial ordering of the plan (and thus run in
parallel). If the parallel plan steps are the same operator,
differ in only one variable, and have the same needs and ef-
fects, they are considered part of a loop. The conditions for
the loop’s execution are the needs and effects of the steps
it encompasses. The repeated steps are removed from the
plan and replaced by the newly created loop. Many solu-
tions to planning problems involve the repetition of steps,
which, when translated into appropriate loops, will greatly

if (in current state(at(?3:ball ?2:room)) and
in current state(at-robby(?1:room)) and
(in goal state(at(?3:ball ?1:room)) or

in goal state(¬at(?3:ball ?2:room)) or
in goal state(holding(?3:ball)) or
in goal state(¬free-arm)

)) then
move(?1 ?2)

if (in current state(at(?3:ball ?2:room)) and
in current state(at-robby(?2:room)) and
(in goal state(at(?3:ball ?1:room)) or

in goal state(¬at(?3:ball ?2:room)) or
in goal state(holding(?3:ball)) or
in goal state(¬free-arm)

)) then
pick(?3 ?2)

if (in current state(holding(?3:ball)) and
in current state(at-robby(?2:room)) and
(in goal state(at(?3:ball ?1:room)) or

(in goal state(¬at(?3:ball ?2:room)) and
(in goal state(¬holding(?3:ball)) or

in goal state(free-arm)))
)) then

move(?2 ?1)
if (in current state(holding(?3:ball)) and

in current state(at-robby(?1:room)) and
(in goal state(at(?3:ball ?1:room)) or

in goal state(¬holding(?3:ball)) or
in goal state(free-arm)

)) then
drop(?3 ?1)

if (in current state(at-robby(?1:room)) and
(in goal state(at-robby(?2:room)) or

in goal state(¬at-robby(?1:room)))
) then

move(?1 ?2)

Table 6. The dsPlanner learned by the DISTILL algorithm that
solves all gripper-domain problems involving one ball, two
rooms, and one robot with one gripper arm.

increase the complexity of the problems the planner can
solve.

6. Conclusions

In this paper, we contribute a formalism for automatically-
generated domain-specific planning programs (dsPlanners)
and present the DISTILL algorithm, which automatically
learns non-looping dsPlanners from example plans. The
DISTILL algorithm first converts an observed plan into a
dsPlanner and then combines it with previously-generated
dsPlanners. Our results show that dsPlanners learned by
the DISTILL algorithm require much less space than do
case libraries. dsPlanners learned by DISTILL also support
situational generalization, extracting commonly-solved sit-
uations and their solutions from stored dsPlanners. This
allows dsPlanners to reuse previous planning experience
to solve different problems. We also discuss our work to-



Input : Transitive closure of the minimal annotated consistent
partial order,P

Output : New minimal annotated consistent partial orderL
that representsP, but has identified loops.

procedureFind Loops(P):
L← Find A Loop(P)
while (L reflects changes inP) do
P ← L
L← Find A Loop(P)

return L

procedureFind A Loop(P):
for each stepsi in P do

NewLoop.body← si
NewLoop.needs← needs ofsi
NewLoop.effs← effects ofsi
while exists stepsj in P such that

si andsj are not linked inP and
si andsj are the same operatorand
si andsj differ in a single variableand
si andsj have the same needsand
si andsj have the same effectsdo

NewLoop.body← NewLoop.body + sj
NewLoop.needs← NewLoop.needs + needs ofsj
NewLoop.effs← NewLoop.effs + effects ofsj

if NewLoop.body contains more thansi then
P ← P - steps inNewLoop.body
P ← P +NewLoop

Table 7. The DISTILL procedure for identifying one-step loops.

while (in current state(at(?0:rocket ?1:city)) and
in current state(at(v?2:pkg ?1:city)) and
in goal state(at(v?2:pkg ?3:city))) do

load(v?2:pkg ?0:rocket ?1:city)
if (in current state(at(?0:rocket ?1:city)) and

in current state(inside(?2:pkg ?0:rocket)) and
in goal state(at(?2:pkg ?3:city))) then

fly(?0:rocket ?1:city ?3:city)
while (in current state(at(?0:rocket ?1:city)) and

in current state(inside(v?2:pkg ?0:rocket)) and
in goal state(at(v?2:pkg ?1:city))) do

unload(v?2:pkg ?0:rocket ?1:city)

Table 8. The learned dsPlanner that represents a looping rocket-
domain plan.

wards automatically acquiring looping dsPlanners. Loop-
ing dsPlanners will allow observed solutions to small prob-
lems to be used to solve arbitrarily large ones.

Acknowledgements

This research is sponsored in part by the Defense Advanced Re-
search Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL) under agreement number No. F30602-00-2-
0549. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily
representing official policies or endorsements, either expressed or
implied, of DARPA or AFRL.

References
Bauer, M. (1979). Programming by examples.Artificial Intelli-

gence, 12, 1–21.

Carbonell, J. G., & Gil, Y. (1990). Learning by experimentation:
The operator refinement method. In R. S. Michalski and Y. Ko-
dratoff (Eds.),Machine learning: An artificial intelligence ap-
proach, volume III, 191–213. Palo Alto, CA: Morgan Kauf-
mann.

Cimatti, A., Roveri, M., & Traverso, P. (1998). Auto-
matic OBDD-based generation of universal plans in non-
deterministic domains.Proceedings of the 15th National Con-
ference on Artificial Intelligence (AAAI’98)(pp. 875–881).
AAAI Press.

Fikes, R. E., Hart, P. E., & Nilsson, N. J. (1972). Learning and
executing generalized robot plans.Artificial Intelligence, 3,
251–288.

Friedland, P. E., & Iwasaki, Y. (1985). The concept and imple-
mentation of skeletal plans.Journal of Automated Reasoning,
1, 161–208.

Kambhampati, S., & Hendler, J. A. (1992). A validation-
structure-based theory of plan modification and reuse.Arti-
ficial Intelligence, 55, 193–258.

Khardon, R. (1999). Learning action strategies for planning do-
mains.Artificial Intelligence, 113, 125–148.

Lau, T. (2001).Programming by demonstration: a machine learn-
ing approach. Doctoral dissertation, University of Washington,
Seattle.

Minton, S. (1988).Learning effective search control knowledge:
An explanation-based approach. Boston, MA: Kluwer Aca-
demic Publishers.

Muggleton, S. (1991). Inductive logic programming.New Gen-
eration Computing, 8, 295–318.

Sacerdoti, E. D. (1974). Planning in a hierarchy of abstraction
spaces.Artificial Intelligence, 5, 115–135.

Schmid, U. (2001).Inductive synthesis of functional programs.
Doctoral dissertation, Technische Universität Berlin, Berlin,
Germany.

Schoppers, M. J. (1987). Universal plans for reactive robots in
unpredictable environments.Proceedings of the Tenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-1987)
(pp. 1039–1046). Milan, Italy.

Smith, D. R. (1991). KIDS: A knowledge-based software devel-
opment system. In M. R. Lowry and R. D. McCartney (Eds.),
Automating software design. AAAI press.

Uther, W. T. B., & Veloso, M. (2000). The lumberjack algo-
rithm for learning linked decision forests.Symposium on Ab-
straction, Reformulation and Approximation (SARA-2000)(pp.
219–232). Springer Verlag.

Veloso, M. M. (1994).Planning and learning by analogical rea-
soning. Springer Verlag.

Winner, E., & Veloso, M. (2002). Analyzing plans with condi-
tional effects. Proceedings of the Sixth International Confer-
ence on Artificial Intelligence Planning and Scheduling (AIPS-
02) (pp. 271 – 280). Toulouse, France.


