Proceedings:
No. 1: Agents that Learn from Human Teachers
Volume
Issue:
Papers from the 2009 AAAI Spring Symposium
Track:
Contents
Downloads:
Abstract:
In this position paper, we analyze ways that a human can best be involved in interactive artificial learning against a backdrop of traditional AI programming and conventional artificial learning. Our primary claim is that interactive artificial learning can produce a higher return on human investment than conventional methods, meaning that performance of the agent exceeds performance of traditional agents at a lower cost to the human. This claim is clarified by identifying metrics that govern the effectiveness of interactive artificial learning. We then present a roadmap for achieving this claim, identifying ways in which interactive artificial learning can be used to improve each stage of training an artificial agent: configuring, planning, acting, observing, and updating. We conclude by presenting a case study that contrasts programming using conventional artificial learning to programming using interactive artificial learning.
Spring
Papers from the 2009 AAAI Spring Symposium