From: AAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Anchoring Symbols to Sensor Data: Preliminary Report

Silvia Coradeschi and Alessandro Saffiotti
Center for Applied Autonomous Sensor Systems
Orebro University, S-70182 Orebro, Sweden
{silvia.coradeschi,alessandro.saffiotti}@tech.oru.se
http://www.aass.oru.se

Abstract

Anchoring is the process of creating and maintaining
the correspondence between symbols and percepts that
refer to the same physical objects. Although this pro-
cess must necessarily be present in any physically em-
bedded system that includes a symbolic component
(e.g., an autonomous robot), no systematic study of
anchoring as a problem per se has been reported in
the literature on intelligent systems. In this paper, we
propose a domain-independent definition of the anchor-
ing problem, and identify its three basic functionalities:
find, reacquire, and track. We illustrate our definition
on two systems operating in two different domains: an
unmanned airborne vehicle for traffic surveillance; and
a mobile robot for office navigation.

Introduction

You are at a friend’s house and your host asks you
to go to the cellar and fetch the bottle of Barolo
wine stored at the top of the green rack. You go
down to the cellar, look around in order to identify
the green rack, and visually scan the top of the
rack to find a bottle-like object with a Barolo label.
When you see it, you reach out your hand to grasp
it, and bring it upstairs.

This vignette illustrates a mechanism that we con-
stantly use in our everyday life: the use of words to refer
to objects in the physical world, and to communicate
a specific reference to another person. This example
presents one peculiar instance of this mechanism, one
in which the first person (the friend) “knows” which ob-
ject he wants but cannot see it, while the second person
(you) only has an incomplete description of the object,
but can see it. Put crudely, the two persons embody
two different types of processes: one that reasons about
abstract representations of objects, and one that has ac-
cess to perceptual data. One of the prerequisites for the
successful cooperation between these processes is that
they agree about the objects they talk about, that is,
that there is a correspondence between the abstract rep-
resentations and the perceptual data which refer to the

Copyright (© 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

same physical object. We call anchoring the process of
establishing and maintaining this correspondence.

Not unlike our example, an autonomous system em-
bedded in the physical world may need to incorporate
processes that reason about abstract representations of
the objects in the world, and processes that deal with
the physical observation and manipulation of these ob-
jects. If the system has to successfully perform its tasks,
it needs to make sure that these processes “talk about”
the same physical objects: hence, this system needs to
perform anchoring.

Consider for concreteness a mobile robot performing
a delivery task and using a symbol system to reason
about abstract knowledge. This may include knowledge
about the object to be delivered, its location, and the
structure of the environment. To execute its task, the
robot must be able to connect (anchor) these symbols
to the flow of perceptions generated by its sensors, in
order to follow the right corridor, enter the right door,
and fetch the right object.

Although this type of connection must necessarily
take place in any symbolic reasoning system embed-
ded in the physical world, the anchoring problem has
received little attention in the fields of AI and au-
tonomous robotics as a problem per se, and no work
has been reported in that literature which analyzes this
problem in a systematic way. Instead, anchoring is typ-
ically solved on a system-by-system basis, and the so-
lution is hidden in the code. To our knowledge, the
first general, although preliminary, definition of anchor-
ing was reported in (Saffiotti 1994). More recently,
the notion of anchoring has been extended in order to
cope with some subtle issues encountered in real ap-
plications (Coradeschi, Karlsson, & Nordberg 1999),
(Coradeschi & Saffiotti 1999) and (Saffiotti & LeBlanc
2000). Those studies were empirical in nature, leading
to a pre-theoretical notion of anchoring. This paper is
a first attempt to state the anchoring problem through
a formal description of the entities and functionalities
involved. These functionalities effectively define an in-
terface between a perceptual and a symbolic system.

The next section gives an overview of related work.
In the following sections, we first introduce our formal
framework for anchoring, and then describe the corre-



spondence between this framework and the implemen-
tation of the anchoring functionalities in two systems:
an autonomous helicopter for traffic surveillance, and a
mobile robot performing navigation tasks.

Anchoring in the literature

Although anchoring as defined in this paper has not
been the subject of previous rigorous investigation, is-
sues related to anchoring have been discussed in the
fields of autonomous robotics, machine vision, linguis-
tics, and philosophy.

The autonomous robotics literature contains a few
examples in which the need and the role of anchor-
ing, under different names, has been explicitly identi-
fied, e.g., (Hexmoor, Lammens, & Shapiro 1993), (Hut-
ber et al. 1994), (Konolige et al. 1997), (Schlegel et
al. 1999). Jung and Zelinsky (2000) use a similar
concept to achieve grounded communication between
robots. None of these works, however, pursue a sys-
tematic study of the anchoring problem. Bajcsy and
Koseckd (1994) offer a general discussion of the links
between symbols and signals in mobile robotic systems.
Yet, they do not deal with the problem of how to cre-
ate and maintain these links, which is the main issue in
anchoring.

The machine vision community has done much work
on the problems of object recognition and tracking.
While anchoring relies on these underlying perceptual
abilities, it is mainly concerned with the integration
of these with a symbol system. Some work in vi-
sion has explicitly considered the integration with sym-
bols. Satoh et al. (1997) present a system which as-
sociates faces and names in news videos looking at co-
occurrences between the speech and the video streams.
Horswill’s Ludwig system (Horswill 1997) answers nat-
ural language queries by associating linguistic symbols
to markers and to marker operations in the image space.
Interestingly, Ludwig may refer to physical objects us-
ing indexical terms, like “the block on the red block”
(Agre & Chapman 1987). Markers are also used by
Wasson et al. (2000) to provide a robot with a per-
ceptual memory similar to the LPS of (Konolige et al.
1997). Markers are similar to the “anchors” that we
introduce in this work. However, all the works above
describe specific implementations and do not attempt
a study of the general anchoring concept.

The problem of connecting linguistic descriptions of
objects to their physical referents has been largely stud-
ied in the philosophical and linguistic tradition, e.g.,
(Frege 1892), (Russell 1905). In fact, we have borrowed
the term anchor from situation semantics (Barwise &
Perry 1983), where this term denotes an assignment of
variables to individuals, relations, and locations. These
traditions provide a rich source of inspiration for the
conceptualization of the anchoring problem, but they
typically disregard the formal and computational as-
pects necessary to turn these ideas into techniques.

The literature on the philosophical foundations of Al
presents a wide debate on a problem which is related

to anchoring: the symbol grounding problem, first stated
by Harnard (1990). Symbol grounding is the problem of
how to give an interpretation to a formal symbol system
that is based on something that, contrary to classical
formal semantics, is not just another symbol system.
Anchoring is an important, concrete aspect of symbol
grounding: connecting symbolic representations of spe-
cific objects to the perceptual image of these objects.

A computational theory of anchoring

The goal of this section is to make the pre-theoretic
notion of anchoring given in the Introduction a pre-
cise one. We proceed as follows. We consider an agent
that includes a symbol system and a perceptual system.
Moreover, we assume the existence of a correspondence
g between predicates in the former and properties mea-
sured by the latter. We do not make any assumption
about the origin of g: for instance, g can be hand-coded
by the designer of the system, or it can be learnt by the
system using neural networks. The task of anchoring is
to use this g to create and maintain a correspondence
between a symbol used in the symbol system to denote
an object in the world, and the percepts generated in
the perceptual system by the same object. An anchor
is a reification of this correspondence. Since new per-
cepts are generated continuously within the perceptual
system, this correspondence is indexed by time.

The underlying model

We now give formal definitions to the elements above.
These will be illustrated with an example from one of
our domains, in which the symbol ‘car-1’ has to be an-
chored to its perceptual counterpart in a camera image.
We first introduce the elements that are time invariant.

o A symbol system ¥ including: a set X = {z1,x2,...}
of individual symbols (variables and constants); a set
P = {p1,p2,...} of predicate symbols; and an infer-
ence mechanism whose details are not relevant here.

e A perceptual system = including: a set II =
{m1,ma,...} of percepts; a set & = {¢1,¢9,...} of
attributes; and perceptual routines whose details are
not relevant here. A percept is a structured collection
of measurements assumed to originate from the same
physical object; a attribute ¢; is a measurable prop-
erty of percepts with values in the domain D(¢;). We

let D(®) =gey U¢e¢ D(¢).

o A predicate grounding relation g C P x ® x D(®),
which embodies the correspondence between unary
predicates and values of measurable attributes.

The set II includes all the possible percepts, only
some of which are realized at any given moment. The
restriction to unary predicates is made here for simplic-
ity and it will be relaxed in the future.

Example In our example, we have two individual sym-
bols X = {carl,car2}, and the predicate set is
P = {car, small,big, red,blue}. The percepts are the



Figure 1: Two percepts 71, T2 in a camera image.

two image regions labeled 7 and 7y in Fig. 1. The
set of attributes is ® = {type, color, shape}. The do-
main of type is the set of all recognizable objects, e.g.,
car;! the domain of color is the set of triples of pos-
sible hue, saturation, and luminosity values; and the
domain of shape is the set of pairs of possible length
and width values.

The predicate grounding relation g can be seen as a
table that encodes the attribute values compatible
with a certain predicate. For instance, we have:

g(red, color, (h, s,1)) iff h € [-30,30],s € [0,1],1 € [0,1].

The g relation concerns properties, but anchoring con-
cerns objects. The following definitions allow us to
characterize objects in terms of their (symbolic and per-
ceptual) properties.

Definition 1 A symbolic description o € 2F is a set
of unary predicates.

Definition 2 A perceptual signature v : & — D(®)
is a partial function from attributes to attribute values.
The set of attibutes on which ~y is defined is denoted by
feat(y).

Intuitively, a symbolic description lists the predicates
that are considered relevant to the perceptual identifi-
cation of an object; and a perceptual signature gives
the values of the measured attributes of a percept (and
it is undefined for the unmeasured ones).

The g relation can be used to match a symbolic de-
scription ¢ and a perceptual signature v as follows.

match(o,) < Vp € 0.3¢ € feat(v).9(p, #,7(¢)) (1)

Other definitions for match could be used, this would
not change the rest of our model.

Example An example of a symbolic description is o1 =
{red, small}. A perceptual signature could be 7, :

71 : color — (10,1,1) and 7, : shape — (8,4).

In this case, we have feat(y1) = {color, shape}. To
see if 01 and ~y; match, we must evaluate the following

IThe type attribute may be treated in a special way by
the perceptual system, since it determines the structure of
the percept. In our example, “car” percepts are generated
by the vision routines using a model of a car object.

match(o1,11) <
(g(red7 color, (10,1,1)) V g(red, shape, (8, 4)))/\
(g(small, color, (10,1,1)) V g(small, shape, (8, 4)))

The following is the time dependent part of the model.

o A description state A; : X — 2F associates each
individual x € X with its symbolic description at
time t.

o A perceptual state Sy : 11 — (@ — D(P)) associates
each percept m € II to its perceptual signature at
time ¢. If 7 is not perceived at time ¢, then S;(7) is
undefined for every ¢ € ®. The set of percepts which
are perceived at t is denoted by V;.

A; and S; are generated by the symbol system and
by the perceptual system, respectively, and describe the
current properties of the objects of discourse. The de-
cision about what predicates and what perceptual sig-
natures should be present in A; and S; is domain de-
pendent. For the rest of this section, we assume that
the above elements are all given and fixed.

We finally give our central definition.

Definition 3 An anchor is any partial function o from
time to triples in X x II x (& — D(®)).

An anchor is a unique internal representation of an ob-
ject o in the environment. At every moment ¢, «(t)
contains: a symbol meant to denote o; a percept gener-
ated by observing o; and a signature meant to provide
the current (best) estimate of the values of the observ-
able properties of o.

Example Suppose that at time ¢ the description state
is such that A; : car-1 — o4, and the perceptual state
is such that S; : m — 7;. An anchor connecting
these elements would then be « : t; — (car-1,71,71).

sym _per

We denote the components of «a(t) by o;”™, o), and
val

o™, respectively. If the object is not observed at time ¢,
then of " is the ‘null’ percept () (by convention, V¢, &
V;), while o still contains the best available estimate.

In order for an anchor to satisfy its intended mean-
ing, the symbol and the percept in it should refer to the
same physical object. This requirement cannot be for-
mally stated inside the system. What can be stated is
the following (recall that V; is the set of percepts which
are perceived at t).

Definition 4 An anchor « is grounded at time t iff
both af" € V; and match(A(af”™), S¢(af™)).

We informally say that an anchor « is referentially
correct if, whenever « is grounded at t, then the physi-
cal object denoted by «;”™ is the same as the one that
generates the perception a}®".

The anchoring problem, then, is the problem to

find referentially correct anchors.?

2Another property that we may want an anchor a to
satisfy is that the estimated values in a*® constitute a good
model of the corresponding physical object. In this work,
however, we concentrate on the reference problem.



The functionalities of anchoring

In order to solve the anchoring problem for a symbol
x, we need the ability to: (i) create a grounded an-
chor the first time that the object denoted by x is per-
ceived; (ii) continuously update the anchor while ob-
serving the object; and (iii) update the anchor when
we need to reacquire the object after some time that
it has not been observed. The following functionalities
realize these abilities. (¢ denotes the time at which the
functionality is called.)

Find Take a symbol z and return a grounded anchor
« defined at ¢, and undefined elsewhere. In case of
multiple matches, use a domain dependent selection
function to choose one. This functionality is summa-
rized by the following pseudo-code.

procedure Find (z)
7 — Select{n’ € V; | match(A:(z), Si(7'))}
if 7 =0 then fail
else a(t) « (z, 7, S (m))
return «

Instead of using Select, Find may return one anchor
for each matching percept and leave the selection
problem to the symbolic system, as we will see in
the UAV application.

Reacquire Take a symbol z with an anchor « defined
for t — k and extend a’s definition to t. First pre-
dict a new signature «; then see if there is a new
percept that is compatible with both the prediction
and the symbolic description; if so, update . Predic-
tion, verification of compatibility, and updating are
domain dependent; verification should typically use
match.

procedure Reacquire ()
a «— anchor for x
v « Predict(a}?®,, z, )
7 «— Select{n’ € V; | Verify(Sy(n"), A¢(x),7)}
if 7 # () then v «— Update(v, Si(7), z)
a(t) — (z,m,7)
return «

If Reacquire fails to find a matching percept, then
a(t) contains the predicted signature and the ‘null’
percept (). Note that in this case «(¢) is not grounded.
The Reacquire procedure is used to find an object
when there is a previous perceptual experience of it.
The prediction function may be complex: it may use
domain knowledge like information about occluding
objects, and generate multiple hypotheses for the pre-
dicted properties. The verify function checks that
the attribute values of a percept are compatible with
both the predicted v and the descriptor A;(x). The
compatibility criteria are domain dependent

A special case of Reacquire deserves special attention:
when the object is kept under constant observation. In
this case, Prediction can often be greatly simplified. We
define a separate functionality for this case.

Track Take an anchor « defined for ¢ — 1 and extend
its definition to ¢.

procedure Track («)
z — o
7 + OneStepPredict(a}?,, z)
7 — Select{n’ € V; | Verify(Si(7"), Ac(z),7)}
if m # () then v < Update(y, S¢(7), )
a(t) — (z,m7)
return «

In our experience, these three functionalities, possi-
bly combined together, have been sufficient to solve the
anchoring problem in several domains. The next section
will show two examples of their use.

Anchoring in practice

The work in anchoring has originated in our concrete
experience with implementations of systems integrat-
ing symbolic and perceptual knowledge. The nature of
the anchoring problem, in fact, suggests that a general
study of it must be solidly grounded in experiments
performed on different systems. Here, we show exper-
iments performed on two platforms: a wheeled mobile
robot, and a unmanned airborne vehicle (UAV).

The two experimental platforms share the use of
a layered architecture to integrate abstract reasoning
with perceptual and control processes. However, these
platforms differ significantly in terms of sensory-motoric
capabilities and domains of application. The mobile
robot uses sonars as its main sensor modality and moves
in an office environment. The main aspect of anchoring
here is the need to link the symbols used by a planner
to denote static objects, like corridors and doors, to the
sensor data coming from the sonars. The UAV has been
developed in the WITAS project (Doherty 1999), and it
currently operates in a simulated environment. It uses
vision as its main sensor and performs traffic surveil-
lance over urban and rural areas. The main aspect of
anchoring here is the need to connect the symbols used
by a planner and a plan executor to the sensor data
about specific cars provided by the vision system.

The robot navigation domain

Milou is a Nomad 200 robot equipped with an array
of sonar sensors and controlled by an architecture sim-
ilar to the one reported in (Saffiotti, Konolige, & Rus-
pini 1995), which includes a simple STRIPS-like plan-
ner. All the perceptual and prior information about the
robot’s surroundings are maintained in a blackboard-
like structure called “Local Perceptual Space” (LPS).
Symbolic descriptions, percepts, and anchors are all
Lisp structures stored in the LPS.

In terms of our framework, the symbol system % is
given by the planner; individuals symbols (X) denote
corridors and doors, and predicate symbols (P) refer to
position and width. The perceptual system = extracts
linear contours (segments) from consistent sets of sonar
measurements; percepts (II) include walls (individual



|
o tal fo
i
a b C

Figure 2: Anchoring a corridor. Thick line: description;
‘w’ segments: percepts; double line: anchor.

segments) and corridors (pairs of parallel segments); at-
tributes (®) include position, orientation, length, and
width. The predicate grounding relation g is hand-
coded. Matching is done according to equation (1),
with some extra provisions to take the measurement
imprecision into consideration. Finally, an anchor is a
structure containing pointers to the appropriate sym-
bolic description, percept, and perceptual signature.

The planner puts the symbolic description of the ob-
jects to be used for a task into the LPS, based on
map information. All the descriptors in the LPS are
constantly anchored using Find (first time anchoring)
and Track (afterwards). Both functionalities are im-
plemented according to the general procedures above.
In Track, prediction of relative position is based on the
odometry of the robot, while updating is done by just
copying the properties of the percept m. The Verify
function is based on geometric distance. Select looks
for the percept that best matches the predicted values
v; if no good match is found, it looks for a percept that
best matches the symbolic description.

Fig. 2 shows an example in which Milou recovers from
a erroneous initial anchoring of a corridor. The robot
is shown in the middle, facing upwards. At time tg
(a), the planner puts into the LPS the description of
a corridor ‘corr-1’ that must be traversed (thick lines).
Find matches this description with a corridor percept
7o generated by observing a pair of parallel short wall
segments (marked by ‘w’), and creates an anchor « s.t.
a(tg) = (corr-1,mg, 7o), where the value of the posi-
tion attribute in 7y is taken from 7. This is shown by
the double lines in the picture. Unfortunately, my was
generated by spurious sonar readings produced by a pe-
culiar configuration of obstacles. As Milou moves fur-
ther along the corridor, the Track routine predicts the
new relative position 71; however, no percept matches
this +;, and the o'® is only updated by prediction:

a(t1) = (corr-1,0, ;). Note that « is now ungrounded.

At time t2 (b), a new percept s is generated by the
sonars’ observing the actual walls. This percept does
not match the new prediction 72, but it closely matches
the original description. Therefore, mo is accepted by
the Verify function and used to update the anchor (c):
a(ty) = (corr-1, ma, v2), where the position of 75 is taken
from ms. The anchor is now referentially correct, and
subsequent percepts will easily be matched, thus keep-
ing a grounded.

The aerial surveillance domain

The UAV system integrates a planner, a reactive plan
executor, a vision system and a control system. Anchor-
ing is done in a dedicated module called Scene Informa-
tion Manager (SIM) (Coradeschi, Karlsson, & Nordberg
1999). The SIM is intermediate between the plan ex-
ecutor and the vision system and handles the anchoring
of symbolic identifiers used in the plan executor to sen-
sory data produced in the vision processing component.

In terms of our formal model, the symbol system con-
sists of the planner and the plan executor, both coded
in Lisp. Individuals denote cars, while predicates de-
note linguistic terms (e.g., ‘red’) and positions in a road
network (e.g., ‘at-crossl’).

The perceptual system is a reconfigurable active vi-
sion system able to extract information about objects
in aerial images. Percepts are sets of adjacent pixels (re-
gions) each having a HSL (hue, saturation, luminance)
value. Attributes of interest include position, length,
width, and color (average HSL values) of a region.

The predicate grounding relation g is given as a hand-
coded table that associates each predicate to a set of
admissible values for the corresponding attribute. For
instance, the predicate ‘red’ is associated with a set of
admissible HSL values for the attribute ‘color.”

Symbolic descriptions are tuples of predicates. The
plan executor sends to the SIM the appropriate sym-
bolic descriptions for the individual symbols that have
to be anchored. For instance, if the executor is inter-
ested in finding Carl, a small red Mercedes at location
cross-1, it sends to the SIM the list ¢(Carl . (red small-
Mercedes at-crossl))’. Note that while in the Milou
testbed the anchoring module anchors all the objects
in the LPS, the SIM only anchors the objects explicitly
requested by the executor.

A perceptual signature is a list of attribute-value
pairs. At each time step ¢, the vision system gener-
ates a perceptual state S; based on information about
the objects to look for. For instance, when asked to
find all cars around location cross-1, the vision system
(i) points the camera to cross-1, (ii) segments the im-
age using a car model, and (iii) returns a set V; of found
regions, and a perceptual signature for each region.

3In the actual system, we use fuzzy sets to take into
account vagueness of linguistic descriptions and uncertainty
in vision data; we also use a fuzzy matching algorithm to
compute a degree of matching (Coradeschi & Saffiotti 1999).



Matching of symbolic descriptions and perceptual
signatures is done according to (a fuzzy version of) (1).

An anchor is a Lisp object that stores an individual
symbol, the index of a region, and an association list
recording the current estimates of the object’s proper-
ties (shape, color, etc.)

The functionalities provided by the SIM are find, rei-
dentify, and follow a car, described below. All these
functionalities configure the vision system according to
the properties of the object of interest.

FIND(z) is implemented by instantiating the general
Find procedure, with the provision that there is
no ‘Select’, but all the found anchors are returned,
sorted by their degree of matching.

REIDENTIFY(z) is implemented by instantiating the
general Reacquire procedure, with the provision
that ‘Predict’ generates multiple hypothetical posi-
tions according to the configuration of the road net-
work, and considers the effect of known occluding
objects (both derived from a GIS).

FoLLow(«) is implemented by combining the general
Track and Reacquire procedures, which in turn are
implemented as TRACK and REIDENTIFY, as follows.

FOLLOW

'

Set Target

) fail
Sl TRACK }—‘:,a” ‘REIDENT\FY *

In TrRACK, the ‘OneStepPredict’ and ‘Update’ func-
tions are implemented as a Kalman filter (KF), which
resides in the vision system. Its initial parameters
are set according to the properties in a. The ‘Verify’
function checks the properties of the v computed by
the KF against a prediction of the possible properties
based on domain knowledge. REIDENTIFY is repeat-
edly called when verification fails. It will search for a
new percept for the anchor using more complex do-
main knowledge. When one is found, its properties
are used to reset the parameters of the KF, and then
continuous TRACKing is resumed.

Let us consider an example that illustrates the FOL-
LOW functionality. Two identical cars are present in the
image, one traveling along a road which makes a bend
under a bridge, and one which travels on the bridge —
see Fig 3. The first car is being tracked by FoLLOw.
The anchor has the form «a(tg) = (car-1,mg,70) where
the perceptual signature g stores the attributes of m,
in particular color, shape and position. At ¢, the car
disappears under the bridge and the second car is al-
most in the position in the image where the first car
would have been, had it not been occluded. The per-
ceptual signature is updated, in particular the expected
position of the car is extrapolated from the previously
stored position. The percept provided by the vision is
the region containing the car over the bridge. The Ver-
ify function compares the attributes of this percept with
the updated perceptual signature. Given the informa-
tion about the road network, the percept is discarded.
Notice that the KF in TRACK, left by its own, would

Figure 3: The followed car disappears under a bridge
and a similar car appears at its place over the bridge.

start tracking the car on the bridge. REIDENTIFY is
called to try to find the car again. The anchor is un-
grounded until an appropriate percept is found while
the perceptual signature continues to be updated at ev-
ery time point also using the knowledge about the road
network. The REIDENTIFY uses knowledge about ob-
jects that can possibly occlude part of the road to detect
the presence of the bridge. The vision system is directed
toward the first visible position after the bridge. When
the car reappears from under the bridge, a percept is
generated by the vision system that is compatible with
the perceptual signature present in the anchor. The
anchor is grounded and the perceptual signature is up-
dated with the attributes of the newly found percept.
Normal tracking is then resumed.

Discussion

This paper makes two main contributions: (1) it defines
the new concept of anchoring as a necessary component
of any physically embedded symbolic system; and (2)
it gives the basic ingredients needed to define the an-
choring behavior of such a system, in terms of a formal
model and of a set of functionalities. These functionali-
ties rely on a number of building blocks, some of which,
like the “match” and the “Predict” functions, may be
complex. The study of these blocks is the subject of
fields like pattern recognition, visual tracking, or es-
timation theory. Anchoring, by contrast, is concerned
with the often underestimated problem of providing the
semantic link between a perceptual system and a sym-
bol system. It does so by combining these blocks into
a general, coherent algorithmic structure.

In order to guarantee the generality of our theory, it
is essential to test it on several applications. In this
paper, we have done so in two substantially different
ones. An interesting outcome has been the ability to
deal with difficult tracking situations, like the bridge
scenario, that require the integration of perceptual and
symbolic knowledge. We believe that many of the sys-
tems discussed in the literature section could also be
reformulated in our framework. We are currently work-
ing in applying our theory to other domains, includ-
ing: the use of non-standard sensors like an artificial
tongue and nose; the correspondence between a human
provided map and a map built by a wheeled robot; and
the RoboCup domain using the Sony legged robots (Saf-
fiotti & LeBlanc 2000). In the first two cases the pred-
icate grounding relation g is not hand-coded, but it is



automatically acquired by the robot.

Our formalization is still preliminary, since in order to
make this first step we had to ignore a number of subtle
issues that are hidden in the anchoring problem. First
is the issue of uncertainty. Perceptual information is in-
herently affected by uncertainty due to noise in the sen-
sors, to poor observation conditions, and to errors in the
perceptual interpretation. Anchoring should take this
uncertainty into account, and consider the quality of the
matching, for instance to decide to get a better view of
an object. Second, we should consider the possibility
to anchor a symbol to multiple percepts: this would be
necessary in order to fuse the information coming from
different sensors that observe the same objects. Finally,
we should distinguish between definite descriptions, like
“the bottle of Barolo on the table”, indefinite descrip-
tions, like “a bottle of Barolo”, and indexical descrip-
tions, like “the bottle on my left”. These descriptions
need different treatments. For instance, seeing two bot-
tles of Barolo on the table is not a problem in the case
of an indefinite description, but could be a problem in
case of a definite one. Some of these issues have been
investigated in our previous work, but a more formal
treatment is needed.

We have not given a formal definition of the notion
of an anchor being “referentially correct” in this first
step. This is intentional. The theory presented here
is internal to the agent, and can be computed by the
agent. By contrast, referential correctness is an external
notion, that should be studied by the designer once a
formal model of the agent and one of the environment
are available. Analyzing this notion is an important
goal, that we leave as a future step.

Acknowledgements We are indebted to Dimiter Dri-
ankov, Ivan Kalaykov, and Lars Karlsson for fruitful discus-
sions. This work has been partly funded by the Wallenberg
Foundation, and partly by the Swedish KK foundation.

References

Agre, P., and Chapman, D. 1987. Pengi: an implemen-
tation of a theory of activity. In AAAI-87, 268-272.

Bajcsy, R., and KosSecka. 1994. The problem of signal
and symbol integration: a study of cooperative mobile
autonomous agent behaviors. In Proceedings of KI-95,
LNCS, 49-64. Berlin, Germany: Springer.

Barwise, J., and Perry, J. 1983. Situations and Atti-
tudes. The MIT Press.

Coradeschi, S., and Saffiotti, A. 1999. Anchoring sym-
bols to vision data by fuzzy logic. In Hunter, A., and
Parsons, S., eds., Qualitative and Quantitative Ap-
proaches to Reasoning with Uncertainty, LNAI Berlin,
Germany: Springer. 104-115.

Coradeschi, S.; Karlsson, L.; and Nordberg, K. 1999.
Integration of vision and decision-making in an au-
tonomous airborne vehicle for traffic surveillance. In
Christiansen, H. 1., ed., Computer Vision Systems,
216-230. Berlin, Germany: Springer.

Doherty, P. 1999. The witas integrated software sys-
tem architecture. Linkoping Electronic Articles in
Computer and Information Science, Vol. 4 (1999): no.
17. http://www.ep.liu.se/ea/cis/1999/017.

Frege, F. 1892. Uber Sinn und Bedeutung. Zeitschrift
fir Philosophie und philosophische Kritik 25-50.

Harnard, S. 1990. The symbol grounding problem.
Physica D 42:335-346.

Hexmoor, H.; Lammens, J.; and Shapiro, S. C. 1993.
Embodiment in GLAIR: A grounded layered architec-
ture with integrated reasoning for autonomous agents.

In Proc. of the Florida Al Research Sympos., 325-329.

Horswill, I. 1997. Visual architecture and cognitive
architecture. Journal of Experimental and Theoretical
Artificial Intelligence 9(2):277-292.

Hutber, D.; Moisan, S.; Shekhar, C.; and Thonnat,
M. 1994. Perception-interpretation interfacing for the
Prolab2 road vehicle. In 7th Symp. on Transportation
Sys.: theory and Application of Advanced Technology.

Jung, D., and Zelinsky, A. 2000. Grounded sym-
bolic communication between heterogeneous cooper-
ating robots. Autonomous Robots 8(3). In press.

Konolige, K.; Myers, K.; Ruspini, E.; and Saffiotti, A.
1997. The Saphira architecture: A design for auton-

omy. Journal of Experimental and Theoretical Artifi-
cial Intelligence 9(1):215-235.

Russell, B. 1905. On denoting. Mind XIV:479-493.

Saffiotti, A., and LeBlanc. 2000. Active perceptual an-
choring of robot behavior in a dynamic environment.
In IEEE Int. Conf. on Robotics and Automation.

Saffiotti, A.; Konolige, K.; and Ruspini, E. H. 1995.
A multivalued-logic approach to integrating planning
and control. Artificial Intelligence 76(1-2):481-526.

Saffiotti, A. 1994. Pick-up what? In Béckstrom, C.,
and Sandewall, E., eds., Current trends in AI Plan-
ning. Amsterdam, Netherlands: IOS Press. 266-277.

Satoh, S.; Nakamura, Y.; and Kanade, T. 1997. Name-
it: Naming and detecting faces in video by the inte-
gration of image and natural language processing. In
Proc. of IJCAI-97, 1488-1493.

Schlegel, C.; Illmann, J.; Jaberg, H.; Schuster, M.; and
Wétz, R. 1999. Integrating vision based behaviours
with an autonomous robot. In Christiansen, H. I., ed.,
Computer Vision Systems, LNCS, 1-20. Springer.

Wasson, G.; Kortenkamp, D.; and Huber, E. 2000. In-
tegrating active perception with an autonomous robot
architecture. IEEE Trans. on Robotics and Automa-
tion. To appear.



