From: 1AAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

A Web-based Ontology Browsing and Editing System

Jérome Thoméré', Ken Barker* Vinay Chaudhri', Peter Clark?, Michael Eriksen', Sunil
Mishra', Bruce Porter’ and Andres Rodriguez'

'SRI International
333 Ravenswood Ave
Menlo Park, CA 94025
{thomere, acr, chaudhri, smishra, eriksen}

@ai.sri.com

Abstract

Making logic-based Al representations accessible to
ordinary users has been an ongoing challenge for the
successful deployment of knowledge bases. Past work to
meet this objective has resulted in a variety of ontology
editing tools and task-specific knowledge-acquisition
methods. In this paper, we describe a Web-based ontology
browsing and editing system with the following features:
(a) well-organized English-like presentation of concept
descriptions and (b) use of graphs to enter concept
relationships, add/delete lists, and analogical
correspondences. No existing tool supports these features.
The system is Web-based and its user interface uses a
mixture of HTML and Java. It has undergone significant
testing and evaluation in the context of a real application.
Keywords: knowledge acquisition, expert systems,
HTML, WWW.

Introduction

Our goal is to develop tools that enable domain experts to
build knowledge bases (KBs) without relying on Al
scientists and engineers. The KBs we envision are ones that
support automated reasoning, not just string matching and
information retrieval. That is, the KBs are written in a
logical formalism, not a natural language.

Achieving this goal is essential for the efficacy of
knowledge-based systems. Decades of research on knowledge
representation and reasoning have produced the basic
technology for knowledge-based systems, so knowledge
capture is evermore the bottleneck. Three invariants are
responsible for this bottleneck: significant KBs are required,
domain experts lack the knowledge engineering skills to
build them, and knowledge engineers lack the domain
expertise to replace the experts.

Tools can help, and many have been built. Frame-based
representation systems have included specialized editors such

Copyright © 2002, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

’Boeing Research and Technology
P.O. Box 37070
Seattle, WA 98124

clarkp@redwood.rt.cs.boeing.com

*University of Texas
At Austin

Austin, TX 78712
{kbarker, porter}@cs.utexas.edu

as Protégé (Noy, Sintek et al. 2001), OntoEdit (Maedche
2000), Ontosaurus (Swartout, Patil et al. 1998), WebOnto
(Domingue, Motta et al. 1999), and the Java Ontology
Editor (Mahalingam and Huhns 1997). Graphical KB editors,
such as the GKB-Editor (Paley and Karp 1996), use directed
graphs as the primary means of interaction. Another
approach is taken by task-specific knowledge-acquisition
systems, such as EXPECT (Blythe, Kim et al. 2001), which
is aimed at acquiring process knowledge. However, most of
these tools are targeted toward users with significant
experience of how knowledge is represented in a knowledge
base.

Our research focuses on building a new class of tools for
building and using KBs, ones that are used by domain
experts with very little training. The new tools should
enable domain experts to browse, create/edit, and query
KBs—all without knowing logical formalisms and without
assistance.

This paper describes one such tool: SHAKEN, built under
the auspices of DARPA's Rapid Knowledge Formation
(RKF) project. SHAKEN is a collection of modules for
different KB interaction tasks: browsing, editing, and
querying. Making SHAKEN usable by domain experts
presented challenges for each of these modules.

The layout of the paper reflects these three major KB
interaction tasks. We also describe an evaluation of
SHAKEN by domain experts tasked with building KBs in a
domain of biology.

Design Goals

SHAKEN was designed to satisfy the following criteria:
e It should be accessible to users not familiar with any
formal logic notation.

e All the operations and interactions should be as
simple as possible, and should not require more than
a simple introduction.

e The presentation of the concepts, both graphical and
textual, should be natural.

IAAI-02 927

e The logical representations
knowledge representation
transparent to the user.

e The editor should be accessible through a Web
browser and should not require any installation at the
user end.

coming from the
system should be

Architecture

SHAKEN is implemented as a client-server system. The KB
is stored in the Knowledge Machine (KM) representation
system (Clark and Porter 1999). KM is object oriented and
has the expressive power of full first-order logic. In addition,
it supports a STRIPS representation of actions and a
situation mechanism to represent different states of a KB.
Knowledge analysis and analogy methods are reasoning
services implemented on top of KM.

Most of the inference is done on the server side. It
includes explanation design plans to describe concepts,
analogy methods, and knowledge simulation to test the
knowledge entered.

The server functionality is implemented using the allegro
server from Allegro Common Lisp. The server is
responsible for querying and modifying the KB, managing
the interaction between the different components, and
presenting the results to the user. The output is presented
using HTML and XML. XML is used for representing the
concepts, which are then parsed by the Java applet and
rendered into graphs, akin to semantic networks.

The client can be an Internet browser. Most of the client
functionality was implemented using HTML and JavaScript.
The graphical editing was implemented using a Java applet.

Server

@
= /‘ User
Graph- Explanations

Client >Logic Plans

(web browser)
/ Explanation
o plan applier
rapl

Applet

_ Knowledge
Analysis
Analogy methods

e —

Figurel: SHAKEN architecture

To facilitate writing and debugging functions that
generate HTML pages, we implemented a mechanism called
Active Lisp Pages (ALP) (Rodriguez 2000), analogous to

928 |AAI-02

Microsoft's ASP (Active Server pages). This mechanism
allows the developers to mix HTML code and Lisp code.

On the client side, most of the user interaction takes place
in the graph-editing tool, and the Graph—Logic module
ensures the translation between graphs and the KB
representation.

Browsing a Knowledge Base

From the user’s point of view, there are two sides to
browsing a KB: finding concepts and understanding the
content of those concepts.

Finding Concepts

SHAKEN provides two tools for finding concepts in a KB: a
taxonomy browser and a search facility.

The taxonomic view of a KB presents the class
taxonomy, which can be incrementally expanded and
contracted at the request of a user.

Using the search facility, the user can type a partial
character string, and the system will return concept names
that match that string.

SHAKEN also provides semantic searching—a function
that traverses the WordNet (Al-Halimi, Berwick et al. 1998)
hierarchy for terms semantically related to concepts in the
KB. As part of the documentation for each concept in our
core KB, we have identified the WordNet entries that most
closely match the semantics of the concept. SHAKEN’s
WordNet-based search tool finds the search term in WordNet,
and then climbs the hierarchy of hypernyms (more general
terms), finding all concepts listing those hypernyms in their
documentation.

One of the advantages of semantic searching is that
results are sorted according to the WordNet distance between
the search term and the concept, and to the depth of the
concept in the hierarchy. This gives preference to more
specific concepts, meaning that the user is more likely to
choose a more specific (and therefore more semantically
loaded) concept than when browsing top-down through the
tree.

If at any point during the user interaction, a user needs to
select a concept, an entry point to the browsing facility is
provided. To get more information about the concepts in the
taxonomy or returned by search, the user can inspect the
concept, either as a formatted description or as a graph.

Showing the Content of Concepts

The formatted concept description view presented here has
two novel aspects:

e Well-organized display of information
e English-like text generation
Here, we describe these novel aspects in more detail.

Concept Description

The concept description view uses the notion of explanation
design plans (EDPs) to organize the presentation of
information. The explanation design plan idea comes
originally from a work by James Lester (Lester and Porter
1997) aimed at generating automatic English explanation of
the contents of a KB. An explanation plan encodes the
contents and the organization of an explanation. Every
explanation plan is a tree, and the nodes at a particular level
in the tree represent topics. A node n, is a parent of a node
n, if n, is a subtopic of n,. Explanation plans employ three
basic types of node:

e Exposition node: primary topic of an explanation
e Topic node: subtopic of an explanation

e Content specification node:
content to include

specification of the

Explanation plans are rooted at exposition nodes. An
exposition node constitutes the highest-level grouping of
content, and the children of exposition nodes are topic nodes.
The children of topic nodes are content specification nodes,
which name KB accessors. The child of a content
specification node is a view, which is constructed by
applying a KB accessor(Acker and Porter 1994). The
realization system generates one or a small number of
sentences for each view. In short, explanation plans store a
formal representation of an explanation’s content and
organization.

Here are three examples corresponding to the three types
of node used:

Exposition node: Process

Process Overview
Text Description
Type
Participants
Process Details
Qualitative Description
Subevents
Location Description
Condition Description
Temporal Information
Object Function
Telic Description

Topic node: Location description

Location Description
Location
Origination
Destination

Content specification node: Location

Location
Make-location-view

Each content specification node corresponds to a view in
the KB: a view is simply a subset of slots of an object. For

instance, the slot “is-between” is associated with the
Location view. To display a view, we assemble the values
of the slots associated with this view. In the above example,
make-location-view is the name of the function that
computes the values of this view.

Implementation of Explanation Design Plans. The
EDPs are implemented in a single KB using an OKBC
server. Each one of the nodes is represented by a frame in the
KB. The KB contains two main EDPs: explain-process and
explain-object. The hierarchical structure of the explanation
plans is naturally represented as a hierarchy of frames.

For example, ‘Exposition node’ is represented as a class
with two slots: ‘Display name’ and ‘Children’. ‘Display
name’ records the label used for displaying the heading of the
information appearing under the exposition node, and
‘Children’ are the subheadings—for example, ‘Qualitative
description” and ‘Location description’. ‘Location
description’ is itself represented as a frame with two slots:
‘Display name’ and the name of the function used to
compute the location information.

Displaying Knowledge Base Contents in English

Within the concept description defined above, the problem is
to describe values of slots in the KB in a form that is as
close as possible to the English an expert is used to, while
not getting too far from the structure of the KB itself.

To achieve this objective, we have used a simple rule-
based module that translates an expression from the KB
formalism to an English sentence. This allows us to take
into account both the general cases of common KB
structures and some particular cases that otherwise would
lead to clumsy sentences.

In full generality, displaying the contents of a KB in
English would involve dealing with arbitrary logical
sentences. As an initial simplification of this complexity, to
display a concept, we create an example instance of it and
compute various slot values by applying the relevant rules.
As a result, we show only those slot values and never
expose the actual rules to a user.

While some of the slot values are classes, many of them
are Skolem individuals. Classes can be represented to a user
simply by their names. But for Skolem individuals, we need
a friendly mechanism for presentation. Since KM KBs also
contain STRIPS representation of actions, we also need
some way of displaying the add/delete precondition and
negated condition lists. Here, we discuss how we generate
English for each of those types of KB content.

Displaying Skolem Individuals. In the simplest case, a
Skolem individual is displayed as “a <CLASS>" where
<CLASS> is the direct type of that individual.

For individuals that are instances of abstract classes, it is
not very friendly to display text such as “a Tangible-Entity”
or “a Place”. Therefore, we instead display how this Skolem
individual is related to the concept that is being currently
displayed. For example “a Place” may be replaced by “the
location of the object of the Invasion”. In other words, we

IAAI-02 929

need to find a path of slots between the Skolem individual
and the concept being displayed.

Here is a brief description of the algorithm we use to find
the path. We start from the concept being displayed (the
root) and loop over its children (the set of its slot values)
and recurse until we hit the target.

Find-path(nd, tgt):
if path{nd, tgt}
then return it
else
for slot € get-frame-slots (nd)
3 find-path(get-slot-value(nd, slot),
path{nd, tgt} <« slot & path-found
We also want to avoid paths that are overly complex and not
easily understood. For example, “the location of the object
of the next-event of the first-subevent of the Invasion” can
naturally be further simplified. To keep the paths
meaningful, we use the following two techniques:

e Look only for the shortest path.

tgt)

e Stop searching for a path as soon as we encounter a
class that is not too general.

These two heuristics proved sufficient in practice.

Displaying conditions: add- and delete-lists. SHAKEN
uses a STRIPS-style representation for encoding change.
Actions are events that change the state of the world. Thus,
the application of an action in a situation is modeled by the
creation of a new situation, reflecting the new world state
after the action has been performed.

Actions are described using four lists, namely, the
‘pes_list” (preconditions list), the ‘ncs_list’ (negated
preconditions list), the ‘add_list’ (add list), and the ‘del_list’
(delete list). The pcs_list (resp. ncs-list) contains a list of
ground literals that are necessarily true (resp false) before an
action is performed; the add_list (resp del-list) contains
propositions that are necessarily true (resp false) after the
action is performed. These lists are stored as slot values, on
the frame representing the action. A proposition is a reified
expression (i.e., an expression represented as an object), and
allows us to make statements about that proposition P—for
example, “Fred believes P”— or, for our purposes here, “the
result of doing X is P”".

A proposition is represented in KM by the structure
(:triple slot value), which denotes the
assertion that frame’s slot includes value.

For instance, the class Move will have in its add list the
triple (:triple (the object of Self) location (the
destination of Self)), which means that when the
action Move is simulated, a new situation is created where
the value of the slot location for the object of the Move is
the same as the value of the slot destination of this instance
of Move.

To get the results shown on the second column, we used
a recursive rule-based pattern matcher that translates KM
expressions into lists of words.

frame

930 IAAI-02

Form Display
(:triple [The location of the object of
(the object of Self) the action must be thd
location destination of the action

(the destination of Self)

(:triple [The result of the Breach if
_Breachl?2 that the Membrane is broken
result

(a Be-Broken with

(object Membranel3))

The second example illustrates a need to be able to
generate meaningful text for specific objects, in this case a
specific Be-Broken whose object is a particular Membrane.
When a fuller description of such a concept is desired,
SHAKEN can generate an English description that includes
selected slots of a concept. The slots relevant in a concise
description depend on which concept is being described.

Displaying Axioms. In SHAKEN’s core KB we have
encoded relevant English phrases and the grammar rules for
combining them. The phrases and rules are distributed
throughout the KB, allowing text generation particular to
each concept. Rules and phrases inherit, but may be
overridden by more specific concepts in the taxonomy. New
concepts inherit default text generation rules.

Here are some examples of the description generated for
articular concepts:

Form Display

(a Move) Something moves.

(a Move with [Wilma moves the car.
(object Carh)

(agent *Wilma))

(a Be-Touching with [The wire and the terminal arg

(object Wire6 Terminal7 [touching

(a Deliver witHThe mail gets delivered td

(object Mail9) Stacy

(recipient *Stacy))

Editing a Knowledge Base

A comprehensive solution for editing a KB should support
the editing of several kinds of knowledge, such as class-
subclass, slot values, constraints on slot values, axioms,
and process knowledge. Our previous work on GKB-Editor
was directed at editing class hierarchies, slots, slot values,
and slot constraints. The focus in the present work is on
editing axioms. The editing system described here enables
the knowledge entry of an interesting class of axioms by
abstraction from the example graphical description of a
concept. The technical details of the abstraction process and
mapping from directed graphs to logical form are described
elsewhere (Clark, Thompson et al. 2001) and are not a
primary subject of discussion here. Instead, we focus on the

graphical aspects of the tool, and assuming the availability
of a module to convert graphs to logic, show how graphs
can be used for entering add/delete lists, for analogical
correspondences, and for asking questions.

From Graphs to Axioms

To use graphs for editing axioms, we need a scheme that,
given an axiom, defines its graphical presentation and vice
versa. To present the axioms about a concept, the raw
axioms are not presented directly, but through an example of
the concept, as a set of ground facts. Ground facts are
graphable and provide a summary of the concept.

For instance, suppose the user wants to build a
representation of how a virus invades a cell. To display this
concept to the user, the system creates an instance of this
class, and for each slot of these classes creates Skolem
individuals corresponding to the value of that slot. This
process is recursive, and is initially applied to a fixed depth
limit. The user can later selectively expand portions of the
graph.

[Uirus-lvades-Cell

agent

Figure 2: Early graph of VirusInvadesCell

Then, a graph is displayed, representing the concept
VirusInvadesCell. Each node of the graph represents one of
the Skolem individuals created. Each oriented link represents
a slot, the end of the link being the value of the slot.

For such a graph, axioms could be synthesized as
follows: first, the axiom is rephrased to mention only the
“root” Skolem individual. For instance “Tangible-Entity3 is
a Cell” becomes “the object of VirusInvadesCelll is a Cell”.
This means that a path of relationships from the root to the
instance replaces every “non root” individual. Then, it is
generalized to hold for all instances of the Concept being
defined. The final axiom thus has the form:

Vr isa (r , VirusInvadesCell) =

(Vv objectr(r, v) =isa (v, Cell))

Look and Feel of the Interface. The graphical interface
to manipulate graphs is flexible enough to allow the subject
matter expert (or end user) to feel like he is using a drawing
application, but at the same time to allow construction of
only “meaningful” and “correct” graphs. A tool called
Concept Maps (Novak 2001) has been built by research
members of the team at the University of West Florida. The
goal of Concept Maps is to allow people to represent,
organize, and share knowledge, knowledge being described as

relationships between concepts and being communicated in
terms of graphs. The Concept Maps tool allows arbitrary
graphs without any logical semantics. The graphical
interface in SHAKEN is designed to feel as nonrestrictive as
possible, while at the same time allowing only operations
that have rigorous declarative semantics.

Since we are dealing with graphs, we have many helpful
mechanisms other than written text with which to convey
information to the user. A list of such mechanisms would
include color and size of elements, distance between them,
and horizontal/vertical order. The interface allows the user
the use of such mechanisms to facilitate the construction of
knowledge.

Operations to Manage the Graph. Most graphs
representing concepts are virtually infinite, since for a KB to
be useful, all the concepts are linked together in one sense or
another. Therefore, we limit the graph we present to the
user, but in the meantime, she has the ability to explore
deeply into the structure of a concept. We achieve that by
first limiting the depth of the initial display that is presented
to the user to one or two levels, and second by managing
two types of slot according to their importance. The initial
display of a component shows only the abridged description.
The user can then expand each one of the display nodes and
also decide to view the full description. Nodes can be further
expanded or contracted.

Layout Scheme. In essence, the display of graphs is
hierarchical, since it starts from the concept being
represented (shown in a different color), and then displays the
values of its slots. Each of these values is itself a concept,
so, it can be represented the same way. That does not mean
that the graphs represented are trees or even directed acyclic
graphs, since some of the nodes being expanded could point
to nodes already present in the graphs.

The first time a concept map is drawn, the layout is
automatically generated by the system, using a simple tree
drawing algorithm. Assuming all the edges “cost” the same,
the minimal spanning tree is calculated and the position for
each node is determined. Then, all the edges from the
original graph are added, completing the initial
representation of the graph. Because the nodes are text, the
original tree-drawing algorithm tends to generate excessively
wide graphs. To resolve this, we stack nodes having the
exact same edge to their parent. This approach shows trees
that are more balanced in the vertical and horizontal
directions.

Once the starting tree is drawn, the user is in complete
control of how things will look. The user can move nodes
around, organize them, and display or undisplay selectively.
The user can drill down into the concepts, or add more nodes
to the graph. The rendering engine must find space in the
panel to fit in the nodes in a way that is intuitive and as
unobtrusive as possible, so as to not interfere with the nodes
that are already in the panel. This type of graph drawing
algorithm is called “incremental layout algorithms”.
SHAKEN takes the following approach to an incremental
layout: whenever it encounters a node that has not been

IAAI-02 931

rendered, it finds the first ancestor that existed in the original
graph, and uses the tree drawing algorithm locally, starting
from that existing node. The local tree drawing must respect
position for preexisting nodes; otherwise, a new node
pointing back to some original node might reorganize the
whole graph. This approach might overlap certain nodes,
but under the presumption that the user will reorganize
things as she sees fit, this is not a big issue.

Implementation of the Interface. The graphical tool is
implemented as a Java applet that is embedded in an HTML
page. The use of a Java applet is important because, since
SHAKEN is a geographically distributed research
application, we are able to deliver ongoing developments to
the rest of the team and potential end users. The applet can
then communicate to the server by using XML messaging
over HTTP. The communication between the applet and its
context page (the browser) is kept at a minimum.

The typical interaction between a user and SHAKEN’s
graphical toolkit is for the user to open a concept (for
construction or browsing). The applet is given, as a
parameter, the name and nature of that concept. Then, the
conversation between the applet and the server begins: the
applet sends a message requesting the concept, and the server
responds by sending an XML representation of the graph
(loosely based on GraphXML (Herman 2000)). The applet
then must parse the XML message and take appropriate
action. All communication between the applet and the
server occurs in this fashion. To avoid a potentially big
communication overhead, the applet accumulates state (i.e.,
position of nodes) about the graph at the client end. It
communicates with the server only when absolutely
necessary.

Enter/Edit Knowledge
=)= x]
Cick here if you want help on graph menipulation
Click here to see definitions of relations
Click here if you want. help on SHAKEN aperations
Go Back Add Concept | Specislize | Undol | Save | Savess |
Concepts Map
first subevent*
subevent*
next-svent™ next-event®

object base

hag-part*

abject agent
Viral-Nucleie-Acid Protein-Coat

has-part*
object Virs

Cytoplasm) {Barrier and Plasma-Membrane
o I ;IJ

Figure 3: View of the graphical interface

932 IAAI-02

Graphs for Knowledge Entry

Graphical editing operations were described in detail in a
previous paper (Clark, Thompson et al. 2001). Here, we
summarize those operations.

Add Concept. This operation consists in selecting any
existing concept and adding it to the graph being edited. This
does not link the user to any other node of the graph.

Specialize. This means selecting an existing node and
changing its class by selecting one of its subclasses.

Connect. This is probably the most important operation: it
allows the user to draw a relation between two concepts of
the graph: she simply draws a line between two nodes, and
then the system asks her to select a relation from a list of
relations compatible with the two concepts being connected.

Unify. The user drags one of the nodes and drops it on top
of another node. After confirmation, the two concepts are
now considered to be the same object.

Querying a Knowledge Base

SHAKEN has a Question Answering facility that enables a
user to ask questions about concepts in the KB. The
question-answering interface is designed as a collection of
fill-in-the-blank templates. Here are some example question
templates:

e What is the <relation> of a <concept>?

° How does <event> occur

<subevent>?

in <concept> after

These questions may be instantiated by picking the values of
the template variables. For example, the above two
questions may be instantiated to

e What is the agent of Virus Invasion?

e How does a Copy occur in a DNA Transcription after
a Move?

The user can choose the relation names from a menu, and
choose the concept names by using the search facility. Very
often, the variables in a parameterized question are not
concept names, but logical expressions. For example, one
may want to ask, “what is the agent of the Penetrate
subevent of a Virus Invasion?” There is no stand-alone
concept in the KB that represents the Penetrate subevent of
Virus invasion. The graphical interface can be used to select
such concepts. To do so, the user first selects a base
concept, which in this case is Virus Invasion. He then opens
the concept of Virus Invasion, and chooses the Penetrate
subevent.

This choice returns to the question answering system the
logical expression representing Penetrate that serves as the
basis for question answering. The questions will then be
titled: “Questions about a Penetrate as subevent of the Virus
Invasion”

Expected Effects

The knowledge analysis module, called KANAL, allows a
user to test the representation of a process (Kim and Gil
2001). KANAL functions by running an animation of the
process and reports whether the preconditions of every step
in the process hold true and also reports the changing slot
values. The user can refine this testing by specifying which
properties are expected to be true as a result of executing the
process. For example, when testing a Virus Invasion
process, a user may want to say that after the process is
executed, the viral nucleic acid is inside the cell. A complete
specification requires us to choose objects involved. To do
so the user opens the graph representing the Virus Invasion,
selects the Viral-Nucleic-Acid, then the Cell, and finally
chooses a relation from a list compatible with the two
objects selected.

Evaluation

During the summer of 2001, SHAKEN was extensively
evaluated by IET (Information Extraction and Transport,
Inc., www.iet.com). IET hired four biologists (three graduate
students and one senior undergraduate) who had no
background in computer science or knowledge
representation. We trained the biologists to use SHAKEN,
but training was limited to four days and our subsequent
interactions with them were through an IET intermediary and
restricted to fixing bugs in the system.

During the next four weeks, each biologist, working
independently, was asked to build a KB to represent an n-
page section of a college-level text on cell biology (Alberts,
Bray et al. 1997). Along the way, IET asked each biologist
to pose a set of questions to that biologist’s own KB. The
questions were drawn from standard test banks, and were
presented in English. Each biologist "translated" the
questions into SHAKEN's templates, and IET evaluated the
responses.

Meanwhile, a pair of knowledge engineers, with
significant training in knowledge representation and some
background in biology, performed the same tasks by using
SHAKEN. (These two people helped design and build
SHAKEN.) This enabled IET to compare the biologists’
KBs with those of knowledge engineers, as measured by the
quality of the answers they produced.

This evaluation yielded a substantial body of data, which
was then analyzed and summarized (Cohen, Chaudhri et al.
1999). The results that are most relevant to this paper
examine the difference in answering ability between the KBs
built by biologists and the ones built by knowledge
engineers. Again, our goal is to develop tools, such as
SHAKEN, that enable domain experts to build good KBs,
whose quality is at least comparable to ones built by
knowledge engineers.

IET hired another biologist to grade SHAKEN's answers
to the questions posed by the KB builders. Each answer was
assigned a score of 0 (lowest) to 3 (highest) on each of three

criteria: answer correctness, quality of the representation, and
quality of the explanation. These scores were averaged to
give an overall score.

The mean overall score for answers generated from the
biologists® KBs was 2.07, compared with 2.35 for
knowledge engineers. This difference is small, but
statistically significant (F=69.32, p~0). Moreover, there was
considerable variance in overall scores across the set of six
KBs:

KB creator overall

score
biologist 1 2.48
knowledge engineer 1 2.44
knowledge engineer 2 2.26
biologist 2 2.12
biologist 3 2.02
biologist 4 1.66

Table 1: Overall scores of knowledge bases built by
biologists and knowledge engineers, sorted in
descending order

The best-performing biologist was comparable with the best
knowledge engineer, but the other three biologists performed
less well than the second-ranked knowledge engineer.
However, the overall result is most encouraging: SHAKEN
can enable a domain expert to build a competent KB, and
one that is comparable to one built by an experienced
knowledge engineer.

Future Work

In the near future, we envision extending the editor in
several directions: (1) entering analogical knowledge, (2)
displaying changing fluents, (3) managing incremental
layouts, and (4) showing axioms over and above a group of
Skolem individuals.

Analogical Knowledge

Analogy is a powerful medium for communication used by
humans. We plan to extend the current interface so that it
could show two concept maps side by side and draw
correspondences between the two. By using a partial
specification of correspondences, the system would use the
analogy engine to infer new relationships, thus greatly
speeding the knowledge entry rate.

Fluents

While showing a process as a graph, the current interface
shows properties of various concepts as of the beginning of
the process. Currently, there is no way to show the

IAAI-02 933

properties as they change with the execution of the process.
We plan to extend the interface so that time changing
properties could be shown.

Other Axioms

As we explained earlier, the only axioms that the user can
graphically view and edit are the ones that can be translated
into relationships between Skolem instances. Basically,

most of these axioms are of the form
Vx isa(x Classl) —dy isa (y Class2)
v)

or more generally axioms of the form

A slot(x

Vx isa(x Classl) —3dy isa (y Class2) p(x y ..)
Furthermore, the current system shows only binary
relations. We plan to expand the class of axioms that can be

graphically represented.

Conclusion

We have described a system that enables domain experts,
unassisted by AI technologists to construct competent
knowledge bases. We described in detail two components of
this system that helped us achieve this goal.

The first component is a well-organized English-like
presentation of KB content, which makes use of Explanation
Design Plans, combined with an English generation tool
built on a recursive rule-based pattern matcher. The second
component is a graphical interface to enter knowledge and
query the KB, extending the notion of Concept Maps.

We evaluated the system in a controlled experiment with
domain experts, which suggests that these tools indeed
enable domain experts to build KBs comparable to those
built by knowledge engineers.

Acknowledgments

This work was supported by DARPA’s Rapid Knowledge
Formation project. We thank all the members of the SRI
team who have helped implementing SHAKEN: Boeing,
ISI, KSL Stanford, NWU, UT Austin, and UWF.

References

Acker, L. and B. Porter (1994). Extracting Viewpoints from
Knowledge bases. National Conference on Artificial
Intelligence.

Alberts, B., D. Bray, et al. (1997). Essential Cell Biology:
An Introduction to the Molecular Biology of the Cell.
Al-Halimi, R., R. C. Berwick, et al. (1998). Wordnet, and
Electronic Lexical Datbase, MIT Press.

934 |AAI-02

Blythe, J., J. Kim, et al. (2001). An_Integrated Environment
for Knowledge Acquisition. International Conference on
Intelligent User Interfaces.

Clark, P. and B. Porter (1999). KM The Knowledge
Machine 1.4 - Users Manual. Austin, TX, University of
Texas.

Clark, P., J. Thompson, et al. (2001). Knowledge Entry as
the Graphical Assembly of Components. First International
Conference on Knowledge Capture.

Cohen, P., V. K. Chaudhri, et al. (1999). Does Prior

Knowledge Facilitate the Development of Knowledge-based
Systems. National Conference on Artificial Intelligence.

Domingue, J., E. Motta, et al. (1999). Knowledge
Modelling in WebOnto and OCML..

Herman, D. 1. (2000). GraphXML - An XML Based Graph
Interchange Format.

Kim, J. and Y. Gil (2001). Knowledge Analysis on Process
Models. IJCAL

Lester, J. and B. Porter (1997). Developing and Empirically

Evaluating Robust Explanation Generators: The KNIGHT
Experiments.

Maedche, A. (2000). Ontology Engineering Environment
OntoEdit.

Mahalingam, K. and M. N. Huhns (1997). An_Ontology
Tool for Query Formulation in an Agent-Based Context.
Center for Information Technology - Department of
Electrical and Computer Engineering - University of South
Carolina.

Novak, J. D. (2001). The Theory Underlying Concept Maps
and How_To Construct Them, University of West Florida.
Noy, N. F., M. Sintek, et al. (2001). Creating Semantic
Web Contents with Protege-2000. IEEE Intelligent
Systems.

Paley, S. and P. Karp (1996). GKB Editor User Manual, SR
International.

Rodriguez, A. (2000). Active Lisp Pages (ALP), SRI
International.

Swartout, B., R. Patil, et al. (1998). Ontosaurus: A Tool
for Browsing and Editing Ontologies.

