
Temporal Dynamic Controllability Revisited

Paul Morris and Nicola Muscettola
NASA Ames Research Center

Moffett Field, CA 94043
(pmorris|mus)@email.arc.nasa.gov

Abstract

An important issue for temporal planners is the ability to han-
dle temporal uncertainty. We revisit the question of how to
determine whether a given set of temporal requirements are
feasible in the light of uncertain durations of some processes.
In particular, we consider how best to determine whether a
network is Dynamically Controllable, i.e., whether a dynamic
strategy exists for executing the network that is guaranteed to
satisfy the requirements. Previous work has shown the exis-
tence of a pseudo-polynomial algorithm for testing Dynamic
Controllability. Here, we simplify the previous framework,
and present a strongly polynomial algorithm with a termina-
tion criterion based on the structure of the network.

Introduction
For some time, Constraint-Based Planning systems
(e.g. (Muscettolaet al. 1998)) have been using Simple
Temporal Networks (STNs) to test the consistency of partial
plans encountered during the search process. These systems
produceflexible plans where every solution to the final
Simple Temporal Network provides an acceptable schedule.
Many applications, however, involve temporal uncertainty
where the duration of certain processes or the timing of
exogenous events is not under the control of the agent using
the plan. In these cases, the values for the variables that are
under the agent’s control may need to be chosen so that they
do not constrain uncontrollable events whose outcomes are
still in the future. This is thecontrollability problem.

Progress has been made in this area in recent years. In (Vi-
dal & Fargier 1999), several notions of controllability are
defined, includingDynamic Controllability(DC). Roughly
speaking, a network is dynamically controllable if there is a
strategy for satisfying the constraints that depends only on
knowing the outcomes of past uncontrollable events.

In (Morris, Muscettola, & Vidal 2001) an algorithm is
presented that determines DC and runs in polynomial time
under the assumption that the maximum size of links in the
STN is bounded. The method involves repeated tightenings
based on a consideration of “triangles” (i.e., node triples) in
the network. Termination is guaranteed because the max-
imum link bound ensures that some domain will become
empty after a bounded number of iterations. Thus, the it-
eration isO(N3), whereN is the number of nodes in the
network. However, the apparent low-order polynomial is

misleading, because for many applications the link bound
(and hence the number of iterations) may be very large in
practical terms. In the parlance of complexity theory, the
algorithm is pseudo-polynomial like arc-consistency, rather
than being a strongly polynomial algorithm. An example
of the latter category is the well-known Bellman-Ford algo-
rithm (Cormen, Leiserson, & Rivest 1990), which can deter-
mine whether a distance graph has a negative cycle.

The constraint propagation process underlying Bellman-
Ford can be viewed as enforcing arc-consistency. What
makes the algorithm strongly polynomial is the Bellman-
Ford cutoff, which restricts the number of iterations based
on the number of nodes in the network. In this paper, we
derive an analogous cutoff method for Dynamic Controlla-
bility checking. We also present several other improvements
to the approach of (Morris, Muscettola, & Vidal 2001). The
treatment there involves numerous distinct concepts, includ-
ing diverse reduction and regression operations, that are sub-
stantially unified in the present paper. The algorithm also
required repeated checks of a special consistency property,
which involved recomputation of the AllPairs network after
every iteration. In this paper, that is replaced by a standard
incremental consistency check. We also show how to re-
formulate the iterations so they visit a restricted subset of
triangles, which reduces the complexity.

In this paper, we revisit the foundations of DC reason-
ing. Other recent work has focused on combining DC rea-
soning with preferences (Rossi, Venable, & Yorke-Smith
2004) or probabilities (Tsamardinos, Pollack, & Ramakrish-
nan 2003).

Background
We restate the basic definitions, as described in (Morris,
Muscettola, & Vidal 2001), and summarize the algorithm
presented there.

A Simple Temporal Network (STN) (Dechter, Meiri, &
Pearl 1991) is a graph in which the edges are annotated with
upper and lower numerical bounds. The nodes in the graph
represent temporal events ortimepoints, while the edges cor-
respond to constraints on the durations between the events.
Each STN is associated with adistance graphderived from
the upper and lower bound constraints. An STN is con-
sistent if and only if the distance graph does not contain a
negative cycle. This can be determined by a single-source

AAAI-05 / 1193



shortest path propagation such as in the Bellman-Ford algo-
rithm1 (Cormen, Leiserson, & Rivest 1990). To avoid confu-
sion with edges in the distance graph, we will refer to edges
in the STN aslinks.

A Simple Temporal Network With Uncertainty (STNU)
is similar to an STN except the links are divided into two
classes,requirement linksand contingent links. Require-
ment links are temporal constraints that the agent must sat-
isfy, like the links in an ordinary STN. Contingent links
may be thought of as representing causal processes of uncer-
tain duration, or periods from a reference time to exogenous
events; their finish timepoints, calledcontingent timepoints,
are controlled by Nature, subject to the limits imposed by the
bounds on the contingent links. All other timepoints, called
executable timepoints, are controlled by the agent, whose
goal is to satisfy the bounds on the requirement links. We
assume the durations of contingent links vary independently,
so a control procedure must consider every combination of
such durations. Each contingent link is required to have pos-
itive (finite) upper and lower bounds, with the lower bound
strictly less than the upper. Without loss of generality, we as-
sume contingent links do not share finish points. (If desired,
they can be constrained to simultaneity by[0, 0] requirement
links. It is also known that networks with coincident contin-
gent finishing points cannot be DC.)

Choosing one of the allowed durations for each contin-
gent link may be thought of as reducing the STNU to an
ordinary STN. Thus, an STNU determines a family of STNs
corresponding to the different allowed durations; these are
calledprojectionsof the STNU.

Given an STNU withN as the set of nodes, ascheduleT
is a mapping

T : N → <
whereT (x) is called thetimeof timepointx. A schedule is
consistentif it satisfies all the link constraints. Theprehis-
tory of a timepointx with respect to a scheduleT , denoted
by T{≺ x}, specifies the durations of all contingent links
that finish prior tox.

An execution strategyS is a mapping

S : P → T

whereP is the set of projections andT is the set of sched-
ules. An execution strategyS is viable if S(p), henceforth
writtenSp, is consistent withp for each projectionp.

We are now ready to define the various types of controlla-
bility, following (Vidal 2000).

An STNU isWeakly Controllableif there is a viable exe-
cution strategy. This is equivalent to saying that every pro-
jection is consistent.

An STNU isStrongly Controllableif there is a viable ex-
ecution strategyS such that

Sp1(x) = Sp2(x)

for each executable timepointx and projectionsp1 and
p2. In Strong Controllability, a “conformant” strategy (i.e.,

1Faster than Floyd-Warshall for sparse graphs, which com-
monly occur in practical problems.

a fixed assignment of times to the executable timepoints)
works for all the projections.

An STNU isDynamically Controllableif there is a viable
execution strategyS such that

Sp1{≺ x} = Sp2{≺ x} ⇒ Sp1(x) = Sp2(x)

for each executable timepointx and projectionsp1 andp2.
Thus, a Dynamic execution strategy assigns a time to each
executable timepoint that may depend on the outcomes of
contingent links in the past, but not on those in the future (or
present). This corresponds to requiring that only informa-
tion available from observation may be used in determining
the schedule. We will usedynamic strategyin the following
for a (viable) Dynamic execution strategy.

It is easy to see from the definitions that Strong Control-
lability implies Dynamic Controllability, which in turn im-
plies Weak Controllability. In this paper, we are primarily
concerned with Dynamic Controllability.

Classic Algorithm

It was shown in (Morris, Muscettola, & Vidal 2001) that
determining Dynamic Controllability is tractable, and an al-
gorithm was presented that ran in polynomial time under the
assumption that the sizes of links were bounded above and
below. (As discussed in the introduction, this may be called
pseudo-polynomial.) We will refer to this in the rest of paper
as theClassic Dynamic Controllability algorithm, or classic
algorithm for short.

The classic algorithm involved repeated checking of a
special consistency property called pseudo-controllability.
An STNU is pseudo-controllableif it is consistent in the
STN sense and none of the contingent links are squeezed,
where a contingent link issqueezedif the other constraints
imply a strictly tighter lower bound or upper bound for
the link. The pseudo-controllability property was tested by
computing the AllPairs Shortest Path graph using Johnson’s
Algorithm (Cormen, Leiserson, & Rivest 1990). If the net-
work passed the test, the algorithm then analyzed triangles
of links and possibly tightened some constraints in a way
that was shown not to change the status of the network as
DC or non-DC, but made explicit all limitations to the ex-
ecution strategies due to the presence of contingent links.
Thus, we can summarize the classic algorithm as follows.

Boolean procedure determineDC()
loop

if not pseudo-controllable
return false;

else for every triangle ABC
if needed, tighten ABC;

if no tightenings were found
return true;

end loop;
end procedure

Termination relied on the fact that if quiescence is not
reached, then continued tightenings will eventually empty
some domain. Thus, the complexity isO(UN3), taking
into account the (constant) boundU on the domain size,

AAAI-05 / 1194



theN3 cost of each round of triangular tightenings, and the
O(EN + N2 log N) cost of Johnson’s Algorithm.

Some of the tightenings involved a novel temporal con-
straint called await. Given a contingent link AB and an-
other link AC, the<B, t> annotation on AC indicates that
execution of the timepoint C is not allowed to proceed until
after either B has occurred ort units of time have elapsed
since A occurred. Thus, a wait is a ternary constraint involv-
ing A, B, and C. It may be viewed as a lower bound oft on
AC that is interruptible by B. Note that the annotation re-
sembles a binary constraint on AC. The waits were not used
directly to compute pseudo-controllability, but could result
in additional binary constraints.

In order to describe the tightenings, we introduce the no-

tationA
[x,y]
=⇒ B (or B

[x,y]⇐= A) to indicate a contingent link
with bounds[x, y] between A and B. We use the similar no-

tation ofA
[x,y]−→ B (or B

[x,y]←− A) for ordinary links.
We can summarize the tightenings, calledreductions,

used in the classic algorithm as follows.

(Precedes Reduction) If u ≥ 0, y′ = y − v, x′ = x− u,

A
[x,y]
=⇒ B

[u,v]←− C adds A
[y′,x′]−→ C

(Unordered Reduction) If u < 0, v ≥ 0, y′ = y − v,

A
[x,y]
=⇒ B

[u,v]←− C adds A
<B, y′>−→ C

(Simple Regression) If y′ = y − v,

A
<B, y>−→ C

[u,v]←− D adds A
<B, y′>−→ D

(Contingent Regression) If y ≥ 0,B 6= C,

A
<B, y>−→ C

[u,v]⇐= D adds A
<B, y − u>−→ D

(“Unconditional” Reduction) If u ≤ x,

B
[x,y]⇐= A

<B, u>−→ C adds A
[u,∞]−→ C

(General Reduction) If u > x,

B
[x,y]⇐= A

<B, u>−→ C adds A
[x,∞]−→ C

The tightenings involve new links that are added when the
given pattern is satisfied unless tighter links already exist.
The extensive motivation for these in (Morris, Muscettola,
& Vidal 2001) cannot be repeated here due to lack of space.
However, some examples may help to give the basic idea.

Example1: A
[1,2]
=⇒ B

[1,1]←− C. Here we must schedule
C exactly one time unit before B without knowing when B
will occur. This requirement cannot be achieved in practical
terms, although the network is initially consistent in the STN
sense. ThePrecedes Reductionmakes the inconsistency ex-

plicit. Contrast this withA
[1,2]
=⇒ B

[1,1]−→ C, where B can be
observed before executing C, so no addition is needed.

Example2: A
[1,2]
=⇒ B

[1,2]←− C. Note that the CB constraint
implies C precedes B. This means the agent must decide on
a timing for C before information about the timing of B is
available, and must do it in a way that the CB constraint is

satisfied no matter when B occurs. The only way to accom-
plish this given our ignorance of B is to constrain C relative
to A in such a way that the CB constraint becomes redun-
dant. ThePrecedes Reductiondoes this by constraining C to
happen simultaneously with A.

Example3: A
[1,3]
=⇒ B

[−1,1]←− C. Here we cannot safely ex-
ecute C before B until time 2 after A (otherwise if B occurs
at 3, the [-1,1] constraint would be violated). After that we
can execute C prior to B if we wish, because we know B will
finish within one more time unit. Thus, we place a<B, 2>
constraint on AC.

The “Unconditional” Reduction is so-called because in
this situation the full impact of the ternary<B, u> con-
straint is capturned by the binary[u,∞] bound without hav-
ing to split it into cases. By contrast, in theGeneral Reduc-
tion the inferred binary constraint is weaker than the ternary
constraint.

We also note that in the classic algorithm, the tightenings
are applied to edges in the AllPairs graph (computed as part
of the determination of pseudo-controllability). However,
they are valid for any edges.

More Uniform Reductions
To make progress in improving the algorithm, it is help-
ful to seek a more uniform formulation of the reductions.
Although possibly less intuitive, this is easier to work with
mathematically.

As mentioned earlier, an ordinary STN has an alternative

representation as adistance graph, in which a linkA
[x,y]−→ B

is replaced by two edgesA
y−→ B andA −x←− B, where

they and−x annotations are calledweights. Edges with a
weight of∞ are omitted. The distance graph may be viewed
as an STN in which there are only upper bounds. This al-
lows shortest path methods to be used to compute consis-
tency (Dechter, Meiri, & Pearl 1991).

In this paper we introduce an analogous alternative rep-
resentation for an STNU called thelabelled distance graph.
This is actually a multigraph (which allows multiple edges
between two nodes), but we refer to it as a graph in this paper
for simplicity. In the labelled distance graph, each require-

ment linkA
[x,y]−→ B is replaced by two edgesA

y−→ B and

A −x←− B, just as in an STN. For a contingent linkA
[x,y]
=⇒ B,

we have the same two edgesA
y−→ B andA −x←− B, but

we also have two additional edges of the formA b:x−→ B and

A
B:−y←− B. These are calledlabelled edgesbecause of the

additional “b:” and “B:” annotations indicating the contin-
gent timepoint B with which they are associated. Note the
reversal in the roles of x and y in the labelled edges. We

refer toA
B:−y←− B andA b:x−→ B asupper-caseand lower-

caseedges, respectively. Note that the upper-case label B:-y
gives the value the edge would have in a projection where
the contingent link takes on its maximum value, whereas
the lower-case label corresponds to the contingent link min-
imum value.

We also provide a representation for aA
<B, t>−→ C wait

AAAI-05 / 1195



constraint in the labelled distance graph. This corresponds to

a single edgeA B:−t←− C. Note the analogy to a lower bound.
Also note that this is consistent with the lower bound that
would occur in a projection where the contingent link has its
maximum value.

We now introduce new tightenings in terms of the labelled
distance graph. The first four categories of tightening from
the classic algorithm are replaced by what is essentially a
single reduction with different flavors. These are:

(UPPER-CASE REDUCTION)

A B:x←− C
y←− D adds A

B:(x+y)←− D

(LOWER-CASE REDUCTION) If x ≤ 0,

A x←− C
c:y←− D adds A

x+y←− D

(CROSS-CASE REDUCTION) If x ≤ 0, B 6= C,

A B:x←− C
c:y←− D adds A

B:(x+y)←− D

(NO-CASE REDUCTION)

A x←− C
y←− D adds A

x+y←− D

In place of theUnconditionalandGeneral Reductions, we
will have a single reduction:

(LABEL REMOVAL REDUCTION) If z ≥ −x,

B b:x←− A B:z←− C adds A z←− C

It is straightforward to see that the new reductions are
sanctioned by the old ones. First note that, as applied to
B:x in a wait, the UPPER-CASE and CROSS-CASE REDUC-
TIONS are simple transliterations to the new notation of the
SimpleandContingent Regressions, respectively. As applied
to B:x in the representation of a contingent link (i.e., C=B in
this case), the UPPER-CASE REDUCTION follows for y ≥ 0
from theUnordered Reductionusing [−∞,y] as the bound.
If y < 0, then D is after C (i.e. B), so the wait is trivially sat-
isfied. Note that the CROSS-CASE REDUCTION will never
be applied to a B:x from a contingent link, since contingent
links do not share finishing points. Also, note that NO-CASE
REDUCTION is just composition of ordinary edges. (The
reason for including this will become clear below.) Finally,
the LABEL REMOVAL REDUCTION is a transliteration of the
Unconditional Reductionto the new notation.

With this reformulation, the “Case” (first four) reductions
can all be seen as forms of composition of edges, with the
labels being used to modulate when those compositions are
allowed to occur. We will define thereduced distanceof
a path in the labelled distance graph to be the sum of edge
lengths in the path, ignoring any labels. Notice that the re-
ductions preserve the reduced distance.

For each application of these reductions, we will refer to
the pair of edges corresponding to the left side pattern as
theparticipantsin the reduction, and we will call the added
edge theresultof the reduction.

Observe that upper-case labels can apply to new edges as
a result of reductions (but the targets of the edges do not
change), whereas the lower-case edges are fixed, i.e., the
reductions do not produce new ones.

Our next change involves the special consistency test
that is applied before each iteration in the classic algo-
rithm. Instead of testing for the complex property of pseudo-
controllability, we will check for ordinary consistency of the
AllMax projection, where we define the AllMax projection
to be the STN where all the contingent links take on their
maximum values. (Similarly, the AllMin projection is where
all the contingent links take on their minimum values.) Ob-
serve that the distance graph of the AllMax projection can
be obtained from the labelled distance graph by (1) deleting
all lower-case edges, and (2) removing the labels from all
upper-case edges.

Note that it is correct to conclude that a network is not
DC when the AllMax projection is inconsistent, since this
excludes Weak Controllability, which in turn excludes Dy-
namic Controllability.

We remark that theB 6= C restriction in the Cross-Case
Reduction is crucial; otherwise, the upper-case and lower-
case edges of any contingent link could self-interact, imme-
diately producing an inconsistency.

Baseline Algorithm
Suppose we now take the classic algorithm for Dynamic
Controllability, and modify it by replacing the old reduc-
tions/regressions with the new, and replacing the pseudo-
controllability test with the AllMax consistency test. We
will call this thebaseline algorithm. It follows from the pre-
vious discussion that the algorithm will give correct “no”
answers. We now consider the opposite direction, and show
that it will also still give correct “yes” answers.

Theorem 1 If the baseline algorithm returns true then the
network is dynamically controllable.

Proof:
We will show the old reductions are either emulated by

the new ones, or are unnecessary in the new framework. We
also prove that it is unnecessary to directly test whether a
contingent link is squeezed.

First, as noted previously, the two regressions are translit-
erations of the UPPER-CASE and CROSS-CASE REDUC-
TIONS as applied to waits, and theUnconditional Reduction
is a transliteration of LABEL REMOVAL ; thus, they are em-
ulated. Furthermore, theUnordered Reductionis emulated
by the UPPER-CASE REDUCTION as it applies to contingent
links.

Next consider the Precedes Reduction

(Precedes Reduction) If u ≥ 0, y′ = y − v, x′ = x− u,

A
[x,y]
=⇒ B

[u,v]←− C adds A
[y′,x′]−→ C

and suppose that its pattern is satisfied.
After applying both the UPPER-CASE and LOWER-CASE

reductions to the labelled distance graph, we reach the fol-
lowing situation:

A x′

−→ C
B:−y′

−→ A

Then eithery′ > x′, in which case both algorithms detect
inconsistency, ory′ ≤ x′ ≤ x, in which case the LABEL

AAAI-05 / 1196



REMOVAL REDUCTION applies. The result then emulates
thePrecedes Reduction.

Next we show that the checks for contingent-link squeez-
ing that occur in pseudo-controllability testing are unneces-
sary. Suppose first an upper bound on a contingent link is
squeezed, i.e., we have

A
B:−y←− B z←− A

wherez < y. Note that the UPPER-CASE REDUCTION is

applicable, givingA
B:(−y+z)←− A, after which AllMax con-

sistency testing detects a negative self-loop. Next consider
where the lower bound is squeezed, i.e.,

A b:x−→ B z−→ A

wherez < −x. Applying the LOWER-CASE REDUCTION

gives A x+z−→ A, after which consistency testing detects a
negative self-loop.

The other purpose fulfilled by pseudo-controllability test-
ing was to compute the tight links of the All-Pairs graph.
This task is now taken over by the NO-CASE REDUCTION.
(Thus, the computation of tight links is interleaved with
other reductions.)

It only remains to show that theGeneral Reductionis un-
necessary. An examination of the correctness proof in (Mor-
ris, Muscettola, & Vidal 2001) shows that this reduction is
only needed to prevent deadlock, where a cycle exists in
which each link has either a positive lower-bound or a pos-
itive wait. In the new framework, this task is fulfilled by
the AllMax consistency testing, which would detect such a
loop as an ordinary negative cycle. Thus, the classic algo-
rithm correctness proof can be adapted to show correctness
of the baseline algorithm, without the need for the General
Reduction.

2

Cutoff Algorithm
Now that we have a mathematically simplified framework,
we can proceed to improve on the baseline algorithm. We
wish to obtain a cutoff bound analogous to that of Bellman-
Ford, rather than relying on domain exhaustion for the termi-
nation guarantee. Relying only on domain exhaustion could
cause cycles to be traversed a large number of times before
detecting an inconsistency. Consider for example

A −2−→ B c:1−→ C −1−→ D a:1−→ A −1−→ E

with a cycle through A. Repeated applications of of Lower-

Case and No-Case reductions deriveD 0−→ E, thenC −1−→
E, thenB 0−→ E, and thenA −2−→ E. Without a cutoff
bound, the cycle could repeat to getA −3−→ E, and so on. If
the domain allowed any C++ int value for AE, then such a
cycle could potentially repeat215 times before the domain
of AE would be exhausted.

Suppose an edge is tightened repeatedly as a result of the
reductions, as happens to AE in the example above. When
such a repetition occurs, then at least one of the edges par-
ticipating in the reduction must itself have been tightened

in the previous round of reductions. This leads us to define
theparentof the result edge from a reduction to be the most
recently tightened participating edge. (Ties are broken arbi-
trarily.)

Next we observe that if a chain of parents becomes longer
than the size of the parent set, it must contain a repeated
edge. We claim that if a parent chain has a repeated edge,
then the network cannot be Dynamically Controllable. To
see this, suppose an edge AB of lengthx is a repeated edge
in some parent chain. This means there is an ancestor occur-
rence of AB in the parent chain where the length of AB isx′

for somex′ > x. Let AB = e0, . . . , en = AB be the edges
in the chain between the two occurrences of AB. It is not
difficult to see that the edges that participate in reductions
with theei will, in general, form loops on both sides of the
AB edge, as illustrated here.2

A x′

−→ B

...

A · · ·A x−→ B · · ·B
One of the loops may be trivial (consisting of a single point),
but since the reductions preserve reduced distance, and since
x′ > x, it follows that at least one of the loops is non-trivial
and has a negative reduced distance. Note also that, because
of the directionality of AB, Lower-Case reductions can only
occur in the left-side loop, while Upper-Case reductions can
only occur in the right-side loop. It follows that one of the
loops corresponds to a negative cycle in either the AllMax or
AllMin projections, so the network cannot be Dynamically
Controllable. This establishes the claim.

Now we note that the edges added in thei-th iteration of
the baseline algorithm must have parent chains that contain
at leasti parents. (Otherwise, they would have been added
earlier.) Thus, we can use the size of the parent set as a cutoff
bound analogous to Bellman-Ford, and terminate with false
if that number of iterations is exceeded.

It remains to estimate the complexity of the algorithm
given this cutoff. For this analysis, we assumeN is the num-
ber of nodes,E is the number of edges, andK is the number
of contingent links. Note thatK ≤ N since contingent links
do not share finishing points.

The algorithm can be summarized as follows.

Boolean procedure determineDC()
loop from 1 to Cutoff Bound do

if AllMax projection inconsistent
return false;

Perform needed No-Case Reductions;
Perform needed Upper-Case Reductions;
Perform any Cross-Case Reductions;
Perform any Lower-Case Reductions;
Perform any Label Removal Reductions;
if no reductions were found above

return true;

2The edges in the side loops may themselves be added during
the intervening iterations, but will all exist by the time the repetition
of AB occurs.

AAAI-05 / 1197



end loop;
return false;
end procedure

We can analyze the complexity of each iteration as follows.
For the No-Case tightenings we need only look at triangles
of ordinary edges. Recall from the proof of Theorem 1 that
we only need the No-Case Reduction to compute tight edges
that are needed to support the other reductions. This means
that we can restrict the No-Case Reduction so that it only
applies when the result edge (and hence one of the partici-
pating edges) shares a node with either the start or the end
timepoint of a contingent link. The No-Case phase of each
iteration can thus be expressed as:

for each ordinary edge e do
for each "special" node B do

Perform No-Case tightenings
that involve e and B;

where “special” refers to the start or end of a contingent link.
The complexity of this can be expressed asO(E′K) where
E′ is the final number of edges in the networks.

We can also restrict the applicability of the Upper-Case
Reduction. Consider

A B:x←− B←· · ·← C

where the path from C to B consists of ordinary edges.
Rather than applying the Upper-Case Reduction piecemeal
to extend the upper case label backwards over each of the
edges from C to B, we can first apply the No-Case reduction
repeatedly to consolidate the CB path into a single edge, and
then use a single Upper-Case Reduction to extend the upper
case label all the way back to C. This means that we need
only apply the Upper-Case Reduction in situations where the
AB edge is either one of the original upper-case edges result-
ing from a contingent link, or one of the upper-case edges
that results from a Cross-Case Reduction. In both cases, AB
connects one special node to another special node, i.e., AB
is chosen from a set of edges of size at mostK2. Thus, the
complexity of the Upper-Case phase isO(K2N).

The participants in a Cross-Case Reduction involve a con-
tingent link and another special node. Thus, the complexity
of the Cross-Case phase isO(K2). To complete the picture,
the Lower-Case and Label Removal phases have complexity
bounds ofO(KN), since both involve considering a contin-
gent link in relation to another node.

Reviewing the phases, it is easy to see that at most
O(NK) ordinary edges are ever added to the network dur-
ing the operation of the algorithm, since each result link
from a reduction has a special node as its start or end point.
The number of upper-case edges is limited toNK because
the reductions preserve the property that an upper-case edge
always points to the source of its contingent link. (Thus,
for each contingent link we can have at mostN upper-case
edges.) Also recall that the lower-case edges are fixed so
there are exactlyK of them. Thus, there are at mostO(NK)
added edges. Note also that (from the second round on) the
parent edges are taken from this set.

Thus, O(E′K) = O(EK + NK2) and, ignoring the
consistency testing for now, we see that the No-Case phase

dominates the complexity of each iteration. Note also that
the parents in the repetition analysis, and hence the cutoff
value, can be restricted to a set of sizeO(NK). Thus, the
total complexity can be estimated asO(E′NK2), which is
equivalent toK2 times the cost of a Bellman-Ford in an
STN with E′ edges. Finally, the AllMax consistency test-
ing can be done using an incremental Bellman-Ford algo-
rithm as in (Cervoni, Cesta, & Oddi 1994). The complexity,
totalled overall the iterations, isO(E′N), whereE′ is the
final number of edges in the network. This fits well within
theO(E′NK2) complexity estimate for the reductions.

Using our estimate above forE′K, we can expand the
complexity asO(ENK2+N2K3). In a dense graph, where
E ≈ N2, this reduces toO(N3K2); for a sparse graph
whereE = O(N), we getO(N2K3). If K = O(N), we
get an overall figure ofO(N5).

In contrast to the pseudo-polynomial algorithm, these es-
timates do not involve a large “hidden” constant.

Conclusion
We have reformulated Dynamic Controllability testing in a
way that provides mathematically simpler operations, and
used that to obtain a strongly polynomial algorithm with a
cutoff based on the structure of the network. Previously,
only a pseudo-polynomial algorithm was known.

Acknowledgements We thank David Smith and anony-
mous referees for suggestions to improve the presentation.

References
Cervoni, R.; Cesta, A.; and Oddi, A. 1994. Managing
dynamic temporal constraint networks. InProc. AIPS-94,
13–20.
Cormen, T.; Leiserson, C.; and Rivest, R. 1990.Introduc-
tion to Algorithms. Cambridge, MA: MIT press.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks.Artificial Intelligence49:61–95.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. InProc. of
IJCAI-01.
Muscettola, N.; Nayak, P.; Pell, B.; and Williams, B. 1998.
Remote agent: to boldly go where no AI system has gone
before.Artificial Intelligence103(1-2):5–48.
Rossi, F.; Venable, K.; and Yorke-Smith, N. 2004. Con-
trollability of soft temporal constraint problems. InProc.
CP 2004, 588–603.
Tsamardinos, I.; Pollack, M. E.; and Ramakrishnan, S.
2003. Assessing the probability of legal execution of plans
with temporal uncertainty. InICAPS-03 Workshop on
Planning under Uncertainty.
Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. JETAI11:23–45.
Vidal, T. 2000. Controllability characterization and check-
ing in contingent temporal constraint networks. InProc. of
Seventh Int. Conf. on Principles of Knowledge Representa-
tion and Reasoning (KR’2000).

AAAI-05 / 1198


