Effectiveness of Crawling Attacks Against Web-based Recommender Systems

Runa Bhaumik, Robin Burke, Bamshad Mobasher

The modeling of Web user navigational patterns is a critical component of many Web applications such as those involving Web personalization, recommender systems, and Web analytics. Because such open adaptive systems depend on users' input, malicious third parties may seek to distort the system's behavior by generating false clickstreams. Recent research in collaborative recommender systems has shown that personalization systems that use explicit user feedback in the form of ratings are vulnerable to such attacks. In this paper, we extend this work to the area of adaptive systems that use implicit measures of user behavior such as the navigational patterns employed in Web personalization. We find that, although such usage-based Web recommender systems use different recommendation algorithms, they are nevertheless subject to similar manipulation through appropriate attacks. In this paper, we introduce several examples of "crawling attacks" and demonstrate their effectiveness against some common Web personalization algorithms.

Subjects: 1.10 Information Retrieval; Please choose a second document classification

Submitted: May 15, 2007

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.