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Abstract

One of the obstacles to the effective compilation of
propositional knowledge bases (KBs) using Horn ap-
proximations, as introduced by (Selman & Kautz
1991), is the lack of computationally feasible meth-
ods for generating Horn bounds. In this paper new al-
gorithms for generating Horn Greatest Lower Bounds
(GLB) that can apply to large size KBs, are presented.
The approach is extended through a more general tar-
get language: the renamable Horn class. The condi-
tions under which a renamable Horn formula is a re-
namable Horn GLB of a KB are established and algo-
rithms for computing it are derived. These algorithms
can be used in the other approaches based on computa-
tion of Horn or renamable lower bounds as (Boufkhad
et al. 1997). The efficiency of these algorithms and the
tightness with respect to the KB in terms of number
of models of the bounds, are experimentally evaluated.
The renamable Horn GLB proves to be closer to the
KB than the Horn GLB.

Introduction
Given a satisfiable Knowledge Base (in short; KB) for

which the propositional deduction is intractable, a knowl-
edge compilation approach consists in transforming into
one or several tractable formulae so that the subsequent
queries are answered efficiently from the tractable formu-
lae. Many approaches to knowledge compilation have been
proposed (Reiter & De Kleer 1987; Selman & Kautz 1991;
del Val 1994; Dechter & Rish 1994; Marquis 1995). In
particular, (Selman & Kautz 1991; 1996) have proposed to
approximate a KB through a greatest lower bound (GLB),
which is the weakest Horn theory that entails , and a low-
est upper bound (LUB) which is the strongest Horn theory
entailed by . Answering queries from a GLB of ( )
and the LUB ( ) is done in this way: for a clause , if

then and if then other-
wise, the answer is ”don’t know”. The nice feature is that
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queries and can be answered in lin-
ear time since and are Horn (Dowling & Gallier
1984). The size, the quality and algorithms for generat-
ing LUB have been studied in (Cadoli 1993; del Val 1995;
Selman & Kautz 1996). It has been shown that the size of
the LUB is in general exponential w.r.t. the size of the KB.
On the other hand, the size of a GLB is always smaller than
the size of the original formula (Selman & Kautz 1996) and
the complexity of the problem of generating a GLB is in

(Cadoli 1993).
An other approach to compilation using tractable lower

bounds is proposed in (Boufkhad et al. 1997). It con-
sists in transforming a KB into an equivalent disjunction
of tractable formulae. Each formula being a lower bound of
the KB falling into a list of target tractable classes.

Although the compilation step is viewed as an off-line
process for which time is not a critical parameter, find-
ing comptationally feasible algorithms allowing large size
KBs to be handled remains an important open issue. In
this paper, new algorithms for generating Horn and renam-
able Horn GLBs are introduced. The basic algorithm for
generating a Horn GLB is based on the Davis and Putnam
procedure (Davis & Putnam 1960). When the KBs are too
large for a systematic search to be considered, an incom-
plete method is used to preprocess the KB and make it eas-
ier for compilation. Using this method, Horn GLBs of large
KBs can be actually computed.

As an even more important contribution, GLBs are then
investigated within the more general class of renamable
Horn. The conditions under which a renamable Horn for-
mula is a renamable Horn GLB ( -GLB) of a KB are
established. Then an algorithm for generating a -GLB
is provided. Finally, the tightness of these bounds is ex-
plored experimentally with respect to the KB, in terms of
the number of models. As can be expected from the gen-
erality of the renamable Horn class the -GLB proves to
be a tighter bound than the Horn GLB.

The above procedures can also be used to compute more
efficiently the tractable covers of the KB as defined in
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(Boufkhad et al. 1997).
In this paper, interpretations and models are represented

by the sets of literals they satisfy. Implicants and prime
implicants are defined in the usual way. The KB to be com-
piled is a set of clauses (in CNF). The KB is assumed
to be satisfiable.

This paper is organized in three sections. In the first one,
a new algorithm for generating Horn GLB is introduced and
some improvements w.r.t. the processing of large KBs de-
scribed. The second section is concerned with the renam-
able Horn case and the third one presents the experimental
evaluation of algorithms and the comparative evaluation of
the quality of the two types of GLBs.

Generating Horn GLBs

The basic algorithm

Let us give some useful preliminary definitions. A clause
is Horn iff it contains at most one positive literal. A set of
clauses is Horn if every clause is Horn. A Horn GLB of a
Knowledge base is a Horn formula s.t. there is no
other Horn formula s.t. and .

First, Selman and Kautz’s approach to compute Horn
GLB is based on the Horn strengthening concept. A Horn
strengthening of a clause is a clause obtained by remov-
ing all but one positive literal of . Example: the clause

. The Horn strengthenings of this clause
are , and . A Horn strength-
ening of a set of clauses is a set of Horn strengthenings
of clauses of . For every Horn GLB of there exists
a Horn strengthening s.t. (Selman & Kautz
1996). The difficulty of finding a Horn GLB comes from
the possibly large number of Horn strengthenings of a set
of clauses.

To overcome this drawback, implicants of will be used
to strengthen so that the search of a GLB of collapses
into the search of a GLB of this strengthened . To this end,
a concept of I-Strengthening is introduced, which itself is
based on the Horn strengthening. For a partial interpreta-
tion and a clause satisfied by , the -Strengthening
of is defined as the clause obtained by removing from

every positive literal s.t. where is the
Horn strengthening of containing . The -Strengthening
of a set of clauses entailed by is the formula formed
by the -Strengthening of its clauses. Example: the same
clause in the previous example is taken. For the partial in-
terpretation the -strengthening of is

since does not satisfy the second and the
third Horn strengthening of (see previous example). For

the -strengthening of is itself since
satisfies every Horn strengthening of .

A long version of this paper, including proofs, is available.

Accordingly, any Horn GLB of can be computed as a
Horn GLB of the -strengthening of , provided that is
an implicant of that entails this GLB. Indeed:

Proposition 1 Let be a set of clauses, an implicant of
and a Horn GLB of . iff is a Horn GLB of

the -strengthening of .

The idea of the generation procedure of a Horn GLB con-
sists in searching for implicants of , after initializing
with . Each time an implicant is found, is replaced by
its -strenghtning. Consequently the remaining part of the
search is restricted to the Horn Strengthenings that are en-
tailed by . This process is repeated on until is Horn
or all its implicants have been visited. In the latter case, all
the Horn strengthenings of are equivalent.

Let us now describe the procedure that generates a
Horn GLB of a set of clauses. A systematic search
of implicants is done using the DP procedure. DP proce-
dure has already been used in compilation (Schrag 1996;
Boufkhad et al. 1997). As an important difference with DP,
the formula for which DP searches for implicants is not the
same all along the tree. Every time an implicant is found,
the current formula is replaced by its -strengthening.

GLB( )
input: a set of clauses
output: a Horn GLB.
begin

DP GLB( , );
return any Horn-strengthenings of ;

end

DP GLB( , )
input: a set of clauses and a partial interpretation
output: a strengthening of .
begin

if unit propagation shows is inconsistent
then return ;

if ( ) then return I-Strengthening of ;
ChooseLiteral( );
DP GLB( , );

if is Horn then return ;
DP GLB( , );

return ;
end

Theorem 1 Let be a set of clauses, GLB( ) delivers a
Horn GLB of .

Interestingly enough, GLB is an anytime procedure in the
sense that if interrupted, it returns a Horn strengthening of

which is a Horn LB that includes at least the implicants
encountered so far by DP GLB. An other advantage of this



procedure is that it allows to choose which models to in-
clude in the Horn GLB to be generated.

Let us now compare the efficiency of GLB with the orig-
inal algorithm Generate GLB by Selman and Kautz. Gen-
erate GLB enumerates all possible Horn strengthenings of
the set of clauses and chooses the weakest one. The num-
ber of iteration steps needed by Generate GLB is thus
the number of Horn strengthenings of a formula, which de-
pends on the numbers of non Horn clauses and of positive
literals in these clauses. This is, let be the number
of positive literals in the clause : .
In general, this number is so huge that this algorithm is
actually intractable. Conversely, when the number of non
Horn clauses is very small Generate GLB might behave
better than GLB. An extreme example requires the pres-
ence of only one non Horn clause with positive literals
and a large number of Horn clauses with an exponential
number of models: Generate GLB needs only two steps
to decide which Horn strengthening to choose, while GLB
needs a large amount of time to find a GLB. Because this
situation can happen in the course of execution of GLB, the
number of steps needed by Generate GLB to give a Horn
GLB of the current formula is computed before every re-
cursive call to DP GLB. If this number is sufficiently small,
DP GLB is interrupted and switches to Generate GLB to
finish the computation process.

Preprocessing large formulae
In DP GLB, each time an implicant is found, it strength-
ens the formula making it more constrained and thus eas-
ier for the remaining search process. When the formula is
too large, even finding just one model is too hard for this
method. To overcome this drawback, a logically incom-
plete but efficient procedure is used for finding a model and
strengthening the formula until it becomes sufficiently con-
strained for being processed by DP GLB. Generating Horn
GLB of large size KBs will consist in looping over the fol-
lowing 3 steps until the formula is sufficiently constrained
to be easy for procedure GLB. is initialized with the KB

:

1. Use a logically incomplete procedure (e.g. a local search
one) for finding a model of (in our experimenta-
tions we used the local search method (Mazure, Saı̈s, &
Grégoire 1997)).

2. Drop literals from successively until is a prime im-
plicant of .

3. Replace by its -strengthening.

Many criteria can be used to decide whether a formula is
sufficiently constrained for being easy enough for GLB. In
our experimentations the number of unit and binary clauses

in the formula has been chosen. After this preprocessing
GLB is called with the resulting formula as an input.

Generating Renamable Horn GLBs

The general framework for theory approximation defined
in (Selman & Kautz 1996) leaves freedom for choice of
representation languages other than Horn. The renamable
Horn class (Lewis 1978; Henschen & Wos 1974) is one of
these possible target languages. Let us stress that it includes
the Horn, reverse Horn and satisfiable binary classes.

Renaming a variable in a set of clauses consists in
replacing every occurrence of by and vice versa. A
renaming function w.r.t an interpretation , denoted by ,
maps the formula into an other formula obtained
by renaming in every variable having its positive literal
in . When used in a renaming function, the interpretation
is said to be a renaming. It can be noted that

. Example: and then
. A set of clauses is renamable

Horn if there exists a renaming s.t. is Horn, in this
case is said to be a Horn renaming of . Testing whether
a CNF formula is renamable Horn can be done in time
linear in the size of (Aspvall 1980).

A -GLB of a set of clauses is a renamable Horn
formula s.t. and there is no other re-
namable Horn formula s.t. and

. There is a close connection between Horn and re-
namable Horn LBs. Indeed, considering a set of clause
and a renaming , every horn LB of is a renamable
Horn LB of . This is why, in the following, there is a need
to use the procedure GLB to generate a renamable Horn
GLB.

Due to the larger scope of the renamable Horn class, gen-
erating bounds should be more difficult and expensive than
in the Horn case. However, tighter bounds could be ex-
pected.

The algorithm for computing a -GLB can be sum-
marized in this way: The formula is initialized to .
Then the renamings are successively considered: if there
exists a Horn GLB of that improves (i.e.

) then is replaced by .
By these successive improvements of , after testing all

the renamings, we are sure that there is no better renamable
Horn LB than .

Since for a set of propositional variables there are
possible renamings, and for each renaming there is in gen-
eral an exponential number of Horn GLBs of , the
search space of -GLBs of is huge. It is then essential
to restrict this search space in order to allow the genera-
tion of a -GLB to be achieved in reasonable time. The
following results established here, give the means for dra-
matically reducing this search:



It is sufficient to consider only the renamings that are
models of .

It can be tested in polynomial time, whether renaming
w.r.t. a model can give a better bound than the current
one.

When a model verifies the latter condition, it is suffi-
cient to generate only one Horn GLB of pro-
vided that the current bound entails .

Thanks to the next proposition, the first point of the pre-
vious list is established:

Proposition 2 Let be a set of clauses and a satifiable
renamable Horn LB of . There exists a model of and
a renamable Horn Lower bound of having as a Horn
renaming s.t. .

If of the previous proposition has a model among its
Horn renamings then the statement is trivial. Otherwise,
the formula is obtained by removing from every oppo-
site occurrence of the literals satisfied by a unit propagation
performed on .

The preceding proposition stated for any renamable Horn
LB, holds in particular for a -GLB. Then every -
GLB is equivalent to a renamable Horn formula that has a
model among its Horn renamings. Thus, in searching for a

-GLB of it is sufficient to consider only the models
of as renamings.

Let us consider a model for renaming, if is a Horn
LB of then is a renamable Horn LB of .
Consequently, only Horn GLBs of can correspond
to renamable Horn GLBs of . Indeed:

Proposition 3 Let be a set of clauses and one
of its renamable Horn GLBs. For every Horn renaming of

, is a Horn GLB of .

Let us now consider a renamable Horn LB . Checking
whether renaming w.r.t some model improves (i.e.
whether there is a Horn GLB of s.t.
) could require to generate every Horn GLB of
and to check if . This is avoided by the next
proposition that establishes the conditions under which, re-
naming w.r.t a model can improve . Since a Horn GLB
of is equivalent to a Horn Strengthening (Selman &
Kautz 1996) then must entail at least one Horn strength-
ening of .

Proposition 4 Let be a set of clauses, one of its mod-
els and a renamable Horn LB of . There exists a Horn
GLB of s.t. iff for every clause

of there is a Horn Strengthening of s.t.
.

Interestingly, since is renamable Horn, the above con-
dition can be checked in linear time in the size of and

.

When the conditions defined in the proposition 4 are ful-
filled by a model , the procedure GLB defined in the pre-
vious section can be used to generate a Horn GLB of

s.t. . To ensure that ,
the parameter given to GLB is a strengthening of
similar to the -strengthening defined in the previous sec-
tion. For this, the definition of the -strengthening is gen-
eralized in this way: for a formula , the -strengthening
of a clause is the clause obtained from by removing
every positive literal s.t. where is the
Horn strengthening of containing . Clearly, and for the
same reasons that in proposition 1, every Horn GLB of the

-strengthening of is entailed by .
To summarize the above results, let us give a partial de-

scription of the algorithm for computing a -GLB. Let
denotes the set of the models of . The formula is

initialized to .

for every model in
if entails some Horn strengthening of
then

-strengthening of ;
GLB( );

It is assumed in the partial procedure given above, that
the set of models of has been computed. In our imple-
mentation, a Davis and Putnam procedure is used to sytem-
atically search for models. As models are found the above
partial procedure is used to improve the current bound.

By generalizing the condition given in proposition 4, it is
possible to prune the DP search tree at a node where the cur-
rent partial interpretation cannot improve the current bound
through one of its models (if any). Let us consider a partial
interpretation and a renamable Horn LB , we address
the question: Is it possible to extend to a renaming that
improves ? A small modification to proposition 4 allows,
in some cases, to answer efficiently negatively this ques-
tion. Let us consider a clause and rename it using the
renaming function defined in this way: for every lit-
eral in if or is in then rename it the usual way,
otherwise rename it negatively. Let us denote by the
clause s.t. is a Horn strengthening of . Ex-
ample: and then

, then is
s.t. is a Horn strengthening of . Clearly, if
there is no Horn strengthening s.t. then
the answer to the above question is no. This is because no
full interpretation obtained from , can rename negatively
more literals than does using the renaming function de-
scribed above. This method allows us to prune the search
by skipping all the models (if any) in the considered partial
interpretation.



Let us now describe the complete procedure that gen-
erates a -GLB of a set of clauses. Similarly to
GLB, RH GLB performs a single call to a procedure
DP RH GLB that develops a DP like tree. A formula
is initialized to and then is improved everytime a
model of that can improve it is found. At each step,
DP RH GLB tests if the current partial interpretation can
produce a renaming that improves , in the negative case
DP RH GLB backtracks allowing for a significant prun-
ing (in the next procedures, is a global variable).

RH GLB( )
input: a set of clauses
output: a -GLB.
begin

;
DP RH GLB( , );
return ;

end.

DP RH GLB( , );
input: a formula and a partial interpretation
output: none.
begin

if unit propagation shows that is inconsistent
then return;

for every clause
if there is no Horn strengthening
of s.t. then return;

if is a model of
then

-strengthening of ;
GLB( );

;
return;
ChooseLiteral;

DP RH GLB( , );
DP RH GLB( , );

end.

Theorem 2 Let be a set of clauses, RH GLB( ) deliv-
ers a renamable Horn GLB of .

Interestingly, the procedure RH GLB is anytime. If inter-
rupted, it returns the current formula which is a renam-
able Horn LB of .

Experimental results
Generation of GLB
In (Kautz & Selman 1994; Selman & Kautz 1996) the
experimental evaluation of knowledge compilation using
theory approximation has been done using unit clause
bounds. To our best knowledge, actual computations of

k #instances CPU CPU
#vars #clauses (#fails) Prep. GLB

3800 100 (0) 0.5s 1s
3-cnf 4000 100 (0) 0.8s 1s
1000 50 100 (0) 61s 0.5s

2700 100 (23) 2s 324s
4-cnf 2800 100 (13) 4s 173s
300 2900 100 (0) 84s 108s

Table 1: Generation of Horn GLBs of randomly generated
3-CNF formulae of 1000 variables and 4 -CNF formulae of
300 variables.

instance #variables #clauses
as2-yes.cnf 96 954 0.1s 55s
as3-yes.cnf 96 954 0.1s 26s
as6-yes.cnf 184 2277 12s -
as8-yes.cnf 84 974 0.2s 140s

as10-yes.cnf 216 2780 265s -
as11-yes.cnf 112 1312 1s 78s
as12-yes.cnf 72 1012 0.1s 43s
as14-yes.cnf 92 758 0.1s 123s

Table 2: Experiment on Asynchronous circuits design in-
stances.

Horn bounds have never been performed. This is why the
experimental results given in this section are not compared
with other methods. As an illustration of the efficiency
of the algorithms for generating GLB on large size KBs,
we tested them on large random -CNF formula on a Pen-
tium 200MHz. These instances have been generated around
the hard region (Mitchell, Selman, & Levesque 1992;
Dubois et al. 1996). Table 1 reports the results on -CNF
instances of variables and -CNF instances of
variables. Up to one hour was allocated for each formula.
CPU times are presented separately for preprocessing and
for the GLB procedure.

Table 2 reports the results of CPU computation time
of Horn GLBs ( ) and renamable Horn lower bounds
( ) on 15 benchmarks coming from asynchronous cir-
cuits design (available at dimacs.rutgers.edu/pub/sat-files/
by anonymous ftp). The table reports only the benchmarks
for which computation was possible. To let experiments be
done in reasonable time, the renamable Horn lower bound
is computed using RH GLB which is interrupted, the first
time a renamable Horn LB better than the Horn GLB com-
puted is found.
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Figure 1: Number of models of Horn LBs, renamable Horn
GLBs and KBs.

Quality of the lower bounds
Results obtained on random 3-CNF instances of 100 vari-
ables and for ratio #clauses/#variables ranging from to

are represented in Figure 1. Each point of each curve is
the mean number of models on a sample of instances.
For the renamable Horn case, only lower bounds have been
computed. In spite of that the renamable Horn LBs approx-
imates better the KB than does the Horn GLB.

Conclusion
The renamable Horn class proves to be an interesting tar-
get language in propositional KB approximation. It can
actually also improve the quality of upper bounds. Let us
stress that the algorithms described in this paper can be eas-
ily modified to generate more compact tractable covers in
the framework defined in (Boufkhad et al. 1997). An inter-
esting issue for further research is to investigate the com-
putational complexity of generating the renamable Horn
bounds.
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for SAT. In AAAI’97. 281–285.

Mitchell, D.; Selman, B.; and Levesque, H. 1992. Hard
and easy distribution of sat problems. In AAAI’92, 459–
465.

Reiter, R., and De Kleer, J. 1987. Foundations of
assumption-based truth maintenance systems: Prelimi-
nary report. In Proc. AAAI’87, 183–188.

Schrag, R. 1996. Compilation for critically constrained
knowledge bases. In Proc. AAAI’96, 510–515.

Selman, B., and Kautz, H. 1991. Knowledge compilation
using horn approximations. In Proc. AAAI’91, 904–909.

Selman, B., and Kautz, H. 1996. Knowledge compilation
and theory approximation. JACM 43(2):193–224.


