Representing and Aggregating Conflicting Beliefs

P. Maynard-Zhang and D. Lehmann

We consider the two-fold problem of representing collective beliefs and aggregating these beliefs. We propose a novel representation for collective beliefs that uses modular, transitive relations over possible worlds. They allow us to represent conflicting opinions and they have a clear semantics, thus improving upon the quasi-transitive relations often used in social choice. We then describe a way to construct the belief state of an agent informed by a set of sources of varying degrees of reliability. This construction circumvents Arrow’s Impossibility Theorem in a satisfactory manner by accounting for the explicitly encoded conflicts. We give a simple set-theory-based operator for combining the information of multiple agents. We show that this operator satisfies the desirable invariants of idempotence, commutativity, and associativity, and, thus, is well-behaved when iterated, and we describe a computationally effective way of computing the resulting belief state. Finally, we extend our framework to incorporate voting.

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.