Creating Relational Data from Unstructured and Ungrammatical Data Sources

M. Michelson and C. A. Knoblock

In order for agents to act on behalf of users, they will have to retrieve and integrate vast amounts of textual data on the World Wide Web. However, much of the useful data on the Web is neither grammatical nor formally structured, making querying difficult. Examples of these types of data sources are online classifieds like Craigslist and auction item listings like eBay. We call this unstructured, ungrammatical data "posts." The unstructured nature of posts makes query and integration difficult because the attributes are embedded within the text. Also, these attributes do not conform to standardized values, which prevents queries based on a common attribute value. The schema is unknown and the values may vary dramatically making accurate search difficult. Creating relational data for easy querying requires that we define a schema for the embedded attributes and extract values from the posts while standardizing these values. Traditional information extraction (IE) is inadequate to perform this task because it relies on clues from the data, such as structure or natural language, neither of which are found in posts. Furthermore, traditional information extraction does not incorporate data cleaning, which is necessary to accurately query and integrate the source. The two-step approach described in this paper creates relational data sets from unstructured and ungrammatical text by addressing both issues. To do this, we require a set of known entities called a "reference set." The first step aligns each post to each member of each reference set. This allows our algorithm to define a schema over the post and include standard values for the attributes defined by this schema. The second step performs information extraction for the attributes, including attributes not easily represented by reference sets, such as a price. In this manner we create a relational structure over previously unstructured data, supporting deep and accurate queries over the data as well as standard values for integration. Our experimental results show that our technique matches the posts to the reference set accurately and efficiently and outperforms state-of-the-art extraction systems on the extraction task from posts.


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.