
ert (SAX) -- Modeling Complex usiness Logic In The
Development Of Enterprise Solutions

John C. Ownby

Frito-Lay, Inc.
7701 Legacy Drive
Plano, Texas 75024

Abstract:
SAX is a diagnostic system designed to search for
inventory related errors in a large transaction base,
propose solutions for correcting the errors, and
extrapolate the identified errors into patterns of behavior.
SAX uses a modular combination of backward-chaining
rules and mathematical algorithms to replicate domain
knowledge. The system was developed in two phases,
with the error seeking phase deployed in 1990 and the
pattern recognition phase in 1992. Today, the complete
system is in production and provides expert diagnostics to
13,000 salespersons, 1,000 sales managers, and 60
clerical accounting employees.

Background:
Frito-Lay’s sales force consists of approximately 13,000
route salespersons, with each salesperson responsible for
ordering, managing, and selling an inventory of various
snack products. Salespersons order and sell their products
using a hand-held computer and telecommunicate their
transactions to a central host each evening. These
transactions are captured in an accounting system, which
computes each salesperson’s book inventory. Every four
weeks each salesperson performs a physical inventory of
all the products in their possession, and the accounting
system compares each salesperson’s physical inventory to
their book inventory and identifies any overage or
shortage condition.

Because of the high-volume nature of these routes,
each salesperson can easily generate 100-200 separate
transactions during a four-week time period, with each
transaction encompassing any combination of up to 200
different products. Prior to the development of SAX
these transactions were manually reviewed in an attempt
to identify and correct errors causing overages and
shortages. This activity was performed every four weeks
by each of the 13,000 salespersons, 1,000 sales managers,
and 60 clerical accounting employees, and was both
complicated and time consuming.

Diagostic Module:
SAX was developed in two phases. The diagnostic
module (SAX-I) was designed to find errors within the
transactions and identify a corrective action for the
salesperson. The knowledge base was developed using a
mainframe expert system shell and was built to replicate
the expertise of a single individual who had fifteen years
of domain experience. A rule-based system appeared to
be the most natural approach, particularly since the expert
was a very willing member of the team. The expert’s
knowledge was captured in a rule base containing 64
“chunks” of knowledge, expressed in 500 rules and
applied against 1.7 million records of data every four
weeks. SAX-I attempts to identify missing transactions,
transactions containing errors, and transactions that
indicate certain performance issues that need to be
corrected.

The absence of a beginning inventory, for example,
could indicate an error. The fact that this transaction is
missing, however, could also indicate that the particular
route is new, or that the route is a unique type of route
that normally would not have an inventory of products on
hand. So, when SAX-I detects a route that has a missing
transaction, it then invokes the necessary logic to
determine whether or not the route should have had such a
transaction.

An example of an erroneous transaction would be a
transaction that is a valid transaction for the route, but an
error was made in the transaction’s detail, such as an
incorrect quantity or product code. When such an error is
found, SAX-I searches the necessary transaction detail of
potentially all other transactions on the route (and in some
cases includes other routes’ activity in its evaluation) and
makes inferences based on relationships identified within
the data. For example, SAX-I could identify one product
code on a shipment transaction that contains a quantity
that appears to be driving the over/short on that item for
the entire route. If an error is made on a transaction
between routes, SAX-I also checks the relationships on
the other route to increase the certainty of it’s inference.

1500 IAAI-96

From: IAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

FRITO-LAY, INC SALES ACCOUNTING EXPERT PAGE 1573

SAxP2000-01 SALESPERSON SETTLEMENT WORKSHEET RUN DATE 02/05/92

TIME 03:14:12 AS OF PERIOD 01,1992

ZONE 1 DIVISION 02 ROUTE 2604-006 NAME: JOHN Q. SMITH SSN: 123-45-6789

THE AUTOMATED SETTLEMENT ANALYSIS SYSTEM (SAX) HAS DETECTED A POSSIBLE ERROR IN THE

FOLLOWING AREA. USE THIS INFORMATION AS A STARTING POINT TO IDENTIFY THE CAUSE OF YOUR

OVER/SHORT BALANCE AND IDENTIFY ANY OUTSTANDING ERRORS IN NEED OF CORRECTION.

*PROBLEM: THE FOLLOWING REVERSE SHIPMENT CONTAINS UNUSUALLY LARGE QUANTITIES

FOR SEVERAL PRODUCTS THAT ARE ALSO REPORTED AS OVERAGES ON YOUR

ROUTE SElTLEMENT:

A. DOES THE REVERSE SHIPMENT DOCUMENT CONTAIN KEYING ERRORS

(UPC OR QUANTITY)?

B. WAS THE REVERSE SHIPMENT GENERATED IN ERROR AND NOT VOIDED?

C. ARE ANY CHARGE DOCUMENTS MISSING ON THE SE-ITLEMENT (I.E. A

SHIPMENT, TRANSFER-IN, ETC.)?

DOCUMENT # DOCUMENT DATE DOCUMENT AMOUNT

8965511 01 I30192 $(544.32)

FIGURE 1: SAX-l OUTPUT IDENTIFIES SPECIFIC ERRORS & ISSUES
WITHIN THE TRANSACTION BASE EVERY 4 WEEKS

In addition to finding missing and erroneous
transactions, SAX-I also looks for and identifies certain
performance issues. If SAX-I identifies a route that has
an unusually high amount of stales, for example, it makes
an exhaustive attempt to find a reason. If it can detect a
probable cause for the high stales, it reports its findings to
the route salesperson. If it cannot find a reason, it simply
reports that a large number of stales occurred on the route.

Sax-I’s logic is arranged hierarchically, in that it first
attempts to prove a base hypothesis (i.e. there is a
problem with high stales), then proceeds to refine the
hypothesis based on all available pertinent facts (i.e. the
high stales could be caused by stales occurring on the
truck rather than in the store, or by mis-classification of
another transaction as a stales transaction, or could be due
to a keying error, etc.). For each hypothesis attempted,
SAX-I remembers the last rule successfully fired, and
formats the appropriate output text for reporting (Figure

1). Thus, SAX-I informs the salesperson in as much
detail as possible the nature of the problem identified, as
well as the appropriate corrective action.

Pattern Identification Module:
While SAX-I identifies transaction-related problems
occurring within each four-week time period, the pattern
identification module of SAX (SAX-II) is designed to
identify patterns of behavior over a larger period of time.
For example, certain patterns of errors can indicate that a
salesperson needs training, or that write-off exposure
exists, and in some cases can mean that a district-wide
problem needs to be addressed.

SAX-II takes the output of SAX-I over a four month
time frame, links it with other selected data elements,
and employs a process of categorizing, scoring, selection,
and analyses using hierarchical rules. Using 120 Level 1
rules (lowest level in the hierarchy), SAX-II categorizes

Case Studies 1501

1 SAW OUTPUT FOR 4 PERIODS 1

patterns found within each category. The frequency
patterns are based on the categorized SAX-I rule firings,
and assigned scores based on pre-defined patterns (Figure
4.

SCORE FREQUENCY
ASSIGNED PATTERN EXPLANATION

1 CP CURRENT PERIOD ONLY

2 cP+lP CUR. PD. & IMMEDIATE PRIOR PD.

3 cp+2 CUR PD. &ANY 2 PRIOR PD’S.

4 cP+2P CUR PD & 2 IMMEDIATE PRIOR PD’S.

5 cp+3 CUR PD & 3 PRIOR PERIODS

FIGURE 4: SAX-I FREQUENCY PATTERNS

FIGURE 2: SAX-II CATEGORIES

the SAX-I rule firings as shown in Figure 2. This
categorization allows SAX-II to view the SAX-I output in
terms of generic issues over time. In viewing shipment
performance, for example, SAX-I can find any or all of
the problems shown in Figure 3.

A SHIPMENT WAS NOT
RECENED

A SHIPMENTSHOULD HAVE
BEEN INTRANSIT

HAVE BEEN INTRANSIT

FIGURE 3: EACH CATEGORY CAN CONTAIN
MULTIPLE ISSUES

Each of these error situations has a unique cause and
subsequent corrective action that SAX-I addresses. For
purposes of identifying patterns of behavior, however,
SAX-II only needs to see that the salesperson has some
form of recurring issue with processing shipments of
merchandise. Therefore, SAX-II categorizes all shipment
errors into one category.

After categorizing the SAX-I output, SAX-II then goes
through a process of identifying and scoring frequency

After scoring, all categories with a defined frequency
pattern will be selected for any salesperson with either a
total score greater than a pre-defined threshold, or any
salesperson that has one of five “special” conditions.
These “special” conditions are patterns found that indicate
further analyses and reporting is required, regardless of
the salesperson’s total score. For example, if a
salesperson does not submit a physical inventory for two
periods in a row, this lack of data could prevent other
SAX-I rules from firing. Therefore, SAX-II would
consider such a pattern as serious, regardless of the
salesperson’s total score, and select the route for analyses.

After scoring and selection is completed using SAX-II’s
Level I rule base, the output from Level 1 becomes the
input for 400 Level II rules. The Level II rule base
attempts to further refine the trends and patterns identified
in Level I and, using a hierarchical structure, attempts to
identify meaningful relationships using a combination of
Level I rule firings and other selected raw data elements.
For example, assume the Level I rule base fired the rules
noted in Figure 5.

The Level II rules take the inferences created in the
Level I rules, and through a higher level of reasoning
create new inferences. In this example, for instance, the
Level II rules would determine that Rules 1270 & 1280
are related (Rule 1280 is actually identified the cause of
the problem identified by Rule 1270), Rules 1350 & 1460
are related (the salesperson’s outstanding NSF’s are due to
a customer problem), and Rules 1375, 1377, 1378 & 1380
are related (the salesperson has a growing shortage
pattern, and no payroll action is being taken to reduce it).

From these Level II rules a new inference would be
created indicating that the salesperson’s growing shortage
is probably being driven by customer NSF checks, and

1502 UN-96

EXAMPLE

LEVEL I RULES

RULE 1270: ENDING INVENTORY
MISSING FOR 2 CONSECUTIVE
PERIODS LEVEL II RULES

RULE 1280: MISAPPLIED INVENTORY THE ENDING INVENTORY IS MISSING

OR INVENTORY TRANSFER DOCUMENT ------+ BECAUSE IT WAS APPLIED TO THE
WRONG SALESPERSON’S ACCOUNT

RULE 1350: TREND OF UNRESOLVED
CHECKS RETURNED AS NSF

RULE 1375: TREND OF ALWAYS HAVING THE SALESPERSON HAS A GROWING

A SHORTAGE BALANCE SHORTAGE AND NO PAYROLL ACTION
IS OCCURRING

RULE 1378: SHORTAGE IS GROWING

RULE 1380: NO PAYROLL ACTION IS CUSTOMER NSF CHECKS MAY BE DRIVING
BEING APPLIED TO REDUCE THE THE SHORTAGE PATTERN AND ARE NOT
BALANCE BEING RESOLVED TIMELY

I I/
RULE 1480: CUSTOMER NSF CHECK /
TREND

FIGURE 5: LEVEL II INFERENCES DRAWN FROM LEVEL-I RULE FIRINGS

that although no inventory related issues were detected,
the misapplication of the salesperson’s inventory could be
keeping such issues from surfacing -- the same conclusion
that an overworked district manager could have reached,
but only after pouring over boxes of sales tickets and
shipment invoices for many days.

The Level II rules are linked to a text file, allowing each
selected salesperson’s patterns to be formatted and
distributed to field sales managers (Figure 6). SAX-II
eliminates much of the detailed research efforts required
by providing the field manager with a concise summary
of balance related behavioral issues that need to be
addressed.

Validation:
The knowledge base was validated against live data.
Each day, as new rules were added, a nightly cycle was
run against live data. After successful validation by the
expert resource, the systems output was then submitted to
one-half of a test team provided by the user group. This
half of the test team was charged with proving the output
right or wrong.

The other half of the test team was not given the systems
output, but was charged with working from the data to

develop conclusions. These conclusions were then
validated against the conclusions made by the system.
This method of testing from the conclusions backward
and from the data forward enabled the project team to
significantly refine the logic used by the system.

Deplovment:
SAX-I was initially developed using a mainframe expert
system shell. Because of the vast amounts of input data
required from other systems (approximately 1.7 million
records every four weeks), the SAX-I rule base was
translated into procedural code prior to deployment to
shorten cycle times. Total development time (including
knowledge acquisition, prototype development, testing,
and preparation for production) was seven months, and
staffed with a full time project team consisting of one
knowledge engineer, two systems analysts, and one
domain expert. The system was placed into production in
August, 1990.

SAX-II was developed and deployed in a similar
fashion. Total development time was 11 months, and was
staffed with two knowledge engineers and one system
analyst. The system was placed into production in
January, 1992.

Case Studies 1503

‘RITO-LAY, INC SETTLEMENT ANALYSIS EXPERT
SAXP30080 TREND ANALYSIS REPORT
rlME 05: 14: 12 AS OF PERIOD 01, 1992

PAGE 926
RUN DATE 02/05/92

ISTRICT: 123 BALANCE FWD TRENDS & PATTERNS

JOHN DOE 8,958.55 SH GROWING LARGE SHORTAGE; PAYROLL ACTION HAS NOT BEEN
TAKEN IN THE PAST TWO PERIODS

DEVELOPING A TREND OF SUBMITTING CUSTOMER NSF CHECKS,
WITH SOME NSF REMAINING UNRESOLVED

THE ENDING INVENTORY HAS BEEN MISSING FOR TWO PERIODS
IN A ROW, RENDERING THE HHC UNABLE TO ACCURATELY
GENERATE INVENTORY VARIANCES

MARY SMITH 548.92 SH GROWING LARGE SHORTAGE: PAYROLL ACTION HAS NOT
RESOLVED THE BALANCE

CONTINUAL PROBLEMS WITH LATE/MISSING CASH

TREND OF HIGH STALES, WITH OVER 25% OF CURRENT PERIOD
STALES REPORTED AS TRUCK STALES

TREND OF UNRESOLVED CHARGE TICKET ADJUSTMENTS FOR
THREE OF THE LAST FOUR PERIODS

FIGURE 6: EXAMPLE OF SAX-II O?JTPUT

Although the systems were deployed using procedural
code (to shorten the cycle times), the shell used in
development was an essential tool in developing, testing,
and refining the complex logic used by SAX in analyzing
the transaction base.

Both systems have been in continuous production since
their initial deployment, with the systems’ output
currently distributed to over 13,000 field salespersons and
sales management personnel and 60 headquarters
accounting personnel.

Is SAX Reallv AI? :
SAX-I was our first attempt at building an intelligent
system, and we began the task with a somewhat “purist”
approach, in that we intended to build the entire system
within the expert system shell. Because of SAX-I’s huge
appetite for raw data (which is why we chose this task in
the first place), reasoning over 1.7 million records within
the shell was agonizingly slow, the cycle averaging
roughly six CPU hours.

Rather than continue dimming the lights in the data
center each time we ran SAX-I, we made a decision to
experiment with pre-processing some of the incoming
data elements by placing some of the easier rules into a
module residing between the data and the shell. This was
so successful that within a few months we made the
decision to re-code the entire rule base into procedural

code for the production system, and shortened the cycle
time by 83%.

SAX-II was built and deployed using a similar approach.
Even though the shell was not used in the final version of
the production system, the use of knowledge based tools
was critical in the development phase.

So, is SAX really an AI application? Our assessment
after building, deploying, and living with both systems
has led us to conclude that the AI in a system is not
necessarily dependent upon the vehicle in which a system
is developed or deployed, but is defined by the task the
system performs. In the case of SAX-I & II, the systems
replicate a highly complex reasoning process (Figure 7)
that ultimately utilizes over 8 million records of raw data
and answers the question of “What does the data mean?, ”
and “What do you need to do about it?.” The AI in SAX
is in the knowledge captured during the development
phase and replicated by the systems’ rules.

My guess is that over time the distinction between
traditional systems and AI will become increasingly
blurred. AI will become a widely accepted technique,
and as AI techniques are embedded into traditional
systems (using hopefully a variety of tools), AI will
become more and more a part of mainstream system
design.

1504 IAAI-96

HYPOTHESES RELATICNSHIPS DATA ELEMENTS

FIGURE 7: SAX REPLICATES A HIGHLY COMPLEX REASONING PROCESS

Innovative Aspects Of SAX:
The main innovative aspect of SAX-I & II comes from
the complexity of the task performed (Figure 8).
Working together, the two system modules efficiently
turn over 8 million records of raw transactional data
(sourced from a variety of systems) into roughly 6,000
concise and actionable conclusions. The input for SAX-I
is raw data; the output is knowledge. The input for
SAX-II is the output of 52X-I. Thus, the output for one

SAX-I

INPUT

ONE PERIOD OF.

SHIPMENTS

TRANSFERS

STALES

MFG. DEFECTS

BOOK INVENTORY

PHYSICAL INVENTORY

SHIPPING ADJ’S

HHC VARIANCE

NSF CHECKS

CHG TKT ADJ’S

PAYROLL ACTION

ANAWSW

500 RULES

22.000 CONCLUSIONS

I I

expert system (SAX-I) becomes the input for another
(SAX-II).

Maintenance:
As soon as we realized procedural code would be
necessary to reduce cycle times, we took careful steps to
ensure that SAX I & II would be maintainable. Variables,
for example, that were shared by multiple rules were
placed in user-maintainable tables (i.e. data aggregations

SAX-II

INPUT SELECTION ANALYSIS OUTPUT

FOUR PERIODS OF:

SAX-I OUTPLm

ACCUM. BY PERSON

CATEGORIZE

400 RULES

115 POSSIBLE CONCL.

PROBLEM TRENDS

I I
FSA UNRES. W/O’S ASSIGN PATTERNS

FSANSFCHECKS

FSA VOID CTA’S

FSA TRF ADJ’S

THREE PDS OF

FSA BAL. FWD.

FSA PAYROLL ACTION

FSA SHORT. PYMTS.

YEAR-TO-DATE:

FSA UNRES. W/O’S

FIGURE 8: SAX TAKES 8 MILLION RECORDS OF RAW DATA AND
TURNS IT INTO 6,000 CONCLUSIONS

Case Studies 1505

that would be used repeatedly); algorithms were
developed and re-used that enabled us to use fuzzy logic
techniques in identifying transactions, such as
mathematical relationships used to identify different data
elements that “roughly offset” (a classic case of %ow tall
is taZZ’9, and others that enabled SAX to determine the
uniqueness of similar transactions.

Other algorithms were developed to allow for
categorizing route types, dates, transaction types, etc.
The definitions of these formulas were placed in a
separate table and referenced by the system when needed
to enable major reusable definitions to be maintained
from a central system point. Thus far, maintaining the
systems has not been difficult, however because the
internal structure of the knowledge base is hierarchical, as
our business continues to grow and become increasingly
complex, we have to be vigilant as new logic is added
over time. Should the business undergo drastic changes,
we would probably have to consider re-development
using the shell.

Learning’s:
This system, particularly since it was our first attempt at
replicating a difficult thought process, was a tremendous
educational process. Some of our key learningss were:

l Traditional systems are usually designed
two-dimensionally, in that most systems’ ultimate
output is expressed in some form of rows and
columns, with summaries at various levels. Most
business systems today (assuming they were well
designed) were built with a high level of data
integration. On the output side, however, a
surprisingly high percentage of these systems
resemble islands -- they may share raw data as inputs,
but on the output side they are like strangers. Rarely
does hindsight ever conclude that a low level of data
integration within a highly integrated business process
was a good idea -- the same is true of system outputs.

. As a business becomes increasingly “data rich,” this
overwhelming amount of data can cause it to
simultaneously become “information poor” if the data
is not efficiently converted into information. AI
allows you to view your data multi-dimensionally,
with an ultimate goal of identifying meaningful
relationships. Therefore, AI opens the possibility of
turning data into information by taking an integrated
view of system outputs.

knowledge, and not only was the expert willing, but
was excited to play such an important role. SAX-II
was more difficult, in that it represents a synthesis of
several experts.

0 Never underestimate human skepticism. As a general
rule the average person accepts the concept of
automated reasoning about as easy as they once
accepted automated bank tellers. Focus on pre-selling
and training before you deploy your system. We
rolled the first system with little fanfare and
subsequently had to spend a lot of effort getting
people to understand and accept the power behind the
system.

0 Use every tool in your toolbox appropriately.
Although the shell was invaluable in the development
stage of the project, attempting to place the shell into
production created lengthy cycle times. When we
faced huge cycle times in the early stages of SAX-I,
we looked at some fairly outrageous options before
deciding upon using procedural code to replicate the
shell’s rule base. Our findings have prompted us to
perhaps add a second set of conditions to the Turing
Test: “‘If a person in the next room can’t tell what it’s
coded in, then ”

0 Where transaction processing systems allowed us to
eliminate the need for huge rooms filled with people
punching numbers into calculators, AI can ultimately
automate much of today’s analytical tasks. Look
around -- potential applications for automating human
expertise are everywhere.

Acknowledpments:
SAX-I and SAX-II were the results of a number of highly
talented and committed people. Mary McNeese provided
critical domain expertise to SAX-I, and became so
enthused with the possibilities she led the effort to build
SAX-II. Audrey Holman not only came up with the
solution to utilize procedural code, but spent many
creative months figuring out how to replicate complex
rules. Steve Shave1 gave us a taste for where we could
take these systems early on via his rapid prototyping
expertise. Also, I would like to thank the numerous
salespersons and district sales managers that provided
valuable input to the team.

9 Never underestimate the value of a willing domain
expert. SAX-I was built to replicate a single person’s

1506 IAN-96

