Multiple-Goal Heuristic Search

D. Davidov and S. Markovitch

This paper presents a new framework for anytime heuristic search where the task is to achieve as many goals as possible within the allocated resources. We show the inadequacy of traditional distance-estimation heuristics for tasks of this type and present alternative heuristics that are more appropriate for multiple-goal search. In particular, we introduce the marginal-utility heuristic, which estimates the cost and the benefit of exploring a subtree below a search node. We developed two methods for online learning of the marginal-utility heuristic. One is based on local similarity of the partial marginal utility of sibling nodes, and the other generalizes marginal-utility over the state feature space. We apply our adaptive and non-adaptive multiple-goal search algorithms to several problems, including focused crawling, and show their superiority over existing methods.

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.