
Logic for Automated Mechanism Design — A Progress Report

Michael Wooldridge∗ Thomas Agotnes† Paul E. Dunne∗ Wiebe van der Hoek∗

∗Department of Computer Science †Department of Computer Engineering
University of Liverpool Bergen University College
Liverpool L69 3BX, UK PB. 7030, N-5020 Bergen, Norway

Abstract

Over the past half decade, we have been exploring the use of
logic in the specification and analysis of computational eco-
nomic mechanisms. We believe that this approach has the
potential to bring the same benefits to the design and analysis
of computational economic mechanisms that the use of tem-
poral logics and model checking have brought to the specifi-
cation and analysis of reactive systems. In this paper, we give
a survey of our work. We first discuss the use of cooperation
logics such as Alternating-time Temporal Logic (ATL) for the
specification and verification of mechanisms such as social
choice procedures. We motivate the approach, and then dis-
cuss the work we have done on extensions to ATL to support
incomplete information, preferences, and quantification over
coalitions. We then discuss is the use of ATL-like cooperation
logics in the development of social laws.

Introduction
In recent years, there has been a dramatic increase of in-
terest in the study and application of economic mechanisms
in computer science and artificial intelligence (Sandholm
1999; Nisan & Ronen 1999). For example, auctions are a
well-known type of economic mechanism, used for resource
allocation, which have achieved particular prominence in
computer science (Krishna 2002; Cramton, Shoham, &
Steinberg 2006). There are a number of reasons for this
rapid growth of interest. The influence of multi-agent sys-
tems research is surely one (Bond & Gasser 1988; Weiß
1999; Wooldridge 2002), but perhaps more fundamentally, it
is increasingly recognised that a truly deep understanding of
many (perhaps most) distributed and networked systems can
only come after acknowledging that they have the character-
istics of economic systems, in the following sense. Consider
an online auction system, such as eBay (EBAY 2001). At
one level of analysis, this is simply a distributed system: it
consists of various nodes, which interact with one-another
by exchanging data, according to some protocols. Dis-
tributed systems have been very widely studied in computer
science, and we have a variety of techniques for engineering
and analysing them (see, e.g., (Ben-Ari 1990)). However,
while this analysis is of course legitimate, and no doubt im-
portant, it is surely missing a big, and very important part of

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the picture. The participants in such online auctions are self
interested. They are acting in the system strategically, in or-
der to obtain the best outcome for themselves that they can.
For example, the seller is typically trying to maximise sell-
ing price, while the buyer is trying to minimise it. Thus, if
we only think of such a system as a distributed system, then
our ability to predict and understand its behaviour is going
to be rather limited. We also need to understand it from an
economic perspective. In the area of multi-agent systems,
we take these considerations one stage further, and start to
think about the issues that arise when the participants in the
system are themselves computer programs, acting on behalf
of their users or owners (Wooldridge 2002).

A number of very natural issues arise if we start to con-
sider the design of computational mechanisms (Rosenschein
& Zlotkin 1994; Sandholm 1999; Kraus 2001). In this paper,
we address ourselves to the following:

• How can we specify the desirable properties of computa-
tional mechanisms?

• How can we verify that these mechanisms behave as we
intended?

The starting point for our research is that logic has proven to
be an extremely successful and powerful tool in the specifi-
cation and analysis of protocols in computer science. There
is thus some reason for supposing that it might be of simi-
lar value in the specification and analysis of computational
mechanisms. Temporal logics have been perhaps the most
successful formalism in the specification and verification
of conventional reactive and distributed systems (Emerson
1990), and the associated verification technology of model
checking for temporal logics has proven to be enormously
successful (Clarke, Grumberg, & Peled 2000; Holzmann
2003). However, conventional temporal logics are not well
suited for expressing the properties of economic, game-like
systems. They are intended for expressing liveness and
safety properties, not for expressing strategic properties.

Our work over the past half decade has focused on the use
of cooperation logics for automated mechanism design and
analysis. Cooperation logics were developed independently
and more-or-less simultaneously by several researchers in
the late 1990s (Alur, Henzinger, & Kupferman 1997; Pauly
2002). As we shall see, although cooperation logics are in
fact descended from conventional temporal logics, they are

9

ideal for expressing the strategic properties of systems. Our
aims in this paper are, first, to motivate this research program
in more detail, and second, to survey the progress we have
made. Our work in this area is based around two directions,
and the paper is structured accordingly. In the following
section, we motivate and then introduce cooperation logics
for social choice mechanisms. We then go on to consider
how such logics can be used in the design of social laws. We
then present some conclusions and future research issues.

Logic for Social Choice Mechanisms
Social choice mechanisms are a very general class of eco-
nomic mechanism (Arrow, Sen, & Suzumura 2002). So-
cial choice mechanisms are concerned with selecting some
particular outcome from a range of alternatives on behalf
of a collection of participants, known as agents. Typi-
cally, the agents have different preferences over the possi-
ble outcomes, and the mechanism considers these prefer-
ences when choosing the outcome. Voting procedures are
examples of social choice mechanisms (Brams & Fishburn
2002). Perhaps the best known voting procedure is the “first
past the post” (FPTP) system, (also known as single win-
ner plurality voting), which is used in the UK for electing
political representatives. Here, the possible outcomes cor-
respond to the possible candidates, only one of which can
be elected; voters express their preferences by indicating
their most preferred candidate, and the mechanism states
that the selected outcome will be the one gaining the largest
number of votes. While FPTP is simple to understand and
implement, it has of course many well-documented draw-
backs. For example, if there are more than two candidates,
then the outcome selected may not in fact have an overall
majority, meaning that a majority of voters would prefer
some other outcome. Moreover, the mechanism is prone
to strategic manipulation: for example, agents can some-
times benefit by voting against their true preferences if they
believe their most preferred outcome is unlikely to win over-
all. Other social choice mechanisms have been proposed in
an attempt to overcome the limitations of simple voting pro-
cedures such as FPTP – examples include the Borda count
and single transferable vote. The study of such mechanisms
has traditionally been the domain of social choice theory in
economics (Arrow, Sen, & Suzumura 2002). Perhaps the
most important result in social choice theory, due to Kenneth
Arrow, is a negative one: any social choice mechanism in-
volving more than two alternative outcomes must fail to sat-
isfy one of three basic axioms for such protocols (Campbell
& Kelly 2002)1. Another key negative result, the Gibbard-
Satterthwaite impossibility theorem, says that in any non-
dictatorial social choice mechanism (i.e., in any mechanism
that is not “controlled” by a single agent), it is possible for
an agent to benefit by voting strategically, i.e., voting against
its preferences (Arrow, Sen, & Suzumura 2002). Although
at first sight these results suggest that the further develop-
ment of social choice mechanisms must be a quixotic enter-
prise, it turns out that useful mechanisms can in practice be

1Formally, the criteria are: Pareto optimality, independence of
irrelevant alternatives, and non-dictatorship.

developed for many settings, for example by modifying or
relaxing some of the conditions of Arrow’s theorem (Camp-
bell & Kelly 2002, p.52).

Recently, there has been substantial interest in social
choice mechanisms from within the computer science com-
munity. There are several reasons for this interest; for exam-
ple:

• The multi-agent systems field is concerned with the prob-
lem of building software agents that can interact with one-
another in order to achieve goals, typically on behalf of
users (Wooldridge 2002). Such interaction frequently in-
volves the agents autonomously reaching agreements with
one another. This then raises the question of what proto-
cols the agents will use to decide how to reach agreement
with one another. The fact that the participants will be
software agents (rather than humans) raises a rather dif-
ferent set of concerns to those that arise when considering
the use of mechanisms by humans. For example, an obvi-
ous question is how computationally hard it is for an agent
to determine how to vote so as to obtain the best possible
outcome for itself, and the associated question of whether
it is possible to design a social choice mechanism that is
too computationally complex to manipulate in this way –
see, e.g., (Conitzer 2006) for an example of such issues.

• Given the current international interest in e-government,
and in particular the possibility of increased public in-
volvement in the democratic process via the Internet, the
design of appropriate social choice mechanisms for such
scenarios has become of interest. A typical issue here is
that of authentication: if a member of the public is regis-
tering their vote via the Internet, how can we ensure that
the individual registering the vote really is who they pur-
port to be? Moreover, how can an individual verify that
her vote was indeed counted, without making public the
votes of others?

It is common to refer to social choice mechanisms as “pro-
tocols”, since they involve a number of parties exchang-
ing messages in certain well-defined sequences. However,
whereas protocol designers are typically concerned with
such issues as deadlock-freeness, mutual exclusion over
shared resources, and guaranteed receipt of messages, in an
economic mechanism we are also, and primarily, concerned
with a higher level set of issues, relating to the strategic
behaviour of the participants. That is, we assume that the
participants in the mechanism will always choose to act in
their best interests, and ask what then follows. This im-
plies the participants will take into account how other par-
ticipants will act in the mechanism, under the assumption
that they too are acting in their best interests. Ultimately,
such strategising may lead to behaviours such as participants
with similar interests colluding with one another, misrepre-
senting their actual preferences, or even being deliberately
deceitful, if it seems this ultimately leads to some benefit for
themselves. Thus, when designing mechanisms for software
agents it is of course essential to consider protocol-level is-
sues such as deadlock freeness; but the main issues one faces
stem from strategic considerations. The fact that we must
take account of strategic concerns, in addition to protocol-

10

level issues, makes social choice mechanisms particularly
hard to design and analyse.

Although the mathematical foundations of social choice
mechanisms have been studied within the game theory com-
munity for some time, their treatment as computational ob-
jects, and in particular, their formal specification and auto-
mated verification was not considered until recently. An im-
portant step forward in this regard came with the develop-
ment of cooperation logics such as Alternating-time Tem-
poral Logic (ATL) (Alur, Henzinger, & Kupferman 2002) for
representing the properties of strategic interaction in multi-
agent systems, and the realisation by Marc Pauly that such
cooperation logics could be used to naturally capture the re-
quirements of many social choice mechanisms.

ATL emerged from the use of Computation Tree Logic
(CTL) for the specification and verification of reactive sys-
tems (Emerson 1990). CTL is a temporal logic that is in-
terpreted over tree-like structures, in which nodes repre-
sent time points and arcs represent transitions between time
points. In distributed/reactive systems applications, the set
of all paths through a tree structure is interpreted as the set of
all possible computations of a system. CTL combines path
quantifiers “A” and “E” for expressing that a certain series
of events will happen on all paths and on some path respec-
tively, with tense modalities for expressing that something
will happen eventually on some path (♦), always on some
path () and so on. Thus, for example, by using CTL-like
logics, one may express properties such as “on all possible
computations, the system never enters a fail state”, which is
represented by the CTL formula A ¬fail.

Although they have proven to be enormously useful in the
specification and verification of reactive systems (Clarke,
Grumberg, & Peled 2000), logics such as CTL are of lim-
ited value for reasoning about systems in which strategic be-
haviour is of concern. The kinds of properties we wish to
express of such systems typically relate to the strategic pow-
ers that system components have. For example, we might
wish to express the fact that “agents 1 and 2 can cooperate
to ensure that, no matter what agents 3 and 4 do, the sys-
tem never enters a fail state”. It is not possible to capture
such statements using CTL-like logics. The best one can do
is either state that something will inevitably happen, or else
that it may possibly happen: CTL-like logics thus have no
notion of agency. Alur, Henzinger, and Kupferman devel-
oped ATL in an attempt to remedy this deficiency. The key
insight in ATL is that path quantifiers can be replaced by co-
operation modalities: the ATL expression 〈〈C〉〉ϕ, where C
is a group of system components (agents), expresses the fact
that C can cooperate to ensure that, no matter how other sys-
tem components behave, ϕ will result. Thus 〈〈C〉〉ϕ captures
the strategic ability of C to bring about ϕ. So, for example,
the fact that “agents 1 and 2 can ensure that the system never
enters a fail state, no matter what agents 3 and 4 do” may be
captured in ATL by the following formula:

〈〈1, 2〉〉 ¬fail.

Pauly’s insight was that the ATL cooperation modality
construct can be used to express the desirable properties
of social choice mechanisms. To see how this works, con-

sider the following informal requirements for a simple social
choice mechanism (Pauly 2001):

Two individuals, A and B, must choose between two
outcomes, p and q. We want a mechanism that will al-
low them to choose which will satisfy the following re-
quirements: We want an outcome to be possible – that
is, we want the two agents to choose, collectively, either
p or q. We do not want them to be able to bring about
both outcomes simultaneously. Finally, we do not want
either agent to be able to unilaterally dictate an out-
come – we want them both to have “equal power”.

These requirements may be formally and naturally repre-
sented using ATL, as follows:

〈〈A, B〉〉 �p (1)

〈〈A, B〉〉 �q (2)

¬〈〈A, B〉〉 �(p ∧ q) (3)

¬〈〈A〉〉 �p (4)

¬〈〈B〉〉 �p (5)

¬〈〈A〉〉 �q (6)

¬〈〈B〉〉 �q (7)
Property (1) states that A and B can collectively choose p,
while (2) states that they can choose q; (3) states that they
cannot choose p and q simultaneously; and properties (4)–
(7) state that neither agent can dictate an outcome.

Now, once we have such a formal specification of the re-
quirements of a mechanism in this way, we can start to ap-
ply the apparatus of automated reasoning developed within
computer science and AI to reason about and synthesise
mechanisms:
• The problem of synthesising a mechanism that satisfies

properties ϕ reduces to a constructive proof of satisfi-
ability for ϕ: given some requirements ϕ, again ex-
pressed using ATL, try to find some mechanism M such
that M |=ATL ϕ; if we can exhibit such an M , then
this will serve as our desired mechanism; if there is
no such M , then announce that the no mechanism cor-
rectly implements the specification. The satisfiability
problem for ATL is EXPTIME-complete (Drimmelen 2003;
Walther et al. 2006), which means that synthesis in this
way is going to be computationally costly.

• The problem of checking whether a mechanism M sat-
isfies property ϕ, where ϕ is expressed using the lan-
guage of ATL as in formulae (1)–(7), above, reduces to a
model checking problem: check whether M |=ATL ϕ, cf.
(Clarke, Grumberg, & Peled 2000). Alur and colleagues
demonstrated that, for an explicit state representation of
models, (i.e., where we “explicitly enumerate” the states
of a model in the input), the model checking problem for
ATL is PTIME-complete, and hence tractable (Alur, Hen-
zinger, & Kupferman 2002); this is usually interpreted as
a positive result. However, if we assume a representa-
tion of models such as those actually used by ATL model
checkers (Alur et al. 1998), then the complexity of model
checking rises dramatically – it is in fact just as hard as the
satisfiability problem (Hoek, Lomuscio, & Wooldridge
2005).

11

This approach – specifying the desirable properties of a
mechanism using such a logic – is the Logic for Automated
Mechanism Design and Analysis paradigm, of which the first
contours were sketched in (Pauly & Wooldridge 2003). In
this paper, a number of social choice mechanisms were for-
mally specified using ATL, and existing ATL model check-
ing tools (Alur et al. 1998) were used to formally – and
automatically – analyse properties of candidate mechanisms
with respect to these specifications. For example, consider
the following mechanism, intended to permit the agents to
select between the outcomes in accordance with these re-
quirements.

The two agents vote on the outcomes, i.e., they each
choose either p or q. If there is a consensus, then the
consensus outcome is selected; if there is no consensus,
(i.e., if the two agents vote differently), then an outcome
p or q is selected non-deterministically.

Notice that, given this simple mechanism, the agents re-
ally can collectively choose the outcome, by cooperating. If
they do not cooperate, however, then an outcome is chosen
for them.

Having formally set out the desirable properties that we
wish a mechanism to satisfy, and having described a mecha-
nism that we believe satisfies these properties, our next step
is to formally verify that the mechanism does indeed sat-
isfy them. We do this via model checking: we express the
mechanism as a model suitable for the ATL model checking
system MOCHA, and then, using MOCHA, we check whether
the requirements are realised in this model.

A MOCHA model of the mechanism is given in Figure 1.
While space restrictions preclude a detailed introduction to
the modelling language of MOCHA, it is nevertheless worth
briefly describing the key features of this representation. We
model the scenario via three agents, which in MOCHA termi-
nology are called modules:

• AgentA and AgentB correspond to the A and B in our
scenario. Each agent controls (i.e., has exclusive write
access to) a variable that is used to record their vote. Thus
voteA records the vote of AgentA, where a value of
false in this variable means voting for outcomeP, while
true implies voting for Q. The “program” of each agent
is made up of two remaining guarded commands, which
simply present the agent with a choice of voting either
way.

• The Environment module is used to model the mech-
anism itself. This module simply looks at the two votes,
and if they are the same, sets the variable outcome to
be the consensus outcome; if the two votes are different,
then the guarded commands defining Environment’s
behaviour say that an outcome will be selected non-
deterministically.

Notice that in translating this simple mechanism in a form
suitable for MOCHA, it has not been possible to remain en-
tirely neutral with respect to all issues. For example, the
way we have coded the mechanism means that it is in prin-
ciple possible for one agent to see another agent’s vote (i.e.,

-- voteA == false ... agent A votes for outcome P

-- voteA == true ... agent A votes for outcome Q

module AgentA

interface voteA : bool

atom controls voteA

init update

[] true -> voteA’ := false

[] true -> voteA’ := true

endatom

endmodule

-- voteB == false ... agent B votes for outcome P

-- voteB == true ... agent B votes for outcome Q

module AgentB

interface voteB : bool

atom controls voteB

init update

[] true -> voteB’ := false

[] true -> voteB’ := true

endatom

endmodule

-- outcome == false ... P is selected

-- outcome == true ... Q is selected

module Environment

interface outcome : bool

external voteA, voteB : bool

atom controls outcome awaits voteA, voteB

init update

-- if votes are the same, go with selected outcome

[] (voteA’ = voteB’) -> outcome’ := (voteA’ & voteB’)

-- otherwise select outcome non-deterministically

[] ∼(voteA’ = voteB’) -> outcome’ := true

[] ∼(voteA’ = voteB’) -> outcome’ := false

endatom

endmodule -- Environment

System := (AgentA || AgentB || Environment)

Figure 1: A simple social choice mechanism, defined in the
ReactiveModules language of the MOCHA model checker.

votes are common knowledge), even though, in the imple-
mentation given here, agents do not make any use of this
information. The informal description of the mechanism –
and indeed, the original requirements – said nothing about
whether votes (and hence preferences) should remain hid-
den or should be common knowledge, and in fact, we could
have coded the scenario in such a way that an agent’s vote
was visible only to the Environment module. But the
point is that we have been forced to make a commitment
one way or the other by the need to code the scenario. It is
of course likely that in more sophisticated (and realistic) sce-
narios, we would desire votes to remain private. We discuss
this issue in more detail below.

Having captured the mechanism in the modelling lan-
guage of MOCHA, we can use a model checker to check that
the desired properties do actually hold. And indeed they do.

It should be clear to readers familiar with social choice

12

theory that we are not too far away from the kinds of proper-
ties that Arrow and Gibbard-Satterthwaite deal with in their
famous theorems. However, we can only explicitly capture
properties such as dictatorship using “vanilla” ATL. In the
following sub-sections, we shall see some of the extensions
to ATL that we have been developing to allow other proper-
ties to be naturally represented.

Incomplete Information
Incomplete information plays a role in most mechanisms.
For example, in a sealed bid auction, the fact that I do not
know what you are bidding (and you do not know what I am
bidding) is an essential aspect of the mechanism. It is there-
fore very natural to consider epistemic extensions to ATL.
Based on the type of epistemic logic popularised in AI by
Fagin-Halpern-Moses-Vardi (Fagin et al. 1995), we devel-
oped and investigated epistemic extensions to ATL (Hoek &
Wooldridge 2002; 2003b; 2003a). The first line of attack we
followed was to simply add epistemic modalities Ki for each
agent i to ATL: a formula Kiϕ is intended to express the fact
that agent i knows ϕ. The resulting language, ATEL, is ex-
tremely powerful and very natural for expressing the proper-
ties of communicating systems. For example, the following
formula expresses that a can communicate its knowledge of
ϕ to b:

Kaϕ → 〈〈a〉〉 �Kbϕ

As another example, consider a security protocol, in which
agents a and b share some common secret (a key Sab for
instance), what one typically wants is the following, which
expresses that a can send private information to b, without
revealing the message to another agent c:

Kaϕ ∧ ¬Kbϕ ∧ ¬Kcϕ ∧ 〈〈a, b〉〉 �(Kaϕ ∧ Kbϕ ∧ ¬Kcϕ)

Knowledge pre-conditions, of the type introduced into the
theoretical foundations of AI planning by Moore (Moore
1990), are also very naturally expressed in ATEL. The fact
that knowledge of ψ is a necessary pre-condition to be able
to achieve ϕ is represented by the following.

〈〈a〉〉 �ϕ → Kaψ

Of course, as Moore’s seminal analysis shows, the interac-
tion between knowledge and ability is rather complex and
subtle, and some of the issues raised by Moore are reviewed
in the context of ATEL in (Jamroga & van der Hoek 2004).

A detailed case study, in which we show how epistemic-
ability properties may be model checked, is given in (Hoek
& Wooldridge 2003a).

Preferences
We don’t get very far in the study of mechanisms without
some way of dealing with preferences. Of course, it is pos-
sible to represent preferences in “vanilla” ATL, but not very
elegantly. We have to make use of the propositional logic
machinery available in the language, for example by intro-
ducing propositions of the form ui,x, with the intended inter-
pretation that in the current state, agent i gets utility x. This

is not a very attractive approach (Benthem 2002). Unfortu-
nately, the logical representation of preferences is a ongoing
research area, and there is no universally accepted approach:
we have been investigating a number of alternatives. In (van
Otterloo, Hoek, & Wooldridge 2004), we considered an op-
erator [C : ϕ]ψ, with the intended reading “if the agents C
prefer ϕ, and act accordingly, then ψ follows”. It was shown
how this preference operator could be used to naturally cap-
ture properties of mechanisms such as “any coalition of size
greater than n which prefers ϕ can bring about ϕ”. How-
ever, this assumes that the preferences of C are made public,
while we might want to consider cases where an agent does
not publically disclose its preferences, or falsely announces
them. In (Agotnes, van der Hoek, & Wooldridge 2006a),
we developed a logic intended for reasoning about coali-
tional games without transferable utility, which combined
an ATL-style ability operator with a direct representation of
preferences over outcomes, of the form (ω1 �i ω2), mean-
ing agent i prefers outcome ω1 over ω2; it was shown how
these constructs were sufficient to characterise properties of
coalitional games such as core non-emptiness (cf. (Osborne
& Rubinstein 1994)). Finally, in (Agotnes, van der Hoek,
& Wooldridge 2007c), we developed a formalism explicitly
intended to support reasoning about Arrovian properties of
social choice mechanisms, and Arrow’s theorem has a di-
rect and succinct syntactic characterisation as an axiom of
the logic. The logic provides for (modal) quantification over
alternatives and preference profiles, although it is arguably
not a “natural” formalism for humans to read. We should
emphasise that, although a lot of research has been done in
this area, there is still as yet no entirely satisfactory way of
representing preferences within an ATL-like formalism, and
this topic remains the subject of ongoing research.

Quantification

Expressing many interesting properties of mechanisms re-
quires quantification over coalitions. For example, consider
the following property: “agent i is a member of every coali-
tion that can achieve ϕ”. We can represent this in ATL, as
follows:

∧

C

(〈〈C〉〉 �ϕ) → ¬〈〈C \ {i}〉〉 �ϕ

We thus use conjunction as a universal quantifier. The prob-
lem with this formulation is that it results in a formula that is
exponentially long in the number of agents in the system. An
obvious solution would be to extend ATL with a first-order-
style apparatus for quantifying over coalitions. In such a
quantified ATL, one might express the above by the follow-
ing formula:

∀C : 〈〈C〉〉♦ϕ → (i ∈ C)

However, adding quantification in such a naive way leads to
undecidability over infinite domains (using basic quantifica-
tional set theory we can define arithmetic), and very high
computational complexity even over finite domains. The
question therefore arises whether we can add quantification

13

to cooperation logics in such a way that we can express use-
ful properties of cooperation in games without making the
resulting logic too computationally complex to be of prac-
tical interest. In (Agotnes, van der Hoek, & Wooldridge
2007b), we answered this question in the affirmative. We in-
troduced Quantified Coalition Logic, which allows a useful
but restricted form of quantification over coalitions. In QCL,
we replace cooperation modalities 〈〈C〉〉 with expressions
〈P 〉ϕ and [P]ϕ; here, P is a predicate over coalitions, and
the two sentences express the fact that there exists a coali-
tion C satisfying property P such that C can achieve ϕ and
all coalitions satisfying property P can achieve ϕ, respec-
tively. Thus we add a limited form of quantification without
the apparatus of quantificational set theory. The resulting
logic, QCL, is exponentially more succinct than the corre-
sponding fragment of ATL, while being computationally no
worse with respect to the key problem of model checking.

To see how QCL works, consider specifying majority vot-
ing:

An electorate of n voters wishes to select one of two
outcomes ω1 and ω2. They want to use a simple major-
ity voting protocol, so that outcome ωi will be selected
iff a majority of the n voters state a preference for it.
No coalition of less than majority size should be able
to select an outcome, and any majority should be able
to choose the outcome (i.e., the selection procedure is
not influenced by the “names” of the agents in a coali-
tion).

Let maj(n) be a predicate over coalitions that is satisfied if
the coalition against which it is evaluated contains a majority
of n agents. For example, if n = 3, then coalition {1, 3}
would satisfy the predicate, as would coalitions {2, 3} and
{1, 2}, but coalitions {1}, {2}, and {3} would not. We can
express the majority voting requirements above as follows.
First: every majority should be able to select an outcome.

([maj(n)]ω1) ∧ ([maj(n)]ω2)

Second: no coalition that is not a majority can select an out-
come.

(¬〈¬maj(n)〉ω1) ∧ (¬〈¬maj(n)〉ω2)

Simple though this example is, it is worth bearing in mind
that its expression in ATL is exponentially long in n.

Succinct Representations
ATL does not have much to say about the origins of an
agent’s powers. If we consider specific models for where
an agent’s powers come from, then we end up with sys-
tems closely related to ATL, but with some rather differ-
ent properties. We considered one such variation in (Hoek
& Wooldridge 2005b), where we modelled a system by
supposing that each agent in the system controlled a set
of propositions. The powers of an agent, and the coali-
tions of which it is a member, derive from the possible as-
signments of truth or falsity that it can give to the propo-
sitions under its control. The resulting logic was shown
to be much simpler than ATL. In (Hoek & Wooldridge

2005a), we considered a variation of this in which it is pos-
sible for agents to transfer control of the propositions they
control to other agents. In (Wooldridge & Dunne 2004;
Agotnes, van der Hoek, & Wooldridge 2006b; Wooldridge
& Dunne 2006), we considered the issue of how to represent
the semantic structures underpinning logics such as ATL, and
in particular, we developed a representation for them based
on propositional logic.

Logic for Social Laws
It is often implicitly assumed that, when we come to con-
struct a mechanism, we have complete freedom to design the
mechanism, starting with a blank slate. In practice, of course
this is rarely the case: we have to deal with legacy systems.
In this section, we review our work on the design of mech-
anisms for use in settings where we are given a pre-existing
system in which the mechanism must operate. In AI, this
idea was introduced in the social laws paradigm of Shoham,
Tennenholtz, and Moses (Shoham & Tennenholtz 1992;
Moses & Tennenholtz 1995; Shoham & Tennenholtz 1997).
A social law can be understood as a set of rules imposed
upon a multiagent system with the goal of ensuring that
some desirable behaviour will result. Social laws work by
constraining the behaviour of the agents in the system – by
forbidding agents from performing certain actions in certain
circumstances.

In (Hoek, Roberts, & Wooldridge 2007), we investigated
the use of ATL for specifying the desirable properties of so-
cial laws. The idea is that the designer of a social law will
have some objective in mind, which they desire the social
law to achieve. We explored extensions to the Shoham, Ten-
nenholtz, and Moses social law model in which this objec-
tive was expressed in ATL. In so doing, we could explicitly
define social laws in which the objective was to ensure that
agents in the system had “rights” which would be preserved
by the social law. We showed how, in some cases, it was pos-
sible to view the social law synthesis problem as one of ATL
model checking. We considered social laws with epistemic
ATL objectives in (Hoek, Roberts, & Wooldridge 2005).

In (Wooldridge & van der Hoek 2005), we introduced a
variant of ATL called Normative ATL, which was intended
to directly support reasoning about social laws. Normative
ATL replaces cooperation modalities 〈〈C〉〉 with expressions
〈〈η : C〉〉ϕ, where η is a social law, or normative system,
C is a coalition, and ϕ is a sentence of the logic. The in-
tended interpretation of 〈〈η : C〉〉ϕ is that operating within
the context of the normative system η, coalition C have the
ability to bring about ϕ; more precisely, that C have a win-
ning strategy for ϕ, where this strategy conforms to the stric-
tures of the normative system η. We showed how this logic
could be used to reason about normative systems, and how
it could be used in the logical analysis of social contracts.
Crudely, the term “social contract” refers to the collection
of norms or conventions that a society abides by. These
norms serve to regulate and restrict the behaviour of citizens
within a society. The benefit of a social contract is that it pre-
vents mutually destructive behaviours. However, there are
many apparent paradoxes associated with the social contract,
not the least being that of why a rational, self-interested

14

agent should choose to conform to the social contract, when
choosing to do otherwise might lead to a better individual
outcome; the problem being that if everyone reasons this
way (and as rational agents, they should), then nobody con-
forms to the social contract, and its benefits are lost. There
have been several game theoretic accounts of the social con-
tract, which attempt to understand how a social contract can
work in a society of self-interested agents (Binmore 1994;
1998); our work was an attempt to give a logical account.
We further developed these ideas in (Agotnes et al. 2007).

In (Agotnes, van der Hoek, & Wooldridge 2007a), we
combined ideas from our logic-based social law design ap-
proach with ideas from game theoretic mechanism design.
For example, we showed that the problem of designing a so-
cial law such that everybody participating in the social law
represents a Nash equilibrium is NP-complete.

Conclusions
We believe that the use of logic for automated mechanism
design and analysis has the potential to bring the same
benefits to the design and analysis of computational eco-
nomic mechanisms that the use of temporal logics and model
checking have brought to the specification and analysis of
reactive systems. In this paper, we have surveyed some of
our work in this area over the past five years. We are still in
the early stages of this research; trying to identify the issues,
and tentatively proposing solutions to overcome the hurdles
we encounter. By analogy with AI planning, we are proba-
bly still living in the blocks world. Nevertheless, we believe
there is every reason to be optimistic about this research di-
rection, and we hope that, after reading this paper, you will
be as excited about it as we are.

Acknowledgments
We gratefully acknowledge the support of the EU through
their IST research grant programme, and the support of sev-
eral UK EPSRC grants. We would also like to thank Marc
Pauly for encouragement and support, and most of all, for
introducing us to Coalition Logic.

References
Agotnes, T.; van der Hoek, W.; Rodriguez-Aguilar, J. A.;
Sierra, C.; and Wooldridge, M. 2007. On the logic of
normative systems. In Proceedings of the Twentieth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
07).
Agotnes, T.; van der Hoek, W.; and Wooldridge, M. 2006a.
On the logic of coalitional games. In Proceedings of
the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2006).
Agotnes, T.; van der Hoek, W.; and Wooldridge, M. 2006b.
Temporal qualitative coalitional games. In Proceedings of
the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2006).
Agotnes, T.; van der Hoek, W.; and Wooldridge, M. 2007a.
Normative system games. In Proceedings of the Sixth In-
ternational Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2007).

Agotnes, T.; van der Hoek, W.; and Wooldridge, M. 2007b.
Quantified coalition logic. In Proceedings of the Twen-
tieth International Joint Conference on Artificial Intelli-
gence (IJCAI-07).

Agotnes, T.; van der Hoek, W.; and Wooldridge, M. 2007c.
Reasoning about judgment and preference aggregation. In
Proceedings of the Sixth International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS-
2007).

Alur, R.; Henzinger, T. A.; Mang, F. Y. C.; Qadeer, S.;
Rajamani, S. K.; and Taşiran, S. 1998. Mocha: Modular-
ity in model checking. In CAV 1998: Tenth International
Conference on Computer-aided Verification, (LNCS Vol-
ume 1427), 521–525. Springer-Verlag: Berlin, Germany.

Alur, R.; Henzinger, T. A.; and Kupferman, O. 1997.
Alternating-time temporal logic. In Proceedings of the
38th IEEE Symposium on Foundations of Computer Sci-
ence, 100–109.

Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. Journal of the ACM
49(5):672–713.

Arrow, K. J.; Sen, A. K.; and Suzumura, K., eds. 2002.
Handbook of Social Choice and Welfare Volume 1. Elsevier
Science Publishers B.V.: Amsterdam, The Netherlands.

Ben-Ari, M. 1990. Principles of Concurrent and Dis-
tributed Programming. Prentice Hall.

Benthem, J. 2002. Extensive games as process models.
Journal of Logic, Language, and Information 11(3):289–
313.

Binmore, K. 1994. Game Theory and the Social Contract
Volume 1: Playing Fair. The MIT Press: Cambridge, MA.

Binmore, K. 1998. Game Theory and the Social Contract
Volume 2: Just Playing. The MIT Press: Cambridge, MA.

Bond, A. H., and Gasser, L., eds. 1988. Readings in Dis-
tributed Artificial Intelligence. Morgan Kaufmann Publish-
ers: San Mateo, CA.

Brams, S. J., and Fishburn, P. C. 2002. Voting procedures.
In Arrow, K. J.; Sen, A. K.; and Suzumura, K., eds., Hand-
book of Social Choice and Welfare Volume 1. Elsevier Sci-
ence Publishers B.V.: Amsterdam, The Netherlands. chap-
ter 4.

Campbell, D. E., and Kelly, J. S. 2002. Impossibility the-
orems in the arrovian framework. In Arrow, K. J.; Sen,
A. K.; and Suzumura, K., eds., Handbook of Social Choice
and Welfare Volume 1. Elsevier Science Publishers B.V.:
Amsterdam, The Netherlands. chapter 1.

Clarke, E. M.; Grumberg, O.; and Peled, D. A. 2000.
Model Checking. The MIT Press: Cambridge, MA.

Conitzer, V. 2006. Computing slater rankings using simi-
larities among candidates. In Proceedings of the 21st Na-
tional Conference on Artificial Intelligence (AAAI-06).

Cramton, P.; Shoham, Y.; and Steinberg, R., eds. 2006.
Combinatorial Auctions. The MIT Press: Cambridge, MA.

Drimmelen, G. 2003. Satisfiability in alternating-time tem-

15

poral logic. In Eighteenth Annual IEEE Symposium on
Logic in Computer Science (LICS 2003), 208–217.

EBAY. 2001. The eBay online marketplace. See
http://www.ebay.com/.

Emerson, E. A. 1990. Temporal and modal logic. In van
Leeuwen, J., ed., Handbook of Theoretical Computer Sci-
ence Volume B: Formal Models and Semantics. Elsevier
Science Publishers B.V.: Amsterdam, The Netherlands.
996–1072.

Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning About Knowledge. The MIT Press: Cambridge,
MA.

Hoek, W., and Wooldridge, M. 2002. Tractable multiagent
planning for epistemic goals. In Proceedings of the First
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2002), 1167–1174.

Hoek, W., and Wooldridge, M. 2003a. Model checking co-
operation, knowledge, and time — a case study. Research
in Economics 57(3):235–265.

Hoek, W., and Wooldridge, M. 2003b. Time, knowl-
edge, and cooperation: Alternating-time temporal epis-
temic logic and its applications. Studia Logica 75(1):125–
157.

Hoek, W., and Wooldridge, M. 2005a. On the dynamics of
delegation, cooperation, and contol: A logical account. In
Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS-
2005), 701–708.

Hoek, W., and Wooldridge, M. 2005b. On the logic of co-
operation and propositional control. Artificial Intelligence
164(1-2):81–119.

Hoek, W.; Lomuscio, A.; and Wooldridge, M. 2005. On
the complexity of practical ATL model checking. In Pro-
ceedings of the Fifth International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS-2006).

Hoek, W.; Roberts, M.; and Wooldridge, M. 2005. Knowl-
edge and social laws. In Proceedings of the Fourth Interna-
tional Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS-2005).

Hoek, W.; Roberts, M.; and Wooldridge, M. 2007. So-
cial laws in alternating time: Effectiveness, feasibility, and
synthesis. Synthese 156(1):1–19.

Holzmann, G. J. 2003. The SPIN Model Checker: Primer
and Reference Manual. Addison-Wesley: Reading, MA.

Jamroga, W., and van der Hoek, W. 2004. Agents that know
how to play. Fundamenta Informaticae 63(2-3):185–219.

Kraus, S. 2001. Strategic Negotiation in Multiagent Envi-
ronments. The MIT Press: Cambridge, MA.

Krishna, V. 2002. Auction Theory. The Academic Press:
London, England.

Moore, R. C. 1990. A formal theory of knowledge and
action. In Allen, J. F.; Hendler, J.; and Tate, A., eds., Read-
ings in Planning. Morgan Kaufmann Publishers: San Ma-
teo, CA. 480–519.

Moses, Y., and Tennenholtz, M. 1995. Artificial social
systems. Computers and AI 14(6):533–562.
Nisan, N., and Ronen, A. 1999. Algorithmic mechanism
design. In Proceedings of the Thirty-first Annual ACM
Symposium on the Theory of Computing (STOC-99), 129–
140.
Osborne, M. J., and Rubinstein, A. 1994. A Course in
Game Theory. The MIT Press: Cambridge, MA.
Pauly, M., and Wooldridge, M. 2003. Logic for mecha-
nism design — a manifesto. In Proceedings of the 2003
Workshop on Game Theory and Decision Theory in Agent
Systems (GTDT-2003).
Pauly, M. 2001. Logic for Social Software. Ph.D. Disser-
tation, University of Amsterdam. ILLC Dissertation Series
2001-10.
Pauly, M. 2002. A modal logic for coalitional power in
games. Journal of Logic and Computation 12(1):149–166.
Rosenschein, J. S., and Zlotkin, G. 1994. Rules of En-
counter: Designing Conventions for Automated Negotia-
tion among Computers. The MIT Press: Cambridge, MA.
Sandholm, T. 1999. Distributed rational decision mak-
ing. In Weiß, G., ed., Multiagent Systems. The MIT Press:
Cambridge, MA. 201–258.
Shoham, Y., and Tennenholtz, M. 1992. On the synthe-
sis of useful social laws for artificial agent societies. In
Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI-92).
Shoham, Y., and Tennenholtz, M. 1997. On the emer-
gence of social conventions: Modelling, analysis, and sim-
ulations. Artificial Intelligence 94(1-2):139–166.
van Otterloo, S.; Hoek, W.; and Wooldridge, M. 2004.
Preferences in game logics. In Proceedings of the Third
International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS-04), 152–158.
Walther, D.; Lutz, C.; Wolter, F.; and Wooldridge, M. 2006.
ATL satisfiability is indeed ExpTime-complete. Journal of
Logic and Computation 16:765–787.
Weiß, G., ed. 1999. Multi-Agent Systems. The MIT Press:
Cambridge, MA.
Wooldridge, M., and Dunne, P. E. 2004. On the compu-
tational complexity of qualitative coalitional games. Artifi-
cial Intelligence 158(1):27–73.
Wooldridge, M., and Dunne, P. E. 2006. On the computa-
tional complexity of coalitional resource games. Artificial
Intelligence 170(10):853–871.
Wooldridge, M., and van der Hoek, W. 2005. On obli-
gations and normative ability. Journal of Applied Logic
3:396–420.
Wooldridge, M. 2002. An Introduction to Multiagent Sys-
tems. John Wiley & Sons.

16

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

