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Abstract 

In this paper, we propose a new approach to inten- 
sional semantics of term subsumption languages. 
We introduce concept algebras, whose signatures 
are given by sets of primitive concepts, roles, and 
the operations of the language. For a given set of 
variables, standard results give us free algebras. 
We next define, for a given set of concept defini- 
tions, a term algebra, as the quotient of the free 
algebra by a congruence generated by the defini- 
tions. The ordering on this algebra is called de- 
scriptive subsumption (la). We also construct a 
universal concept algebra, as a non-well-founded 
set given by the greatest fixed point of a certain 
equation. The ordering on this algebra is called 
structural subsumption (?a). We prove there are 
unique mappings from the free algebras, to each 
of these, and establish that our method for classi- 
fying cycles in a term subsumption language, K- 
REP, consists of constructing accessible pointed 
graphs, representing terms in the universal con- 
cept algebra, and checking a simulation relation 
between terms. 

Introduction 
Classification of cycles in term subsumption languages 
has thus far been avoided, for a variety of sound 
and perhaps not so sound reasons. In this paper we 
will discuss how cycle classification is handled in K- 
REP [Mays et al., 19911, a KL-ONE [Brachman and 
Schmolze, 19851 style of language. Using ideas from 
universal algebra and the theory of non-well-founded 
sets, a new framework, that of concept algebras is pre- 
sented. These algebras elucidate the structural com- 
parisons that are actually made when testing subsump- 
tions. The motivation is to view terms (referred to 
as concepts) in these languages as intensional descrip- 
tions, and to view subsumption as a process of struc- 
tural comparison between terms. In this sense this 
framework differs from existing treatments that make 
use of model theory, in that it closely corresponds to 
the actual implementation of the classifier in K-REP. 

In a recent paper Bill Woods [Woods, 19911 has sug- 
gested that a more intensional view of concept descrip- 
tions should be taken. Concepts might describe things 
that may or may not exist in the world. Different con- 
cept descriptions can have the same meanings, yet still 
may be regarded as distinct concepts (“the morning 
star” vs. “the evening star”). To date most of the work 
in semantics of term subsumption languages takes an 
extensional view. Concepts are interpreted as sets of 
objects from some universe. Roles of concepts are in- 
terpreted as binary relations over the universe. These 
languages are thus seen as some subset of first order 
logic. Concept descriptions are complex predicates and 
one asks whether or not given instances satisfy those 
predicates. 

In this paper we’d like to pursue Woods’ sugges- 
tion and try to look at concepts intensionally. We will 
consider a small subset of the K-REP language, that 
has primitive concepts, concepts formed by conjunc- 
tions, and roles of concepts whose value restrictions 
are other concepts. This subset is chosen not only to 
simplify the presentation, but because it is not clear yet 
how to extend these ideas to more complex constructs 
like disjunctions and negations. This subset is roughly 
the same subset handled in [Baader, 19901. A knowl- 
edge base is seen as a set of possibly mutually recursive 
equations, involving terms of this concept language. 

The outline of this paper is as follows. The next sec- 
tion is a brief overview of the K-REP language. Next 
will be a general discussion of cycles, the type that 
are of use, how they arise, and how they are handled 
in K-REP. As pointed out by Bernhard Nebel [Nebel, 
19901, the type of cycles of interest appear through 
role chains. What he refers to as descriptive semantics 
comes closest to capturing our intuitive understand- 
ing of them. Descriptive semantics, as well as least 
and greatest fixed point semantics, are all based on 
the view of modeling concept descriptions as subsets 
of some universe. This is very appealing as we think 
of more general concepts as describing larger classes 
of objects. However, implementations reason with the 
descriptions of the classes, subsumption is determined 
by structural comparison and not by subset inclusion 
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of sets of objects. 
We then present a new model for this subset of the 

K-REP language. It makes use of basic tools from 
universal algebra [Jacobson, 19891, and Aczel’s theory 
of non-well-founded sets [Aczel, 19881. What will be 
modeled are the descriptions of the concepts. First 
we give a signature and a set of axioms, for which we 
can discuss a class of algebras called concept algebras. 
Standard results will give us free algebras generated 
from a given set of variables. Terms in the algebras 
will correspond to concept descriptions. Next a Knowl- 
edge Base (hereafter KB) is defined as a set of possibly 
mutually recursive definitions over terms of a free al- 
gebra. These equations generate a congruence on the 
free algebra and the quotient algebra is then the con- 
cept algebra generated from this given KB. Any KB 
thus gives rise to a quotient algebra in this way. We 
will refer to the ordering on terms of this algebra as 
descriptive subsumption. This algebra can be uniquely 
mapped to a certain non-well-founded set C that arises 
as the greatest fixed point solution of a certain equa- 
tion. Suitable operators are defined on C to make it, 
too, into a concept algebra. We will see that in some 
sense C is the most abstract model for our language 
in that it captures concepts as intensional descriptions. 
The subsumption ordering on this algebra will be called 
structural subsumption. The reason that C is inter- 
esting is that its ordering captures the essence of the 
implementation of subsumption in K-REP, even when 
cycles occur. We are hopeful that we can extend this 
model to also include disjunctions of concepts, since 
they can be viewed as sets of descriptions, one of which 
a given instance might satisfy. 

The Representation Language 
K-REP is in the class of languages known as term sub- 
sumption languages. Terms in K-REP are called con- 
cepts. Concepts are meant to describe classes of ob- 
jects in some universe, both by defining them in terms 
of other concepts, and by describing the attributes a 
given class has. There are two types of concepts, prim- 
itive and defined. Primitive concepts are like natural 
kinds, their attributes are necessarily true of instances 
belonging to the concept, but are not sufficient to de- 
termine membership in the class represented by the 
concept. Defined concepts on the other hand are nor- 
mally defined in terms of other more general primitive 
concepts. Their attributes are both necessary and suf- 
ficient for instances belonging to the class. Attributes 
are called roles, and since they have values, they can be 
viewed as binary relations over the classes, Terms are 
constructed by a few concept-forming operators. Us- 
ing set-theoretic semantics, concepts are interpreted as 
subsets of some universe 24, and roles as binary rela- 
tions on 24. Table 1 shows the operators together with 
their abstract form and semantics for the subset of K- 
REP we will be considering in this paper. This is the 
standard set-theoretic semantics often seen in the lit- 

erature. It is included here for purposes of comparison 
with the semantics we propose in this paper. 

In order to simplify the technical details of our model 
introduced in the next section, we will assume that in- 
troduced primitives are defined only in terms of top. 
Since other defined primitives can be expressed in 
terms of these and role definitions, this results in no 
loss of expressivity in our language. A knowledge base 
(MB) is a collection of concept terms. Since we are not 
considering instances, we make no distinctions between 
T-boxes and A-boxes. A given set of concept defini- 
tions will define a KB. Consider the following KB: 

C z (and P (R W)) 

W E (and P (S C)) 
where P is a primitive concept, R and S are roles and 
C and W are defined concepts. Notice that these two 
concepts contain a simple cycle. In the first implemen- 
tation of K-REP forward references were not allowed, 
so that these could not be defined without some hack- 
ery. We will write (R W) as an abbreviation for (V3R : 
W), in order to motivate the view of roles as meet- 
homomorphisms on concepts, which we will see in our 
model. Since conjunction in the language is just set- 
theoretic intersection in the semantics, this is just the 
statement that (and (R C) (R W)) G (R (and C W)). 

The subsumption relation produces an ordering on 
the concepts of a given KB. One concept subsumes an- 
other written 61 k Cs if all of Cl’s primitives subsume 
a primitive of Ca, and for each role R of Cl, C2 has 
that role and the value restriction of R on Cl sub- 
sumes the value restriction of R on C2. Note that if 
Cl h C2, then (and Cl Cs) must be equivalent to C2, 
in the sense that each subsumes the other. 

Cycles 
When cycles are allowed through role chains, one can 
see that a straightforward approach to subsumption 
testing can lead to infinite looping. In the original 
implementation of K-REP, concepts were classified one 
at a time and forward references were not allowed. This 
prevented the occurrences of cycles, other than those 
of length one, which caused no harm and were more or 
less ignored. A first attempt at handling cycles was to 
classify all the concepts involved in a cycle at the same 
time. Each concept in the cycle is classified as far as 
possible, and one loops through them all until no more 
further relationships are discovered. This appeared to 
work well and only required that given a collection of 
concepts, one can detect the cycles syntactically before 
they are classified. However, it missed the following 
case: 

C E (and P (RI W)) 

W 3 (and P (& C)) 

C’ 2 (and P (RI 0’) (R2 P’)) 

W’ - (and P (& C’) (2.72 P’)) 
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Table 1: K-REP Language 

Concrete Form Abstract Form 

Concept Forming Operators 
top T 
(and Cr . . . C,,) Cl A...AC, 
(allsome R C) V3R:C 

Terminological Axioms 
(defconcept N C) 
(defprimconcept N C) 

NrC NZ = c= 
N&C N=CC= 

C’ and W’ are the same as C and W except that 
they have additional roles Ra and S2 and therefore C 
should subsume C’ and W should subsume W’. If we 
were to classify C and W together and then 6’ and W’ 
we would not detect that C subsumes 6’. That test 
would involve checking if W subsumes W’, which would 
not be known at that point. 

The solution to this is to begin testing the first con- 
cept in a cycle. If any subsumption questions arise 
that involve other concepts in that cycle then recur- 
sively invoke the next subsumption question. At some 
point this process terminates, or a subsumption ques- 
tion arises that one has already visited, at which point 
one stops. This is tantamount to just assuming it is 
true. Applying this technique to the previous exam- 
ple we see that the question C h C’ leads to W k W’ 
which leads back to C t C’. 

In order to see this more closely one can draw cer- 
tain graphs to represent the concepts of a given KB. 
These graphs are actually encoded forms of accessible 
pointed graphs (upg ‘s), used in non-well-founded set 
theory. Each one has a root node labelled by the con- 
cept name, an epsilon labelled arc that points to the 
conjunction of the primitives in the concept, and an 
R labelled arc for each role R in the definition. Let 
us call the collection of these D. Using these graphs 
we check if Cr 2 C2 by first checking that the primi- 
tive pointed to by the epsilon arc of Cr subsumes the 
primitive pointed to by the epsilon arc of Cz. Then for 
each R labelled arc of Cr we check that C’2 has an arc 
of the same label, and that the nodes pointed to by 
them are also in the subsumption relation. If either of 
these nodes is in a cycle, we arrive at the recursive step. 
Take the graphs corresponding to the concept names of 
these two nodes and paste them down at these nodes. 
However, change any labelled arcs that point to con- 
cepts whose graphs are already present, to point to 
those nodes. This may introduce loops in the graphs. 
Continue testing the nodes where the new graphs were 
pasted on. Since the number of concepts is finite, the 
number of cycles must be also, and this process termi- 

Semantics 

iv 
cfn...nc; 
(d E U 1 R=(H) C Cz A R=(d) # 0) 
where Rz E U x U 

nates. Recognition of previously asked subsumptions 
questions, occurs when loops with the same labels are 
introduced that point to pairs of previous nodes. This 
process actually constructs a Hoare simulation between 
the two apgs, from the top down. We are certain that 
it terminates because our KBs are finite. 

The Models 
Consider the signature C containing a set P of con- 
stants, a set % of unary operators, a binary operator 
A, and a constant T. Let E be the following set of 
axioms with respect to this signature: 

zAx = x (idemptence) 
xAy = yAx 

(x A Y) A 2 
(commutativity) 

= xA(yAz) (OrssoCaativity) 
xAT = x 

R(x Ay) = 
(T is a unit) 

R(x) A R(y) VR E 32 

We now consider the class of algebras for this signa- 
ture C, that satisfy the axioms E. We will call such al- 
gebras concept algebras. Using A, a partial order 2 can 
be imposed on a concept algebra (p 2 Q iff p A q = q). 
The constants in P are meet-irreducible primitives and 
each R E 92 defines a meet homomorphism on the al- 
gebra. 

Given X = (xl,. . . ,z~} , A[X] = A[xr,. . . , zn] is 
the free concept algebra generated by X. A[] = A[01 
is the initial concept algebra. 

A KB is a set of n possibly mutually recursive defi- 
nitions 

A = (Xl = t1,. . . , xn z tn) 

where td E A[zl, *. . , xn] . A gives rise to GA, the 
least congruence on A[xr, . . . , x,,] containing A. For 
each KB, A, we will be interested in three relations on 
A[X]: 

sr 24 s2 (descriptive subsumption) 

sr )Ld) 52 (StrUCtUrid subsumption) 

sr >A s2 (extensional subsumption) 
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A congruence on A[X] is an equivalence relation that 
is also a subalgebra of A[X] x A[X]. For any re- 
lation T on A[X] , let E(T) be the smallest equiva- 
lence relation on A[X] that contains T, and let F(T) 
be the smallest subalgebra on A[X] x A[X] that con- 
tains T. Let So = ((z;,ti)]x; s ti E A} and let 
Sk+1 = F (E(Sk)) for k: > 9. This generates an in- 
creasing sequence of algebras 

and we define =A as Un S,. This is a congruence on 
A[X] that contains A, and if B is any other algebra 
that contains A, then an induction on k: shows that 
B contains Sk and therefore contains =A , so it is the 
smallest. 

Let A~[xl,..., x,J hereafter refer to the quotient al- 
gebra A[xl,. . ., x,J/ =A. Given a set of concept def- 
initions A we can view AA [xl, . . . , x,J as the algebra 
of congruence classes of concept terms with respect to 
this set of equations. Then 

Theorem 1 AA[x~, . . . , 2,] is Q, conservative exten- 
sion of A[], i.e., the unique homomorphism A[] -& 
AA[~I, l --I xcn] is one-one. 

Proof. Since the only nontrivial identifications of 
terms of A[xl, . . . , 3c,] implied by -A involve the free 
variables xl,. . . , xc,, and since A[] has no terms in- 
volving xl,...,x% , the unique homomorphism from 
A[] into AA[x~, . . . , x,J is one-to-one 0. 

We are now ready to define descriptive subsumption. 

Definition 1 Given two terms sl,s2 E A[X], we say 
s1 descriptively subsumes ~2, written s1 aA 232, ifl 
RAsl >Aa[X] 7iAs2 (TA is the canonical projection map 
from A[X] to AA[X]). 

We next wish to construct an algebra that provides 
semantics for these terms, so that each term can be 
mapped to an element of the semantic algebra. There 
will be no variables in this algebra, and we will show 
that even sets of equations with cycles in them have 
unique solutions in this semantic algebra. Keep in 
mind that the elements of this algebra, which we call 
the universal concept algebra, are modeling the con- 
cepts as descriptions or intensions, rather than exten- 
sions. 

The “universal concept” algebra is the greatest fixed 
point solution of the equation 

c = (P<UP) x (%<;C) 

where (P<WP) is the collection of finite subsets of P, 
and (WAC) is the collection of partial functions from 
92 to C,<Gith finite domain. 

A concept definition is composed of a collection of 
primitives conjoined together with a collection of role 
definitions. Each element of C is an ordered pair whose 
first component is a set of primitives from P, and 
whose second component is a set of ordered pairs, each 

arising from one of the role definitions. This set can 
just be represented as a partial function on ?I?, defined 
for each role in the concept’s definition. Note that C is 
a not a set in the normal ZFC sense, but in the sense 
of Aczel’s theory of non-well-founded sets (roughly sets 
that can contain themselves as members). This is how 
circularity of concept definitions can be allowed. 

To see that C is a concept algebra: 

Tc = (0,0> 

pia = ((pi}, 0) 
Rc(x) = (8, {(R, x))) 

Given Cr = (S~,fc,) where $1 C P and fc, E 
(!PkC) and similarly for C2 = (Q2rfca) we define: 

Cl A @2 = (QI u Q2, fcgca) 

where J&AC~ E (a ( w AC) is defined as ~c~~c~(R) = 

{ 

fc, (RI if R E dm(f~,) - dom(fc,) fc, CR) if R E dom(fc,) - dm(fcl) 
fc1 (R) A fc, (R) if R E dm( fcl ) n dm(fca) 

Technically, to define the meet operation on C, one 
must do a bit more than write down this recursive def- 
inition, because it is not entirely clear that this defi- 
nition leads to a well defined function. However, the 
recursive definition can readily be translated into a si- 
multaneous system of equations, to which the Solution 
Lemma [Aczel, 19881 can be applied, and this allows 
us to assert the existence and uniqueness of the meet 
operation. With respect to A, let us define what is 
meant by a good set of definitions. 
Definition 2 A set of definitions A is good if each 
xi appears only once on the left hand side, and each 
equation xi = ti is of the form xi = (Aj Pi,j) A 

(l\k(Ri,k S&k)) where Pi,j E P and s&k E A[X] Vi, j, k. 
In other words each equation is composed of a conjunc- 
tion of a conjunction of primitives, and a conjunction 
of role terms that may OT may not contain variables. 

Theorem 2 There ezists a unique concept algebra ho- 
momorphism AA[x~, . . . , xn] % C if A is a good set 
of definitions 

Proof. Without loss of generality, we may take the 
generators (21, . . . , xn}, as atoms (or Urelemente), i.e., 
objects that are not sets and not in any way composed 
of sets. Using the interpretations in C, of the opera- 
tors in C, the KB A can be interpreted as a system of 
equations for which we seek a solution, 

Xl = Yl,...,Xn =Y,, 

where each Yi is a pure set (a set involving no atoms) 
in 6. The existence and uniqueness of this solution fol- 
lows immediately from Aczel’s Solution Lemma [Aczel, 
19881, p. 13. Hence there exists a unique homomor- 
phism p from the free algebra A[X] to C, such that 
p(xi) = Yi Vi. 
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The fundamental homomorphism theorem then im- 
plies that there exists a unique mapping, call it PA, 
from A[X]/KeT p to C such that the following diagram 
commutes. 

Jq-q p b c 

+/ 

PA 

Provided that we can show that Ker p contains =A 
we can apply Theorem 2.3 in [Jacobson, 19891 (page 
64) to obtain a unique mapping $ from &[X] to 
A[X]/Ker p such that the following commutes. 

4x1 t 4JwKe~ P 

TA 

v / 

1c) 

AA Lx1 
But since p was defined on the generators zi, we see 

that for (zi,ti) E -A , p(z;) = p(ti), and therefore 
=A s Ker p. The unique map from AA [X] to C is the 
composition of PA with 4, i.e. PA = PA 0 II) 0. 

Now we have the following picture: 

A[X] -S AA[X] % C 

given two terms in 
sumption says that 

4x1, SI and ~2, descriptive sub- 

sl 7A s2 iff KAsl >A&] 3-As2 

and now we can define structuTa1 subsumption. 

Definition 3 Given two teTms ~1,s~ E A[X], we say 
51 StTUCtUTdy subsumes 52, WTitttX S1 ?A S2, #((PA0 

rA)sl >C ($‘A o rA)s2- 

Structural subsumption is given by the ordering on C. 
We now explicitly state the ordering on C, to both 
relate it to- A and the actual implementation in K- 
REP. Given Cl = (QI, fc,) where &I C P and fc, E 
(!@&+C) and similarly for C2 = (92, fc,), we say that 
Cl -%c G, if $1 !G Q2, and dom(fc,) C dom(fc,), 
and VR E dom( fcl) , fc,(R) 2~ fc,(R). This is 
exactly the test for subsumption of concepts stated 
in the previous section on the language. Notice also 
that when Cl >c Css if one inspects Cl A C2, that 
&u&2 = 92 and since dom(fc,) & dom(fc,), that fcIAc2 reduces to the second and third cases. The 
third case corresponds to fcl(R) 2~ fCa(R), and thus 
Cl 2~ C2 iff Cl A C2 = 62. 

The algorithm discussed in the previous section for 
coping with cycles, is essentially constructing objects 
in C, by first constructing an apg-like object in D, for 
each term of A[X] in which we are interested. This 
construction corresponds to the map ImpA in the di- 
agram below. Each apg in D then describes a unique 
set in C via the unnamed arrow. The testing of sub 
sumption is actually testing the presence of a Hoare 
simulation between the objects in 6. With respect to 
our implementation we now have the following com- 
mutative diagram. 

(Our new implementation of K-REP actually cre- 
ates two spaces of objects representing concepts. Our 
definition space corresponds to AA [Xl, and our seman- 
tic space corresponds to C. Thus the definition space 
allows for multiple definitions that might map to the 
same object in the semantic space). 

The fact that PA preserves order proves the following 
claim: 
‘I’heorenm 3 Descriptive 
tural subsumption 

subsumption implies StTUC- 

This shows us that descriptive subsumption is 
weaker than structural subsumption. Proposition 5.2 
(page 133) of [Nebel, 19961, states that subsumption 
with respect to descriptive semantics is weaker than 
subsumption with respect to a least or greatest tied 
point semantics. Let us now define extensiona sub- 
sumption. 

efinition 4 Given two terms ~1, s2 E A[X], we say 
s1 extension&y subsumes ~2, written 

51 ,>A 52, iff s;u ,> sp, 

V extensional greatest fixed point models M. 
It appears that our structural subsumption is equiv- 
alent to subsumption with respect to all extensional 
greatest fixed point models. Stated more succintly, 
Conjecture 1 

51 ?A 32 iff s1 >A s2- 

Conclusion 
In this paper we have developed concept algebras as a 
new approach to semantics for term subsumption lan- 
guages. We have shown that for a subset of the K-REP 
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language, these algebras accurately model the process 
of subsumption testing, even in the presence of cycles. 
We feel this approach is somewhat simpler as these 
algebras model the concepts as descriptions, without 
reference to subsets of some universe. These algebras 
also allow for multiple definitions, i.e., concepts with 
different names that semantically represent the same 
concept. We are incorporating both these ideas into 
a new version of K-REP. Though we have only dealt 
with a subset of K-REP it appears that cardinality 
restrictions do not add much more complexity to the 
model. However role value maps certainly do and they 
warrant further investigation. 

One immediate extension appears to be disjunction. 
Since one can view a disjunction as a collection of con- 
cept descriptions, one of which a given instance might 
satisfy, it seems that the finite power set of the algebra 
C under a suitable ordering (perhaps the Hoare), could 
provide an algebra that also allows for disjunctions. 
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